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Abstract: Soft material structures exhibit high deformability and conformability which can 
be useful for many engineering applications such as robots adapting to unstructured and 
dynamic environments. However, the fact that they have almost infinite degrees of freedom 
challenges conventional sensory systems and sensorization approaches due to the 
difficulties in adapting to soft structure deformations. In this paper, we address this 
challenge by proposing a novel method which designs flexible sensor morphologies to 
sense soft material deformations by using a functional material called conductive 
thermoplastic elastomer (CTPE). This model-based design method, called Strain Vector 
Aided Sensorization of Soft Structures (SVAS3), provides a simulation platform which 
analyzes soft body deformations and automatically finds suitable locations for CTPE-based 
strain gauge sensors to gather strain information which best characterizes the deformation. 
Our chosen sensor material CTPE exhibits a set of unique behaviors in terms of strain 
length electrical conductivity, elasticity, and shape adaptability, allowing us to flexibly 
design sensor morphology that can best capture strain distributions in a given soft structure. 
We evaluate the performance of our approach by both simulated and real-world 
experiments and discuss the potential and limitations. 

Keywords: sensor morphology design; soft strain gauges; conductive thermoplastic 
elastomer; soft robotics; wearable electronics  
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1. Introduction 

Soft materials are capable of high deformations and conformity to unstructured forms which makes 
them interesting and useful for robotic applications [1,2]. These soft bodied robots can flexibly deform 
and significantly change their shapes to accomplish tasks like locomotion in unstructured environments 
or manipulation of complex objects. Some examples of the recent achievements in soft robotics 
research area include a soft gripper capable of picking up unfamiliar objects with widely varying shape 
and surface [3], a soft rolling robot inspired by a caterpillar’s ability to roll over uneven terrains [4], a 
robotic arm modeled based on the characteristic muscles of the octopus [5] and a soft robot capable of 
squeezing itself through obstacles by changing its gait pattern [6]. 

Although soft materials enable complex and rich behaviors, the fact they have an almost infinite 
amount of degrees of freedom challenges soft robotics in terms of sensorization of the soft bodies to 
sense the environment or its own spatial configuration. One of the suggested solutions to evaluate 
structure curvature was based on external optical sensors [7–11]. However, as it is not always possible 
to have a structured environment with external optical sensors like cameras, recently, alternative 
approaches which relied on embedding sensors in the soft structures have been proposed [12]. Mainly 
driven by tactile sensing [13–15] and bio-medical applications [16], there has been important research 
on soft sensors. While some of these sensors can detect one type of stimulus like multi-axis strain [17,18], 
there has been studies which show multimodal sensing such as pressure and force [19,20], shear and 
normal force [21,22] and strain and pressure [23]. 

Despite these highly stimulating works, the role of the size, shape and placement of the sensors, 
commonly known as sensor morphology, does not seem to have been thoroughly investigated. While the 
importance of sensor morphology in determining the sensing characteristics and performance has 
gained a lot of attention in biology [24,25], embodied intelligence [26], and most recently in  
robotics [27,28], its role in soft body sensing still remains as a challenge. The sensorization solutions 
so far have had the potential for enabling customizable sensor morphology, but required complex 
molding and suggested casting processes for integration [13,29] or realized commonly used sensor 
morphologies [30,31].  

In this paper we propose a technological solution which we call SVAS3 to sensorize soft and 
deformable bodies with flexible and easily integrable sensor morphology, as shown in Figure 1. The 
proposed technological solution emphasizes two aspects for soft structure sensorization: the 
exploitation of strain information within soft deformations for the design of characteristic sensor 
morphologies and the usage of a soft, elastic and easily customizable strain gauge sensor system which 
can realize these morphologies. The former aspect depends on the generation of strain when a soft 
structure undergoes deformation. In our method, we can model soft structures and deformations to 
extract strain information to localize characteristic strain regions on the structure surface. These 
regions are used as a template to design morphologies for flexible strain gauge sensors. The latter 
requires a suitable sensor material which can be used to comply with the designs generated by our 
approach. Out of many possible state-of-the-art sensor materials to fabricate strain sensors like liquid 
metals [13,17], carbon or metal coated yarns [32,33], carbon nano-tube films [34], in our paper we 
have decided to use a specific type of a carbon filler-containing polymer composite [35–37] because 
these structures can reach strain lengths above 100%. The sensors in this approach are fabricated with 
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a Conductive Thermoplastic Material (CTPE), which can be produced quickly and flexibly in terms of 
shape and size [38]. CTPE has thermoplastic properties that enable the fabrication of different sensor 
morphologies with simple methods, like heated extrusion or injection molding, which also allows the 
sensors to be quickly integrated into various soft objects in a modular and therefore intrinsically 
scalable way. The elastic and electrical properties of the fabricated sensors, e.g., linear response over a 
wide range of strain lengths, let us easily model them and estimate their performance through the 
design algorithms in the SVAS3 approach. In this paper, in order to show the efficacy and scalability of 
our suggested approach, we design sensor morphologies to discriminate final postures of soft 
structures due to bending, twisting and pushing deformations, and evaluate these designs by integrating 
CTPE-based strain sensors on physical platforms. We also present a sample application on a latex 
glove to discriminate hand signs in order to show that our method can be used in research fields in 
wearable electronics and smart textiles in addition to soft robotics. 

