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Abstract: With the advances of wireless sensor networks, they yield massive volumes of
disparate, dynamic and geographically-distributed and heterogeneous data. The data mining
community has attempted to extract knowledge from the huge amount of data that they
generate. However, previous mining work in WSNs has focused on supporting simple
relational data structures, like one table per network, while there is a need for more complex
data structures. This deficiency motivates XML, which is the current de facto format for
the data exchange and modeling of a wide variety of data sources over the web, to be used
in WSNs in order to encourage the interchangeability of heterogeneous types of sensors
and systems. However, mining XML data for WSNs has two challenging issues: one is the
endless data flow; and the other is the complex tree structure. In this paper, we present several
new definitions and techniques related to association rule mining over XML data streams in
WSNs. To the best of our knowledge, this work provides the first approach to mining XML
stream data that generates frequent tree items without any redundancy.
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1. Introduction

Wireless sensor networks (WSNs) have been identified as an important research area for the 21st
century [1]. The technologies related to WSNs, such as GPS, RFIDs, sensors and ad hoc networks,
have recently attracted enormous attention in building a smart computing lifestyle. These technologies
have been pervasively used in smart and ubiquitous applications, e.g., like healthcare, retail stores,
industrial automation, security, disaster protection, academic area and asset management [2]. In such
applications, real-time and reliable monitoring is the essential requirement, which is mainly supported
by the proliferation of WSNs.

Wide area sensor infrastructures yield massive volumes of dynamic and heterogeneous data flowing
through the system [3] and introduce new and unique challenges in the management and control of
the data stream. One of the major challenges is extracting useful knowledge about the environment
monitored by a WSN system [4]. Extracting useful information from WSN data is commonly called
mining stream data and can be done by using typical analysis tools, like association rule extraction,
classification and clustering.

Mining stream data differs from mining traditional data in several aspects [5,6]. Firstly, each data
element in stream data should be examined, at most, once. This nature of streaming data makes it
indispensable to use online algorithms that require only one time scan over the entire data for knowledge
discovery. Secondly, memory usage for mining data streams should be bounded regardless of the
continuous generation of new data elements. This requirement motivates the design of an in-memory data
structure consuming a small amount of memory. Thirdly, each data element in data streams should be
processed as fast as possible. Fourthly, the results generated by the online algorithms should be instantly
made available to users upon request. Finally, the frequency of errors in the outputs generated by the
online algorithms should be constricted to be as small as possible. Due to these differences, previous
multiple-pass data mining techniques presented for traditional data sets cannot be directly applied to the
domain of mining the stream data.

Previous work for mining stream data has focused on supporting simple relational data structures, like
one table per network, while there is a need for more complex data structures. Compared to simple data
structures, complex data structures are more suited for efficiently handling large heterogeneous stream
data sets. Moreover, the use of a standardized format is desirable for exchanging stream data. A highly
interchangeable and extensible data format is XML, which has become the lingua franca for exchanging
and modeling data from a wide variety of sources over the web. Using XML in WSNs encourages the
interchangeability of heterogeneous types of sensors and systems and also makes it easy to interconnect
a sensor network to the Internet.

The Sensor Web [7,8] mirrors the idea of sharing, finding and accessing sensors and their data
across different applications over a sensor networks and the Internet. The Sensor Web Enablement
(SWE) initiative of the Open Geospatial Consortium (OGC) standardizes web service interfaces and
data encodings, which can be used as building blocks for a Sensor Web. SWE defines the term
Sensor Web as “Web accessible sensor networks and archived sensor data that can be discovered
and accessed using standard protocols and application programming interfaces”. When the network
connection is accomplished with the Internet and web protocols, XML schemas can be used to issue



Sensors 2014, 14 12939

formal descriptions of the sensor’s capabilities, location, interfaces, and so on, which is the framework
of XML-based standards. The XML-based data format supports observations and measurements (O&M)
to exchange sensor data in an interoperable way, which is becoming increasingly popular. XML
provides flexibility and extensibility with an efficient means to package large amounts of data as ASCII
or binary blocks.

However, mining XML stream data remains a challenging research area, due to some characteristics
of XML stream data. First, XML documents form a tree structure to achieve flexibility, and this
makes XML mining more challenging than mining in the traditional, well-structured world. Extracting
information from the XML world is still at a nascent stage compared to the fruitful achievements in the
relational database community. It is not trivial work to discover useful, but hidden information from a
collection of trees [9]. Second, data streams arrive continuously with a high speed and contain a huge
amount of data, so that fast processing of the data is very important. In addition, due to the fast data flow,
algorithms must scan the data set only once [10].

The main contribution of this paper is to propose a novel and efficient scheme for mining XML stream
data. The proposed scheme requires only a one time scan over the streamed XML data. To the best of
our knowledge, our proposed scheme is the first approach to mining XML stream data in the sense that
it generates frequent tree items without any redundancy (see Section 4 for the definition of a tree item).
No redundancy is achieved by employing the label projection technique of Paik et al. [11]. To this end,
we use a structure consisting of all frequent tree items, called the maximal fraction, as well as structures
similar to lists constituting a label projected database. The overall methodology of our scheme can be
applied to an individual block, as well as the whole stream. This feature enables our scheme to discover
frequent tree items better than the previous schemes.