Figure 1. A conceptual schematics of the SVAS3 approach. Three examples of soft bodies 
are deformed (shown with red arrows) and sensorized with CTPE-based sensors (shown 
with black curves). 

 

The remaining structure of this paper is presented as follows: in Section 2, we will introduce the 
conductive thermoplastic elastomer material and how it can be fabricated to create strain sensors. In 
Section 3, we will introduce the design approach and present its properties. In Section 4, we will use 
our suggested method to design sensor morphologies and perform simulation and real world 
experiments. In Section 5 we will evaluate our approach and discuss a possible application based on 
soft body (gloves) with integrated fiber sensor structures. Finally, we will conclude the work and list 
several relevant future works in Section 6.  

2. Conductive Thermoplastic Elastomer for Strain Sensing 

In our approach we use a conductive thermoplastic elastomer (CTPE) developed by EMPA [38] for 
giant strain sensing, e.g., above 100% reversible strain length. The material is based on a commercial 
thermoplastic elastomer matrix filled with 50 wt% carbon black powder which makes this hybrid a 
candidate for a piezoresistant sensor material. This composition is mixed in a high shear mixer to blend 
the polymer with the inorganic conductive powder at a temperature of 180 °C. The extracted 
compound has conductive, thermoplastic and elastic properties which are exploited during fabrication 
of the sensors, as well as in the sensing mechanism itself. 
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The carbon black ingredient of the material generates a percolated network inside the CTPE which 
results in electrical conductivity throughout the material body. When strain is applied, the percolation 
network is changing due to rotation of non-spherical carbon black agglomerates which are still present 
in the polymeric matrix. This rotation is reversible and the hybrid material can be therefore used for 
strain sensing in a giant displacement range. CTPE-based sensors are only responsive to strain due to 
this formulation, but their morphology and placement on target structures can enable the sensing of 
other stimuli as long as a mapping between the applied stimuli and the strain they generate can be 
expressed. Additionally, CTPE strain gauges have an almost linear response to applied strain, which 
makes them a suitable option for easy modeling in our approach. 

Thermoplasticity comes into play when custom shaped sensors need to be fabricated for complex 
surfaces, while elasticity allows the sensors to undergo high deformations. Figure 2a shows that when 
the hybrid sensor material is extracted from the high shear mixer, it can be fed to warm presses or 
heated extruders to fabricate variable sizes and centro-symmetric shapes such as fibers, tubes and 
sheets. More complex shapes can be created with laser cutters, 3D printers, injection molding or even 
hand crafting. Such custom shaped elastic sensors can easily conform to deformable continuum body 
surfaces to acquire more accurate information. 

Figure 2. Thermoplastic and mechanical properties of CTPE. (a) Fabrication process that 
can easily generate arbitrary forms; (b) Mechanical and (c) electrical properties of CTPE 
when shaped into fibers adapted from previous work by EMPA [38]. 

 

Figure 2b,c shows the mechanical and electrical properties of the CTPE with different carbon 
content ratios when it is morphed into fiber shapes. It can be seen that sensors become more brittle and 
stiffer with the addition of carbon black into their structure, which is an expected outcome as the 
elasticity and softness of the thermoplastic elastomer material is being altered by the stiff unplasticised 

(c) (a) 

(b) 
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carbon powder. With low carbon content (30 wt%), the sensor is softer compared to higher carbon 
content which additionally introduce yield points in the force-strain curve. On the other hand, the 
carbon content also influences the electrical properties. While the sensor material with low carbon 
content has complex and separable phases, the response of the sensor with respect to strain becomes 
smoother and linear with high carbon content. One very unique property of the developed 
piezoresistant material is the independence between force (or stress) and electrical resistivity. 
Therefore strain of structures can be directly measured if stiffness of soft body structure is higher in 
comparison to the piezoresistive sensor. The effect of carbon content on sensor characteristics is 
explained in previous work by EMPA [38] and Flandin et al. [39]. It is worthwhile to mention that 
direct comparison with carbon filled hybrids in the literature is difficult because percolation behavior, 
conductivity and maximum strain depend on the carbon and the polymeric matrix material. 

For our approach, we have used a CTPE material with 50 wt% carbon content and the heated 
extrusion method to fabricate strain gauge sensors in fiber shape with 0.3 mm diameter. The resulting 
fibers had approximately 2 MPa of Young’s modulus, with a base resistivity of 37.5 Ω/mm and 
showed an almost linear response to strain with an average value of 0.66 kΩ/mm ± 13%. In our paper 
we focus on the design of sensor morphologies with desired sensing characteristics, therefore we 
preferred to concentrate on the electro-mechanical properties of the chosen sensor technology in 
simulation models and experiments. Previous work by EMPA covers intensively other technical 
properties of the material and fabricated sensors such as hysteresis (experiments show a low  
hysteresis of 2.25% over 80% strain working range), repeatability, sensor drifting and effects of long 
term usage [38,40].  

3. SVAS3 Design Method 

In continuum mechanics, when a force is applied to a solid material it undergoes a deformation, 
whose mechanical properties can be analyzed with the relationship between the stress in the body that 
the force causes and the strain that occurs during the deformation of the body [41]. In classical terms, 
this relation can be expressed with Hooke’s Law: 

F A Eσ = = ε  (1) 

where the stress σ is generated by the force F on a cross section of A on the material. The resulting 
strain ε is dependent on the elastic properties of the material, and can be dictated by its Young’s 
modulus E, as long as the material shows elastic and reversible deformation while the applied stress is 
below the yield stress.  

Deformations in soft bodies can also be explained by the same formula as long as the structure  
does not exhibit plastic deformations. Following this idea, we hypothesize that for every complex 
deformation, there exists a unique and representative strain information. In our approach, we use this 
strain information and its geometric properties to design morphologies for flexible sensors which are 
responsive to strain. Sensor morphologies are designed by following five consecutive steps: (1) soft 
body and elastic deformation modeling; (2) strain vector extraction; (3) strain region clustering and  
(4) path planning for final morphology formation. These four steps end up with a final strain path 
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where fiber shaped sensors, which are fabricated with CTPE material, can be placed on to gather strain 
information and estimate the sensor response to the selected deformations. 

3.1. Soft Body Modeling 

The overall approach starts with the modeling of the soft structure and the deformations that 
generate the strain information which will be used to construct the final sensor morphology. For 
modeling, we are using an open source platform called VoxCad [42] that provides a computationally 
efficient simulation environment for soft structures. In VoxCad, a mesh of discrete 3D pixels, i.e., 
voxels, which are connected to each other with spring damper systems, are used to construct larger 
complex soft structures. These voxels can be given configurable material properties such as elasticity, 
density and thermal expansion, which allow the definition of the statics and dynamics behaviors of the 
final objects. The dynamics and non-linear complex deformations of these structures can be simulated 
by the usage of external forces and constraints. Constraints such as self-collisions or anchoring points 
enable the computation of complex postures due to large deformations and interactions between 
several objects.  

In Figure 3a, a prismatic block consisting of three layers with each layer having a 450 voxels;  
30 × 15 (x × y), is constructed. After structure modeling, additional forces and constraints are applied 
to generate a final deformation. Figure 3b shows the example block as fixed to the ground on both 
short ends (green rectangles), and a block of force is applied in the positive y direction (purple prism). 
Depending on the material properties of the soft structure and the mechanical stimulus range, VoxCad 
calculates the final posture of the object as shown in Figure 3c with a color coding where lighter colors 
represent higher magnitudes of positive strain. In our approach, we divide the selected mechanical 
stimulus range into seven equal steps and generate final postures of the objects for each step. These 
consecutive postures are collected together to form a complete set for the whole stimulus range. 