The rest of this paper is organized as follows: Section 2 discusses prior work related to mining
association rules from sensor data and XML data. Section 3 gives some preliminaries on association
rules and XML data structures. Then, in Section 4, we describe the problem of mining association
rules from XML stream data and provide some definitions with respect to mining XML stream data.
Afterwards, Section 5 presents our proposed scheme and compares it with previously published ones.
We conclude this paper and suggest some future work in Section 6.

2. Related Work

Recently, extracting knowledge from stream data has received great attention by the data mining
community [12], because many modern applications require the robust transmission of streaming data
over a sensor or telecommunication network. Different approaches focusing on clustering, classification
and association rule discovery have been successfully used on stream data. Among them, our aim is to
discover association rules.

The problem of mining association rules was first introduced in [13] to analyze customer behaviors in
retail databases consisting of traditional relational data. The mined association rules enabled retailers to
predict the items that could be purchased together within a single transaction. The use of association rules
has a great influence on making decisions about which item should be put on sale or which items should
be placed near each other. A large amount of work has been done in various directions. The famous
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Apriori algorithm for extracting association rules was published independently in [14] and in [15].
Subsequently, many algorithms have been developed with adaptations of different optimization
techniques [16–18]. The FP-Growth method of Han et al. [18] makes two main improvements over the
previous methods. First, it uses the FP-tree data structure, which is a compressed form of the database
and, thus, provides memory savings. Furthermore, there is no candidate set generation in FP-Growth,
which makes the overall algorithm fast. Our proposed scheme makes use of a similar idea to the one
behind FP-Growth.

A framework for discovering association rules from sensor networks was proposed by Loo et al. [19].
In Loo et al.’s framework, a data model for storing stream data was presented to employ the lossy
counting algorithm, which enables online one-pass analyses of data. In [20], Halatchev and Gruenwald
proposed a data estimation technique that uncovers meaningful relationships between sensors via stream
data mining based on closed frequent itemsets (CARM). The mined relationships between sensors
are used to recover missing or damaged sensor data. This recovery feature helps to improve the
efficiency of the mining algorithm in terms of both time and space. Boukerche and Samarah [21]
proposed a comprehensive framework for mining patterns regarding sensors’ behaviors in wireless ad
hoc sensor networks (WASNs). The new formulation presented by Boukerche and Samarah captures
the temporal relations between sensors. Such relations can be used in identifying the correlated
sensors, thereby improving the quality of service of WASNs. The fundamental strategy in Boukerche
and Samarah’s framework is to optimize the number of messages exchanged for a mining sensors’
association rules.

So far, only a few studies have attempted to address the problem of extracting association rules from
XML stream data for wireless sensor networks (all of the schemes discussed above have focused on
mining from simple relational stream data). Recently, Corpinar and Gündem [10] introduced a mining
scheme called PNRMXS,which builds upon the FP-Growth method of Han et al. [18]. PNRMXS mines
both positive and negative association rules on XML data streams by using the correlation coefficient
measurement. Our proposed scheme is based on Han et al.’s FP-Growth method [18], as well as
Paik et al.’s XML mining technique [11]. Compared with PNRMXS, our scheme generates and uses
maximal frequent tree items without redundancy.

3. Preliminaries

This section provides some definitions and background needed to understand association rule mining
and the XML data structure.

3.1. Association Rules for Relational Data

Let I be a set of items: I1, I2, . . . , In. An association rule is an implication of the form X ⇒ Y ,
where the rule body X and head Y are subsets of I, such that X ∩Y = φ. LetD be a set of transactions.
Then, a rule X ⇒ Y states that a transaction T ∈ D containing the items in X (i.e., X ⊂ T ) is likely to
contain also the items in Y (i.e., Y ⊂ T ).

There are two measures that characterize the given association rules: support and confidence. The
former measures the percentage of transactions in D that contain all of the items in X and Y , and the
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latter measures the percentage of transactions containing the items in Y among the transactions in D
containing the items in X . More formally, given the function freq(X,D), which denotes the percentage
of transactions in D containing X , we define:

support(X ⇒ Y ) = freq(X ∪ Y,D) (1)

and:

confidence(X ⇒ Y ) =
freq(X ∪ Y,D)

freq(X,D)
(2)

Suppose there is an association rule bread, butter ⇒ milk, the famous rule provided in [13], with
confidence 0.9 and support 0.05. The rule states that customers who buy bread and butter also buy
milk in 90% of the cases and that this rule holds for 5% of the transactions. The problem of mining
association rules from a set of transactions D is to generate all of the association rules that have support
and confidence greater than two user-given thresholds: minimum support and minimum confidence.

3.2. XML Data Structure

XML represents data as trees and makes no requirement that the trees be balanced [22–25]. Indeed,
XML is remarkably free-form, with the only requirements being that: (1) the root is the unique node
denoting a whole document; (2) the other internal nodes are labeled by tags; and (3) the leaves are
labeled by the contents or attributes of tags. A rooted tree is a directed acyclic graph satisfying that:
(1) there is a special node called the root that has no entering edges; and (2) every other node has exactly
one entering edge. Thus, any XML tree is a rooted tree.

Let T = (r, V, E, L) denote a tree, where r ∈ V is the root node, V is a set of nodes, E is a set of
edges and L is the set of labels. We say that the tree T is a labeled tree if there exists a labeling function
L that assigns a label to each node in V . For any node v ∈ V , L(v) ∈ L is the label of v. The size of a
tree T , denoted as |T |, is defined as the number of nodes the tree has.