Figure 3. Overall process of SVAS3 explained with an example soft structure block.  
(a) Soft body constructed with voxels; (b) constraints and stimulus applied and (c) soft 
body deformation simulated; (d) Strain vectors are extracted from deformations and  
(e) clustered to generate the final sensor morphology.  

 
  

(a) (b) (c) 

(e) (d) 
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3.2. Strain Vector Extraction 

We developed a plug-in for VoxCad in order to extract the strain information of every voxel in a 
vector form, which we call “strain vectors”. For a soft structure model consisting of n voxels, the strain 
vector if the ith voxel, Vi, has the following format:  

[ ]zyxzyxi pppsssV ,,,,,=  (1) 

where s is the magnitude of strain and p is the position of the voxel in three axes. Therefore, the final 
posture of a soft structure due to a selected deformation generates a strain matrix of size n × 6.  
Figure 3d shows the resulting strain vectors on the topmost layer of the block in the given example.  
In the detail, the position of a vector and its magnitude in the x-y direction can be seen as well. In our 
approach a complete deformation set is represented with consecutive seven steps which eventually 
generate a strain matrix of size 7 × n × 6 which is denoted as M. 

3.3. Localization of Strain Regions 

After the strain matrix is generated, the strain vectors in this matrix are analyzed to localize the 
characteristic strain regions of the deformation. In our method, we concentrate on the surface layer of 
the whole structure to comply with easy sensor attachment. Voxels on the surface layer is found by 
analyzing their “pz” value. This reduces the size of the multidimensional strain matrix into |M’| = 7 × m × 6, 
where m = n/q and q is the number of layers in the soft structure. In order to find characteristic regions 
on this topmost layer, direction information of the strain vectors are used. For every strain vector in the 
reduced matrix M’, the angle of strain direction in the x-y plane, i.e., θi, is found by: 

arctan( )i y xp pθ =  (2) 

whose physical explanation can be seen in the detail of Figure 3d. The resulting matrix with size  
7 × m contains the angle information of every strain vector in all of the seven steps of the deformation. 
This matrix is then given as an input to MATLAB’s K-means clustering tool [43] which uses a similar 
algorithm that was originally suggested [44]. The main idea behind this clustering method is to find a 
“k” number of discrete clusters, i.e., S* = {S1, S2, … Sk}, within a larger set, that are distinct from each 
other with respect to a defined set of properties: 

2

1
arg m* in

j i

k

j i
S i S

S
= θ ∈

= θ −µ∑ ∑  (3) 

Equation (4) shows the general approach of finding this discrete cluster set S*, where k is the 
number of clusters, θj is the angle of strain, and μi is the average of points, i.e., average of strain angles, 
in Si. However, when only θ is used to generate the cluster set S*, it is possible that voxels belonging to 
a single cluster can be physically separated from each other by different voxels. That is why, in order 
to generate distinct regions in means of physical location and strain angle, we divide the cluster set S* 
into groups called “strain regions”, i.e., Ri, and generate a region set R = {R1, R2, ... Rl} where l ≥ k.  

As explained in Algorithm 1, when the physical locations of voxel groups are taken into 
consideration in addition to θ, a larger region set R is formed. This set is composed of Ri, which is a  
7 × m matrix that represents the set of voxels that are physically next to each other and members  
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of the same Si. Final representation of these strain regions can be seen in Figure 3e with different 
colored groups.  

Algorithm 1 Strain region generation algorithm. 
Data: cluster set S*, reduced matrix M’ 
Result: region set R 
for every deformation step in M’ (1 to 7) 

for every voxel Vi in M’ (i = 1 to m ) 
check all physical neighbors of Vi; 
if neighbor Vj ϵ Si 

make neighbor Vj ϵ Ri; 
else 

make neighbor Vj ϵ Rj; 
end 

end 
end 

When strain regions are localized, we use their geometric properties to design the morphologies for 
strain sensors. Because of the fact that the strain sensors we use in this paper are fiber shaped, we start 
this task by conceptualizing the strain regions as template lines. As every strain region can be 
considered as a polygon which consists of several voxels whose strain vectors’ angle are very similar 
to each other, each of these regions can also be represented by a single line which spans across the 
polygon with a slope of that region’s average strain angle. In order to find the middle point of that line, 
we calculate the centroid point of a single strain region Ri as: 

r
ppp

C rr yxyxyx
i

,,, 2211
+++

=


 (4) 

where px,y represents the x, y positions of each voxel in the region Ri with size r. For simplicity we omit 
the regions whose |Ri| < 3 and centroid point is located out of its polygon. After that, we find the 
average strain magnitude in that region as follows:  