A path in a tree is a sequence of edges of the form p = 〈(v1, v2), (v2, v3), . . ., (vm−2, vm−1),
(vm−1, vm)〉, where v1, . . . , vm ∈ V . For short, we represent the path p just by the distinct nodes on
the path; i.e, p = 〈v1, v2, v3, . . . , vm−1, vm〉. The length of a path is the number of edges on the path; the
length of p is m− 1. There is a unique path from the root to each node in a tree.

Definition 1. If u, v ∈ N and there is a path p from u to v, then u is called an ancestor of v, while v is
called a descendant of u. If u is an immediate ancestor of v (i.e., (u, v) ∈ p), then u is called the parent
of v, while v is called the child of u.

Every node (except for the root and leaves) has exactly one parent and one or more children. Nodes
that share the same parent are siblings. A node with no children is a leaf node; otherwise, it is an
internal node.

Tree inclusion is used as a means of retrieving information from trees [26]. Given a pattern tree S
and a target tree T , the general tree inclusion problem is to find the subtrees of T that are instances of
S. In this context, the subtrees of T are said to occur or match at the root of the trees that are instances
of the pattern tree S. The discovery of matching subtrees is not a trivial task, because of the hierarchy
characteristics of trees. Several types of related subtree definitions have been given in recent work for
tree mining [22,25–27].
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Definition 2. Given a tree T = (r, V, E, L), we say that an ordered tree S = (r′, VS, ES, L
′) is included

as an exact subtree of T , denoted S � T , iff: (1) VS ⊆ V ; (2) ES ⊆ E; (3) for a node v ∈ V ,
if v ∈ VS , then all descendants of v must be in VS; (4) for all edges (u, v) ∈ ES , the parent-child
relation between node u and v is preserved in T identically with the one in S; (5) for any node
v ∈ VS , L(v) ∈ L′ ∧ L(v) ∈ L; and (6) the left to right ordering between the siblings in S must be
preserved in T .

Definition 3. Given a tree T = (r, V, E, L), we say that an unordered or ordered tree
S = (r′, VS, ES, L

′) is included as an embedded subtree of T , denoted S w T , iff: (1) VS ⊆ V ; (2)
for all edges (u, v) ∈ ES , such that u is the parent of v, u is an ancestor of v in T ; and (3) for any node
v ∈ VS , L(v) ∈ L′ ∧ L(v) ∈ L.

Throughout the paper, we focus on embedded subtrees from the dataset of XML stream data and use
them in providing the definitions for association rules.

4. A Framework for XML Stream Data Mining

Due to its flexibility and easy interchangeability, XML is used as the standard format for transmitting
stream data generated by sensors in an increasing number of WSN applications. This section presents a
new framework for mining association rules from XML stream data. We make the following assumptions
on stream data.

• The size of each block of the data stream is identical; each block contains the same number
of transactions.

• Sink nodes collect their data from sensor nodes, and therefore, the target data sets to be used in
our mining are obtained from the sink nodes.

4.1. Item Sets

In traditional association rule mining, the basic unit of data is a database record, and the construction
unit of a discovered association rule is an item with an atomic value [28]. This subsection aims to define
the XML counterparts of record and item. Our definitions can be seen as combined variants of the
definitions from traditional domains [2,3,12] and XML domains [11,28].

Figure 1 depicts a system architecture for a WSN environment [2,29,30] and presents simple examples
of XML-encoded sensor data. In the figure, the whole network is a configuration of two subnetworks,
which differ in their sensing area, integrated with the Internet. In each subnetwork, the sink node with
relatively sufficient resources serves as a control center for gathering required information. Usually,
sensing data are stored in sensor nodes when an event is detected. Then, the sink node travels in its
sensing area and collects data from the sensors.

Since we focus on the rule detection from XML stream data, each XML document corresponds to a
set of XML data in a sink node, and the data stream is a continuous sequence of XML data blocks. As
mentioned above, we assume that each block contains the same number of transactions. We now proceed
to define what a transaction exactly means in the context of XML stream data mining.
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Figure 1. A system architecture for a WSN environment.
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Let XML data stream XDS = (XB1, XB2, . . . , XB∞) be a sequence of XML blocks, where the
identifier XB∞ is the latest block. Each block XBi, 1 ≤ i ≤ ∞ consists of a timestamp ti and a set
of transactions; that is, XBi = (ti, {T1, T2, . . . , Tn}), where n > 0. Therefore, the length of the data
stream depends on a total number of transactions arriving until the latest timestamp, t∞.

Definition 4. Given an XML data stream XDS = (XB1, XB2, . . . , XB∞), the size of a block XBi

is denoted as |XBi| and is defined as the number of its transactions. Then, the length of an XML data
stream is defined as |XDS| =

∑∞
i=1 |XBi| = |XB1|+ |XB2|+ ...+ |XB∞|.

Every transaction Tj in each block XBi is an XML document and, thus, has a structure of a rooted
labeled tree. Since any portion of a tree also has a tree structure, any part of a transaction can potentially
become an item. We name this possible item a fraction. We say that a tree F = (rF , VF , EF , LF ) is
included as an embedded fraction of a tree T , denoted as F w T , if F and T satisfy the conditions of
Definition 3. Intuitively speaking, the fraction F must not break the ancestor-descendant relationships
between the nodes in the tree T .