∑
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=
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i r

ss
M jj
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 (5) 

Mi is used as a scaling factor to find the longest possible straight line that crosses the Ci point. For 
simplicity we omit those regions whose Mi < 0.05 mm as the strain will be weaker than detectable 
values. Eventually every region Ri results in forming a line li, which represents a suitable sensing 
location in that region, with length Li, and slope the same with region’s average strain direction angle.  

3.4. Sensor Pathway Planning 

At this point of the approach, we have a set of regions Ri and a set of lines li, which represent a 
suitable sensor location for every region. We hypothesize that a final pathway which is a result of the 
connection of a combination of these lines will yield the morphology of a strain sensor that can 
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distinctively represent that soft structure’s deformation. Therefore, we use a path planning algorithm 
which connects these lines by using a cost function to determine the final pathway for the sensors. We 
define the cost function for any voxel with a position [px, py] on the topmost layer, to be connected to 
the representative region line li of any Ri as: 

)*()( ii MLdif =  (6) 

where d is the Euclidean distance between that voxel and the closest point on the region line li. 
Equation (7) basically suggests that any line with high strain magnitude or length will yield a lower 
cost, and therefore will be preferred in the path planning algorithm.  

Our path planning algorithm starts with the initialization of the end points of the final sensor 
pathway. When these points are defined, the algorithm basically searches every possible l to find a 
final pathway that connects the start point to the end point with minimum cost with respect to the cost 
function. As shown in Algorithm 2, the algorithm starts on the start point and moves towards the end 
point by connecting the lines together until either there are no more possible lines in front of it or the 
end point is reached. When either of these situations holds, the algorithm finalizes the set PW which 
basically consists of the geometric information about the chosen lines.  

Algorithm 2 Weighted Cost Path Planning Algorithm. 
Data: region set R and lines l 
Result: final pathway PW  
initialize points [start, end] on the surface; 
set current point P to [start]; 
while R ≠ Ø or P ≠ [end] do 
 check all Ri in R; 
 find Ri with min f(i); 
 add Ri to PW; 
 update P with end point of l of Ri; 
 remove Ri from R; 
end 

When the lines in the PW set selected by Algorithm 2 are connected to each other, the final pathway 
is determined. This pathway consists of two major parts; region lines l, as in PW, and straight 
connection lines which connect them together. While the strain information presented by region lines 
are true and shows the characteristics of selected regions, connection lines might produce erroneous 
strain information as they can go through several regions by ignoring strain direction angles. This 
classification enables us to emphasize true strain information during sensor output estimation. The 
resulting shape of the final pathway can be seen in Figure 3e, where region lines are shown with 
complete lines and connection lines are shown with dashed lines. 

3.5. Sensor Modeling 

The pathway can be considered as the final form for sensor morphology, as we are using thin, fiber 
shaped strain gauge sensors which could be laid directly on this pathway. Therefore, also considering 
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CTPE’s elastic properties and linear response to applied strain, we can use the strain information 
collected from this pathway as a mean to estimate sensor output O as: 

ScSrBPW KWKWNKLO **** ++=  (7) 

where LPW is the total length of the pathway, Wr and Wc are the total strain magnitudes gathered from 
the region and connection lines by using Equation (6), KB and KS are the base resistance and sensitivity 
values for CTPE-based fiber shaped sensors as explained in Chapter 2. Due to the line classification 
explained earlier, we can enhance the true strain response by simply multiplying by N, which 
physically means to add N − 1 lines in parallel with that original region line. Although it is possible to 
detect positive and negative strain with CTPE-based strain gauge sensors when they are integrated into 
structures with a pre-stretch [38], in our paper we choose to integrate these sensors with their resting 
form which allows us to detect only positive strain. Therefore, in the sensor modeling part we only use 
positive strains to ensure correct sensor output.  

4. Experiments 

In this paper, we perform experiments in simulation and physical platforms to discover the efficacy 
of our suggested method. For this purpose, we have chosen a scenario where discrimination of three 
soft deformation patterns; i.e., bending, twisting and pushing, is aimed. In order to perform 
discrimination, sensor morphologies are designed and evaluated by experiments in both simulation and 
physical platforms. In first part, simulation experiments are performed to show the scalability of the 
method on various shapes of soft structures, given the current state of path planning and sensor 
placement algorithms explained in Section 3. In the second part, experiments on physical platforms are 
performed to compare with simulation results for the investigation of simulation limitations such 
single-material physics, linear elasticity assumption and limited data point collection.  

4.1. Simulation Results 

We start by modeling three different shapes aiming to show the scalability of the general approach 
given the current path planning algorithms. For this purpose we have chosen a circle, a plus and a 
square forms for simulated soft structure models. For fair comparison, similar sizes are chosen: all of 
the soft structures have three layers of voxel surfaces, with each voxel having a cubic shape of 1.5 mm 
in size, while the square and plus having 45 voxels on each side and circle having 45 voxels on its 
diameter. The structures are given linear elastic properties and constructed with the material properties 
of Silicone with a Young’s modulus of 1.31 MPa. Each of these structures has undergone three 
different deformations, i.e., bend, twist and push. For bending and pushing, a force range of 1–7 N and 
for twisting a torque range of 1–7 Nmm is applied. For every step within the range, the silicone blocks 
deformed with a gradual increase, and the postures they reached were captured and their strain vectors 
were extracted. The first rows of Figure 4a–c show the final postures of these blocks with the highest 
value in the applied range, where the first column is bending in the positive y direction, the second 
column is pushing in a positive z direction, and the last column is twisting around the positive x axis. 
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Figure 4. Simulation experiments of three shapes. Columns represent bending, pushing 
and twisting deformations respectively. First rows show VoxCad deformations with lighter 
colors representing larger strain and second rows show strain vectors with black lines 
representing designed sensor morphologies. Third rows show simulation estimates of 
sensors using Equation (8) with CTPE material’s sensor properties. Deformation steps 
correspond to 1N of increase for bending and pushing, and 1 Nmm for twisting. 

 (c) 

(b) 

(a) 
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When the original vectors are used for region localization and sensory pathway planning, it is 
possible for the final sensor morphologies to have common parts, which can be a disadvantage for 
discrimination tasks. For a sensor to discriminate one specific deformation from the others, the number 
of these possible common parts should be kept at minimum. That is why we used these original strain 
vectors and performed a vector subtraction. The subtraction increases the chances of the elimination of 
common regions as the resulting vector properties for such regions will yield either very small 
magnitudes or negative directions which will be ignored during pathway planning. For our case, we 
subtracted bending and twisting from each other, and used the original vectors for pushing 
deformations. Following this method, we localized the strain regions and generated the final pathways 
which eventually created three unique sensor morphologies for each of the deformations. The resulting 
sensor morphologies can be seen in the second rows of Figure 4a–c.  

The last rows of Figure 4a–c show the performances of sensor morphologies designed for bending 
and twisting, when they are tested on each deformation. It could be seen from the first columns of 
sensor estimation figures that the sensor designed for bending exhibits a larger response than the 
sensor designed for twisting in case of bending deformation. The reverse of this claim also holds for 
the twisting sensor for twisting deformations as it can be seen in the last columns of estimation figures. 
This is a valid indication that when strain vectors are subtracted from each other for discrimination 
tasks, the final sensor morphologies are different from each other, and they perform distinctively in 
their corresponding deformation tasks.  

The designs of these sensors in the second rows of Figure 4a–c also validate the approach as 
bending and twisting sensors do not share common pathways. The sensor morphologies of sensors for 
only pushing task also confirm this as we only used the strain vectors of pushing deformations during 
their design, i.e., the vector subtraction method for eliminating common regions with other 
deformations were not used. This generated a sensor morphology which is approximately a straight 
line connecting the start and end points together, as there is a single dominant strain region with 
positive strain in the middle section of the shapes. The middle columns of the last rows of Figure 4a–c 
show this dominant region as a dense collection of vectors with an average θ = 0°. When we look at 
the response estimates of bending and twisting sensors for pushing deformation for all structure 
shapes, we see that all generate a much larger response compared to their dedicated task. This is 
mainly due to the greater strain originated in the pushing deformation compared to the others. When 
the strain vectors of each deformation are investigated in Figure 4, it can be seen that pushing 
deformation generates a larger surface with a stronger strain. This can be understood by the density of 
blue colored vectors under the final pathways. Compared to bending and twisting, where distinctive 
strain regions are scattered around the surface because of vector subtraction and with lower strain 
magnitudes (can be seen by the lightness of the blue colored vectors), the pushing deformation creates 
a dominant strain region in the mid-section of the structure surface with high magnitudes. Therefore, 
when Equation (8) is applied to estimate sensor responses, both sensor designs generate a higher 
output in pushing deformation relative to others. Even though pushing deformation was not included in 
the design of sensor morphologies for discriminations, when we look at the estimation figures we can 
see that both of the sensor responses combined can be used to discriminate all three deformations.  