We call a fraction used in an association rule a tree item, titem for short, to differentiate it from an
item defined for relational data. Any fraction is eligible to be a titem, because the whole XML document
consists of several fractions, and the structure of a fraction is also a tree.
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4.2. Association Rules

Based on the notions of transaction, fraction and titem, we now formally define an association
rule and some related measurements for XML stream data. For the given XML data stream
XDS = (XB1, XB2, . . . , XB∞), the rule measuring process is done over each individual block XBi.
Assume again that XBi = (ti, {T1, T2...Tn}). Let F = {Fjk , k > 0 | Fjk � Tj , 0 < j ≤ n} be a total set
of fractions collected from all blocks and I = {I1, I2 . . . Im} be a set of titems. Then, Tj ⊆ I ⊆ F . Any
transaction has its unique identifier, called the transaction identifier, and we denote it by the subscript j.

Let X = {x1, x2, . . . , xf} and Y = {y1, y2, . . . , yg} be two titem sets, such that X, Y ⊂ I. An
XML stream data association rule is the implication of the form X ⇒ Y that satisfies the following two
conditions: (1) X ∪ Y ⊂ F ; and (2) X ∩ Y = ∅.

Each titem set has an associated statistical measurement, named the frequency, abbreviated freq. The
frequency of a titem set X is denoted as freq(X) and is generally defined as the number of transactions
in which the titem set occurs as a subset [9,28]. For our purposes, we redefine this measurement with
two slightly different versions, depending on the target data set.

Definition 5. A titem set X ⊂ I has two types of frequencies: one is a block-frequency, abbreviated
bfreq, and the other is a stream-frequency (sfreq). (1) A block-frequency of X , bfreq(X), is
the number of transactions in any given block. For instance, if the given block is XBp, then
bfreq(X,XBp) = |XBX

p | = |{Tj|(X ⊆ Tj) ∧ (Tj ∈ XBp), for p ∈ [1,∞], j > 0}|.
(2) A stream-frequency of X , sfreq(X), is the total number of transactions in a given XML data stream
XDS. That is, sfreq(X,XDS) = |XDSX | =

∑∞
i=1 |XBX

i | = |XBX
1 | + |XBX

2 | + ... + |XBX
∞| =

|{Tj1|(X ⊆ Tj1) ∧ (Tj1 ∈ XB1)| + |{Tj2|(X ⊆ Tj2) ∧ (Tj2 ∈ XB2)|+ ...+ |{Tjn|(X ⊆ Tjn) ∧ (Tjn ∈
XB∞)|.

A given titem set X is called a XBp-frequent titem set with respect to the block XBp if
bfreq(X,XBp) ≥ δb× |XBp|, where δb is a user-specified threshold for the block XBp and 0 ≤ δb ≤ 1.
Otherwise, it is XBp-infrequent. Similarly, X is called frequent if sfreq(X,XDS) ≥ δs × |XDS|,
where δs is the threshold for the stream data and 0 ≤ δs ≤ 1. Otherwise, X is infrequent for the
stream data.

4.3. Support and Confidence

The strength and reliability of an association rule X ⇒ Y can be measured in terms of its support
and confidence. Support determines how often a rule is applicable to a given data set, while confidence
determines how frequently the titem set Y appears in transactions that contain the titem set X . The
formal definitions of these metrics over an XML stream data set are given in two aspects: Over
each block and the whole stream data. The Equations (1) and (2) should be adjusted to cover the
XML stream data.

Definition 6. Given XSD, the support and confidence of an association rule X ⇒ Y are defined in
two ways: block and stream. Accordingly, there are four ways of measuring strength and reliability:
block-support, block-confidence, stream-support and stream-confidence.
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• The block-support and block-confidence of rule X ⇒ Y in any given block XBp are denoted as
bsup(X ⇒ Y,XBp) and bconf(X ⇒ Y,XBp), respectively, and are defined as:

– bsup(X ⇒ Y,XBp) =
bfreq(X∪Y,XBp)

|XBp| =
|XBX∪Y

p |
|XBp| ,

– bconf(X ⇒ Y,XBp) =
bsup(X∪Y,XBp)

bsup(X,XBp)
= bfreq(X∪Y,XBp)

bfreq(X,XBp)
=
|XBX∪Y

p |
|XBX

p |
.

• The stream-support and stream-confidence of rule X ⇒ Y in the whole XML stream data are
denoted as ssup(X ⇒ Y,XDS) and sconf(X ⇒ Y,XDS), respectively, and are defined as:

– ssup(X ⇒ Y,XDS) = sfreq(X∪Y,XDS)
|XDS| = |XDSX∪Y |

|XDS| ,

– sconf(X ⇒ Y,XDS) = ssup(X∪Y,XDS)
ssup(X,XDS)

= sfreq(X∪Y,XDS)
sfreq(X,XDS)

= |XDSX∪Y |
|XDSX | .

A rule discovery procedure is to find association rules of the form X ⇒ Y having their supports
and confidences greater than or equal to the user-specified minimum support and minimum confidence,
denoted as ms and mc, respectively. We use bms and bmc to denote ms and mc given for a block, and use
sms and smc to denote ms and mc given for the whole stream.

Let us consider the XML stream data shown in Figure 2, where several sensor nodes provide various
information to their sink nodes. We assume that the XML stream data contains two blocks, i.e.,
XSD = {XB1, XB2}, and XB2 is the latest block with timestamp ts2. The size of each block is three,
meaning both blocks have three transactions (trees). That is, |XB1| = |XB2| = 3 and |XSD| = 6. The
transactions deliver information, like weather, humidity, temperature, and so on.

Figure 2. An example of XML stream data with two blocks, each having three transactions.
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Figure 3. Association rule candidates configured with titems from the fractions of XSD in
Figure 2.
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To make the fractions that encompass all possible titems, we start from the fractions with one node
and then extend those fractions to the bigger ones by adding nodes one by one. A detailed description of
this process will be given in Section 5.

In Figure 3, we consider three different candidate rules derived from the fractions of the stream data
XSD in Figure 2. Each of the candidates is formed by two titems selected from the fractions of XSD.
We first measure the frequencies of each candidate rule as per Definition 5.

1. Rule 1:

(a) bfreq(X,XB1) = |XBX
1 | = 3, bfreq(Y,XB1) = |XBY

1 | = 2

(b) bfreq(X,XB2) = |XBX
2 | = 0, bfreq(Y,XB2) = |XBY

2 | = 1

(c) sfreq(X,XDS) = 3 + 0 = 3, sfreq(Y,XDS) = 2 + 1 = 3

2. Rule 2:

(a) bfreq(X,XB1) = |XBX
1 | = 1, bfreq(Y,XB1) = |XBY

1 | = 2

(b) bfreq(X,XB2) = |XBX
2 | = 0, bfreq(Y,XB2) = |XBY

2 | = 1

(c) sfreq(X,XDS) = 1 + 0 = 1, sfreq(Y,XDS) = 2 + 1 = 3

3. Rule 3:

(a) bfreq(X,XB1) = |XBX
1 | = 1, bfreq(Y,XB1) = |XBY

1 | = 1

(b) bfreq(X,XB2) = |XBX
2 | = 3, bfreq(Y,XB2) = |XBY

2 | = 3

(c) sfreq(X,XDS) = 1 + 3 = 4, sfreq(Y,XDS) = 1 + 3 = 4

Using the calculated frequencies, the supports and confidences of each rule are measured according
to Definition 6.

1. Rule 1:

(a) bsup(X ⇒ Y,XB1) =
|XBX∪Y

1 |
|XB1| = 2

3
' 0.67

(b) bsup(X ⇒ Y,XB2) =
|XBX∪Y

2 |
|XB2| = 0

3
= 0.0

(c) ssup(X ⇒ Y,XDS) = |XDSX∪Y |
|XDS| = 2

6
' 0.33
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2. Rule 2:

(a) bsup(X ⇒ Y,XB1) =
|XBX∪Y

1 |
|XB1| = 1

3
' 0.33

(b) bsup(X ⇒ Y,XB2) =
|XBX∪Y

2 |
|XB2| = 0

3
= 0.0

(c) ssup(X ⇒ Y,XDS) = |XDSX∪Y |
|XDS| = 1

6
' 0.17

3. Rule 3:

(a) bsup(X ⇒ Y,XB1) =
|XBX∪Y

1 |
|XB1| = 0

3
= 0

(b) bsup(X ⇒ Y,XB2) =
|XBX∪Y

2 |
|XB2| = 3

3
= 1

(c) ssup(X ⇒ Y,XDS) = |XDSX∪Y |
|XDS| = 3

6
= 0.5

Assume that bms = sms = 0.3. Then, due to the given thresholds, some candidate rules are pruned
from the pool of frequent association rules. In the case of block-support, Rules 1 and 2 do not satisfy
the bms threshold in XB2, because both are zero. This means that titems X and Y never occur together
in any transaction Ti of XB2. However, both rules are eligible to be frequent association rules in XB1.
We say that Rules 1 and 2 are XB1-support. Rule 3 shows a different result. X and Y of Rule 3 never
occur together within XB1, but they occur together 100% within XB2. Thus, Rule 3 is XB2-support.
This result implies that some association rules hold important information for some blocks, but not for
other blocks.

Every rule satisfies any one of the block-supports in the example. In the case of stream-support,
Rules 1 and 3 are interesting association rules to be extracted, whereas Rule 2 cannot be an association
rule, because its support is 0.17 less than the threshold, 0.3.

For the association rules found to be interesting, their reliability should be measured based on the
confidence. For a given rule X ⇒ Y , the higher the confidence, the more likely it is for Y to be present
in transactions that contain X . Confidence also provides an estimate of the conditional probability of
Y given X . bconf and sconf are computed for the selected association rules, as shown in Definition 6.
Then, the resulting values are compared with the given thresholds, bmc and smc: bmc for XB1-support
and XB2-support and smc for Rule 1 and Rule 3. We assume bmc = smc = 0.3.

1. XB1-support:

(a) bconf (Rule1, XB1) = bconf(X ⇒ Y,XB1) =
|XBX∪Y

1 |
|XBX

1 |
= 2

3
' 0.67

(b) bconf (Rule2, XB1) = bconf(X ⇒ Y,XB1) =
|XBX∪Y

1 |
|XBX

1 |
= 1

1
= 1

2. XB2-support:

(a) bconf (Rule3, XB2) = bconf(X ⇒ Y,XB2) =
|XBX∪Y

2 |
|XBX

2 |
= 3

3
= 1

3. stream-support:

(a) sconf (Rule1, XDS) = sconf(X ⇒ Y,XDS) = |XDSX∪Y |
|XDSX | = 2

3
' 0.67

(b) sconf (Rule3, XDS) = sconf(X ⇒ Y,XDS) = |XDSX∪Y |
|XDSX | = 3

4
= 0.75
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The resulting values of support and confidence enable us to extract various interesting rules, including
the following:

• With 100%, Sensor 1 senses “the humidity is 70%” whenever Sensor 3 detects “the weather
is rainy”.