Results shown in Figure 4 show that SVAS3 method can be applied to various shapes of soft 
structures to generate sensor morphologies for discrimination tasks. In this means, we can claim that 
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our method is scalable to different structure shapes as long as the used sensor localization and path 
planning algorithms explained in Section 3 are given.  

4.2. Experiments on Physical Platforms 

While simulations only can show that SVAS3 method can generate sensor morphologies and 
estimate the sensor performances, the influence of limitations on single-material physics, linear elastics 
assumptions and limited number of data points need to be explored by physical experiments. For the 
validation and evaluation of these aspects, we performed two sets of experiments on physical platforms 
following simulations and tested the designed sensors. In the first set, the deformation scenarios in the 
simulations explained in Section 4.1 are tested to evaluate the applicability of the design method and 
the scalability on different structure shapes. In the second set, the effect of single material physics and 
other simulation parameters such as line multiplication is evaluated on a rectangular silicone block. 

In order to validate the performance of designed sensor morphologies in the earlier simulations, we 
molded several silicone (Mold Max®40 Series, E = 1.31 MPa) blocks with the same size in the 3D 
models. We built silicone blocks with the shape of circle, plus and square for the first experiment set, 
and rectangular blocks for the second set. Then we fixed fiber shaped CTPE-based strain gauge 
sensors on the silicone blocks by following the designed pathways. In order to place the sensor fibers 
accurately on the guidelines with no slack, we used steel pins as anchor points on the silicone and 
attached these sensors to the silicone block surfaces with a high elasticity transparent silicone glue 
(Dow Corning 732). Figure 5a shows the integration process for the second experiment set where 
CTPE-based sensors are stretched over the rectangular silicone block by anchor pins and then attached 
to the surface with the silicone paste.  

Figure 5. (a) The integration step of CTPE-based strain sensors on the molded silicone 
blocks. The designed and realized sensor morphologies for bending (b) and twisting (c). 

 

To induce deformations for bending, twisting and pushing, we constructed three different 
experimental setups. For bending, a clamping mechanism is created to fix both ends of the silicone 
blocks to the ground. Another clamp is attached to the center of the silicone block and connected to a 
servo motor which produces linear force in positive y direction. A linear force gauge is placed in series 
within this connection to measure the applied force.  

A similar setup is used for pushing, only for the exception that the force was applied in the positive 
z direction. For the twisting, a clamp is attached to fix one end of the silicone block. The other end is 
attached directly to a servo motor shaft to generate torque. Total amount of twist angle is measured 
with an angle compass and values are mapped into torque. The forces and torques are applied 

(c) (b) (a) 
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continuously with an increase of 1 N and 1 Nmm every 0.5 s. In all setups, CTPE sensors are 
connected to a simple voltage divider circuit, whose output is processed with an Arduino Due® 
microprocessor. Figure 6 shows setups for both experiment sets. 

Figure 6. Experimental setups which generate deformations for (a) bending; (b) twisting 
and (c) pushing.  

 

The first set of experiments investigates the applicability of the design method on physical 
platforms and its scalability on various structure shapes. Figure 7 shows the experimental results done 
with the sensor designs provided in simulations in Section 4.1. It can be seen from the figure that the 
quality of the sensor performances follows the simulation estimates in Figure 4. In other words, the 
sensors designed for their corresponding deformation; i.e., bend sensor for bending deformation, 
generate a larger respond than the other sensor when that particular deformation is applied. The 
experiments not only suggest that the proposed design methodology for sensor morphologies can be 
applicable in real world, but also show that the designed sensors can be applied to various structure 
shapes as suggested by the simulations. In compliance with the simulation estimates, the first set of 
experiments also show that when a certain deformation is not considered as a contributing factor 
during the sensor design, the generated sensor morphologies’ performances on these deformations 
cannot be predicted or programmed. This result can be seen in both simulation and experimental 
results when the performances of bend and twist sensors are investigated in pushing deformations. 