• With 75%, Sensor 4 senses “the temperature is 19◦C” if Sensor 1 detects both time and humidity.

Moreover, based on the stream support and confidence, we can decide that Rule 3 has more strength and
reliability than Rule 1.

5. Mining XML Stream Association Rules with the Label Projection Approach

The label projection technique, originally presented in [11], turned out to be very useful in reducing
the computation complexities of mining algorithms, as it enables one to avoid the generation of
uninteresting subtrees and to expedite the extraction of desired subtrees. The label projection technique
uses a set of lists to store all necessary information of the tree database, such as the label, node id, tree id
and parent/ancestor relationships. Our proposed scheme adapts the label projection technique to make it
work for XML stream data. We here provide a brief overview of notions for label projection. Readers
are referred to [11,31] for more details.

5.1. Scheme and Construction of Label Projection

Like tree or transaction indexes, labels can be used as primary keys in XML stream databases. This
means that the trees, actually transactions, in XSD can be reorganized according to labels. During the
scan of trees, all nodes with the same labels are grouped together spontaneously. In a label-driven layout,
the time complexity to check label frequencies requires at most O(|L||XSD|). If a hash-based search is
used, the complexity is reduced up to O(|XSD|).

Definition 7. Let ` be a label in some label set L. During the scan of arriving trees, tree indexes and
node indexes are projected by the label ` and construct a single linked list, called a label list. The label
list for the label ` is denoted as `-list.

The structure of a label list is similar to that of a linked list in that it has a head and a body. The head
of a label list points to the first object of the body, just like the ordinary head of a linked list. The head
gives information about which node indexes have been mapped to a projected label. The body is formed
in a way that can easily determine: (1) the number of trees having the key of the head; and (2) the parent
positions of the nodes in the head; the former is for dealing with the frequency of each label, while the
latter is for handling the hierarchical information of the label. To this end, the body is structured as a
sequence of members, with each member being an object consisting of a key field, one link field pointing
to the next member and one satellite data field.

A tree index number is used as a key, and this means that the label of the head has been assigned to
the nodes in the corresponding tree. During the database scan, members are generated and inserted into
the bodies of label lists. A newly inserted member is added to the end of an appropriate body and is
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pointed to by the link field of its previous member. The number of members in a body is called the size
of the corresponding label list.

The complete structure of a label list is depicted in Figure 4. As shown in the figure, m trees constitute
the `-list. Tree indexes are placed in key fields, and parent indexes of the nodes are stored in satellite
data fields. Let T1, T2 and T3 be three different trees in XSD. Assume that one node is labeled by ` in
T1 and T3 and two nodes are labeled by ` in T2. Then, `-list is 〈(p1, T1,→), (p2p3, T2,→), (p4, T3, ε)〉,
where pi is a parent node index,→ means a pointer to the next member and ε means an empty pointer.
The size of `-list, |`-list|, is three, because the list body has three members.

Figure 4. Structure of a label list.
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The generated label lists are stored and arranged into an in-memory data structure according to the
hashed values of the projected labels. Whenever a label is given, its corresponding list is searched and
retrieved from the structure to provide the required information. If a label has no matching label list, it is
considered a new projected label, and thus, its label list is inserted into the structure. Since the structure
works just like an ordinary dictionary, it is called a label dictionary, which we denote as Ldic. The size
of Ldic, |Ldic|, is the number of label lists in it.

Figure 5 shows an example of how Ldic and its units are constructed from the original data set XSD.
For simplicity, we assume that the entire stream data consists of a single block, XB1, shown in Figure 2.
Hence, we only consider the thresholds for the whole stream, but not for blocks.

In the figure, each number is the node index and T1, T2, T3 are tree indexes. The node whose
index is zero represents the root node. The symbol ε indicates that there is no next member. Each
label ` ∈ L, where L = {area3, cloudy, data, humidity, place, rainy, S1, S3, sensors, temp, time,
weather, 19C, 70%, 75%, 2009}, is projected to generate their label lists. The maximum number of
members that can be added into the body of the label list is three, because the total number of trees in
XSD is three. Thus, the expected size of any label list is between one and three. Then, each label list `
is stored in Ldic according to the order of their hashed values,H(`).

5.2. Pruning and Deriving from Ldic

Initially, Ldic consists of several label lists identified by their unique node label. Some label lists may
have labels that do not satisfy the user-given frequency or minimum support. Accordingly, configuring
titems with those label lists can produce the rules that do not satisfy the thresholds. Such label lists must
not be used in forming association rules. Label lists are filtered out first by their frequency. Recall that
δs denotes the user-specified stream frequency. If the frequency of a label list is less than the minimum
frequency σ, which is computed as σ = δs × |XSD|, then the label list should be excluded from Ldic.
In the example of Figure 5, σ = 2.
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Figure 5. Assembling label lists into Ldic.
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Definition 8. An `-list is said to be a frequent label list iff it satisfies the following: (1) |`-list| ≥ σ;
(2) for each parent index p in the members of `-list, the label of p, L(p), has been projected and has
L(p)-list; and (3) |L(p)-list| ≥ σ.

The label of a parent node p has to be frequent in order for an extended subtree to be qualified as
being frequent. However, this is not guaranteed in Ldic, because filtering was performed only on the
frequencies of labels. Therefore, even if parent nodes are included in the label list having a frequent
head, it is not certain whether the labels of those parent nodes belong to a label list having a frequent
label. This issue can be addressed by modifying the index of every parent node p in Ldic, as shown in
the following steps:

1. A parent node in any member is verified by the candidate hash table (This table is constructed
with the label lists excluded from Ldic) to check whether the node is assigned an infrequent label
or not.

2. If the parent node is assigned an infrequent label, the node is marked ‘replace’, and its record is
retrieved from the candidate hash table to search a node id assigned a frequent node label.

3. Steps 1 and 2 continue until any node id assigned with a frequent node label is found.

4. The original parent node id is replaced with the found node id, which represents an ancestor node
of the original parent node.

5. If no node is found to be frequent, the original parent node id is replaced by zero.
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The result of the pruning phase over the dictionary Ldic of Figure 5 is presented in Figure 6. As shown
in the figure, only six label lists remain, and the rest are pruned, since σ = 2. Note that in both S1-list
and S3-list, the parent index of their respective third member has been replaced by zero, meaning the
root. The volume of data has been dramatically reduced from 100% to 37.5%, approximately, due to the
frequent label lists.

Figure 6. Ldic after pruning infrequent label lists.
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Finally, Ldic contains all frequent labels and all possibly-frequent paths from root to leaves. The paths
in Ldic may not be frequent, because: (1) an edge is frequent only if both of its nodes have frequent
labels; and (2) a path can be frequent only when all of its edges are frequent. A path p with m edges,
p = e1e2 . . . em, can be represented with a sequence of labels, as shown below:

p = e1e2 . . . em = (v1, v2)(v2, v3) . . . (vm, vm+1) = (L(v1), L(v2)) . . . (L(vm), L(vm+1))

= L(v1) · L(v2) . . . L(vm) · L(vm+1) (3)

In order for p to be frequent, all of the m+ 1 labels should be frequent labels. The frequency of an edge
inside a label list can be verified simply by using the parent index stored in the body part together with
the node index in the head part. Finding all frequent edges from Ldic will yield the maximum size of the
interesting part of XSD that contains all possible titems for configuring association rules.

A fraction is called frequent if its frequency is greater than or equal to δs, specified by users or
applications. Fractions form a pool from which every titem is selected. The problem of extracting all
frequent fractions is to uncover a set S of all pattern trees that satisfies the condition sfreq(S) ≥ δs.
However, the combinatorial time for fraction generation becomes an inherent bottleneck of frequent
fraction mining, making the problem of finding all frequent fractions harder.

Definition 9. Given some minimum frequency δs, a fraction F is called a maximal frequent fraction with
respect to XSD iff it satisfies the following conditions:

1. the frequency of F is not less than δs × |XSD|, i.e., sfreq(F,XSD) ≥ δs × |XSD|.

2. there exists no other frequent fraction F ′, such that sfreq(F ′, XSD) ≥ δs × |XSD| and F is a
subfraction of F ′.

Simply speaking, a maximal frequent fraction is a frequent fraction that has no frequent, proper, super
fraction. Hence, there are fewer maximal frequent fractions compared to the total number of frequent
fractions. Despite the fewer total number, maximal frequent fractions do not lose frequent fractions,
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since they subsume all of them [32,33]. The goal of our scheme is to extract the entire set of maximal
frequent fractions from Ldic.

Finding maximal frequent fractions starts with determining the symbolic nodes. A symbolic node
means a node generated with a label that serves as the key of a label list in Ldic.

Definition 10. Assume a label list `-list. Let p be a parent index in a member of `-list. A symbolic node
s`, whose label is `, is set first, and then, the second symbolic node sL(p) with label L(p) is set. These
two symbolic nodes are joined together to form an edge. This process is called a label list extension
operation, abbreviated `2e, as the L(p)-list is extended by edges connecting two symbolic nodes. The
operation `2e is denoted as sL(p) → s`, where → indicates the direction of extending, parent to child.
L(p)→ ` can be interchangeably used with sL(p) → s`.

The extension process should be done for every label list in Ldic. Using the label list extension,
Equation (3) can be rewritten as follows:

p = e1e2 . . . em = L(v1)→ L(v2)→ . . . L(vm)→ L(vm+1)

= sL(v1) → sL(v2) → . . . sL(vm) → sL(vm+1) (4)

Performing the label extension over the entire label lists in Ldic produces a single fraction, where each
edge has its own count to monitor how often it occurs in the derived fraction. This phase of building
the fraction is supported by the tree header table, which stores information, like labels, their locations
and flags.

Figure 7. An example of the label extension operation.
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Any edge whose count value is less than two is deleted from the maximal fraction. Deleting such
edges and rearranging the fraction immediately yield the final outcome, a forest of maximal frequent
fractions. Figure 7 shows the final result for the case of our example. In the maximal frequent fraction in
the figure, the node labeled ‘root’ is the dummy root and the actual root is the node labeled ‘data’. Every
node, edge and path within this fraction are eligible to be titems, and association rules are made from
the titems.

Before deriving the forest of maximal fractions, we can infer the number of maximal frequent
fractions from the label lists of the final Ldic; the number of maximal frequent fractions is the number of
label lists that contain σ or more members whose index is zero.

Let `1-list, `2-list and `3-list be three arbitrary, frequent label lists in Ldic. Assume that
|`1-list| = |`2-list| = 2, |`3-list| = 4 and σ = 2. For simplicity, we assume that each member of the
lists has only one parent index, and all members of `1-list and `2-list have the parent node index zero.
Then, `1-list is 〈(0, T1,→), (0, T2, ε)〉 and `2-list is 〈(0, T1,→), (0, T2, ε)〉, meaning that there may be
two maximal frequent fractions. Let p1, p2, p3 and p4 be the parent node indexes of the members of
`3-list. Then, we can consider the following three cases:

• Case 1: L(p1) = L(p2) = `1 and L(p3) = L(p4) = `2. Two nodes labeled by `1 and `2 are
the direct children of the root, because both edge frequencies satisfy two. The node labeled by
`3 becomes a sub-parent, because both edge frequencies of different parents also meet two. Since
`3-list has no members with index zero, just two maximal frequent fractions can be derived, one
is (`1, {`1, `3}, {(`1, `3)}, L) (Recall that a tree T has a form of T = (r, V, E, L)) and the other
(`2, {`2, `3}, {(`2, `3)}, L).

• Case 2: L(p1) = L(p2) = L(p3) = `1 and L(p4) = `2. The edge (`1, `3) has the frequency
three and, thus, satisfies the threshold two, but the edge (`2, `3) does not satisfies the threshold. As
in Case 1, `3-list has no members with index zero. Therefore, the number of maximal frequent
fractions are still two, (`1, {`1, `3}, {(`1, `3)}, L) and (`2, {`2}, {φ}, L).

• Case 3: L(p1) = L(p2) = 0 and L(p3) = L(p4) = `1 or `2. `3-list has two members
with index zero. According to the second condition of this case, we know that `1 or `2 is
connected by `3. Therefore, there are three maximal frequent fractions, (`1||`2, {`1||`2}, {φ}, L),
(`1||`2, {`1||`2, `3}, {(`1||`2, `3)}, L) and (`3, {`3}, {φ}, L).

Table 1 compares our mining scheme with two other schemes. As presented in the table, the three
schemes are all based on the FP-Growth method of Han et al. [18]. However, Boukerche and Samarah’s
scheme [21] focuses on mining from simple relational stream data. Moreover, our scheme is the only
one that considers the maximality of (t)items sets.

Table 1. A comparison of the characteristics.

Scheme Data Base Approach Maximality

Corpinar and Gündem’s scheme [10] XML data FP-Growth No
Boukerche and Samarah’s scheme [21] Simple relational data FP-Growth No

Our scheme XML data FP-Growth Yes
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5.3. Correlating Concrete Contents with Label Lists

Let (hi, bi) and (hj, bj) be the head/body pairs of two arbitrary label lists i-list and j-list, respectively.
Assume that the list sizes, |i-list| and |j-list|, are greater than |XSD| × δs. Let ti and tj be the all tree
indexes included in bi and bj , respectively. Then, the numbers of ti and tj are the same as the sizes of i-list
and j-list, respectively. We denote a path between the two label lists by pij = (hi, hj), where hi is an
ancestor of hj by Definition 3. Let I = {I1, . . . , Im} be a set of titems. Assume that I1 = pij = (hi, hj)

and I2 = ppq = (hp, hq) are two titems. Then, the confidence of I1 ⇒ I2 is computed as:

conf(I1 ⇒ I2, XSD) =
freq(I1 ∪ I2, XSD)

freq(I1, XSD)
=
|ti ∩ tj ∩ tp ∩ tq|
|ti ∩ tj|

.

Theorem 1. Our proposed scheme extracts all of the XML stream data association rules for any
dictionary Ldic and for any values of sms and smc.

proof. Let (hi, bi), (hj, bj) and (hk, bk) be three label lists in Ldic. Assume that |ti ∩ tk| = β, and
|ti ∩ tj ∩ tk| = γ. Let 0 < sms, smc ≤ 1 and x and y be a tree index in tj and tk, respectively, such that
x 6= y.

• titemij (x ∈ ti ∧ y /∈ ti): hi and hj forms pij , which is a titem Iij . The support of titemij is
definitely greater than or equal to sms, due to the characteristics of Ldic.

• titemik (y ∈ ti ∧ x /∈ ti): hi and hk forms pik, which is a titem Iik. The support of titemik is also
greater than or equal to sms.

• Association Rule: The confidence of an implication of the form Iij ⇒ Iik is computed by the
following equation:

conf(Iij ⇒ Iik, XSD) =
γ

β
.

If γ ≥ β × smc, we have the rule Iij ⇒ Iik with the confidence greater than or equal to smc.
Otherwise, we obtain the same rule Iij ⇒ Iik, but with the confidence less than smc.

6. Conclusion

This paper has introduced a comprehensive scheme for mining association rules from XML stream
data. Our proposed scheme consists of a reformulation of association rules for XML streamed data,
an extraction methodology both for individual blocks and the entire stream and a list-based structure
for storing XML tree labels. Our scheme is unique in that it uses a list-based structure to deal with
XML stream data. We showed that the FP-Growth-based structure combined with the label projected
database can dramatically reduce the size of stream data, from 100% to 37.5% in our example, with
respect to its units and frequent label lists. One of the advantages of our scheme is to achieve its goal
without any redundancy in generating frequent tree items. Our scheme is also unique in that it uses
and generates a maximal fraction that includes all frequent titems from XML stream data. Future work
includes presenting a concrete mining scheme or algorithm that is proven to be correct and carries various
experimental results for demonstrating high efficiency in different parameter settings.
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