While the first set of experiments support the general applicability of the sensor designs, an 
additional set of experiments were required to investigate the impact of single material physics and line 
multiplication parameters of the simulations on physical implementations. For this reason we 
generated a similar simulation scenario to test these factors. Here, we started with simulating a 
prismatic block similar to Figure 4c which is composed of three layers with 1800 voxels; 60 × 30  
(x × y), in each layer. Every voxel is cubic shaped with a side length of 1.5 mm, making the size of the 
complete block as 90 mm × 45 mm × 4.5 mm. In order to investigate the material effect, the block is 
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simulated with two different materials with linear elastic properties and Young’s modulus of 1.31 MPa 
and 2 MPa. Additionally, the characteristic region lines, as explained in Equation (8), on the sensor 
morphologies are multiplied with 3 to enhance the sensor response. We have applied the same  
force ranges as in the previous section, generated the exact same deformations and designed two 
sensor morphologies. 

Figure 7. Experimental results of designed sensors for bending and twisting deformations 
on different structure shapes. In every shape, two sensor designs; i.e., bend and twist 
sensors, are tested for three deformations. While each row shows the experiments on 
structure shapes, every column shows the deformation type. Experimental setup provides 
steps of stimulus increase for every 0.5 s during deformations; 1 N for bending and 
pushing, and 1 Nmm for twisting.  

 

We can see that the experimental result in Figure 8c follows the trend suggested in the simulation 
estimates qualitatively in Figure 8a,b. Sensor 1, which was designed for bending deformation 
outperforms Sensor 2 in bending, while the reverse of this case hold for Sensor 2, which was designed 
for twisting, in twisting deformation. Additionally, both of the sensors generate a larger response in 
pushing deformation as suggested by the simulation. In order to ensure that twisting and bending can 
be detected by these sensor designs, we have run additional experiments and showed that sensor 

(a) 

(b) 

(c) 
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responses are significantly different. We repeated each of the deformations five times and collected the 
average peak values of Sensors 1 and 2 responses in bending and twisting experiments. For the bending 
tests, Sensor 1 had an average peak response of 0.688 ± 0.019 kΩ and Sensor 2 had 0.263 ± 0.008 kΩ, 
whose difference yields a p value of 7.61 × 10−7 in a standard t-test for statistical significance. 
Similarly, for the twisting tests Sensor 1 had an average peak response of 0.365 ± 0.027 kΩ and  
Sensor 2 had 0.682 ± 0.004 kΩ whose difference yields a p-value of 1.26 × 10−5. As both of these final 
p-values are lower than 0.01, the experiments show that the designed sensor morphologies for the 
specified task can achieve successful discrimination.  

Figure 8. Case study on posture discrimination: twist, bend and push patterns. Simulation 
estimates for (a) block of silicone (E = 1.31 MPa); (b) block of CTPE (E = 2 MPa) and  
(c) experimental results with silicone (E = 1.31 MPa). Deformation steps in (a) and (b) 
correspond to every step of stimulus increase in simulations; 1 N for bending and pushing, 
1 Nmm for twisting. Experimental setup provides same continuous increase for every  
0.5 s in (c). 

 
  

(a) 

(b) 
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5. Discussion 

5.1. SVAS3 Evaluation 

In the current state of our approach, we model soft structures with a single type of material and use 
the strain information from the deformation defined by this material’s properties. As we only use this 
strain information for sensor response estimation, sensor outputs are directly dictated by properties of 
the material. As it can be seen in Figure 8a the block simulated with CTPE material properties 
generated a lower strain; therefore lower sensor response, compared to a higher elasticity silicone 
material Figure 8b. However, in the physical platform, three different types of materials are involved 
throughout the sensing process which changes the output of sensors. We know that when fiber shaped 
CTPE sensors are placed onto the silicone structure and attached with another silicone paste, each of 
these structures will undergo a different amount of deformation. This can be explained by Equation (1) 
as the Young’s modulus of each of these materials is different from each other, which influences the 
amount of strain they will exhibit under same amount of stress. Figures 7 and 8c show that in reality, 
the sensor output shows some discrepancy compared to simulation experiments due to this 
aforementioned multi-material interaction physics. Additionally, the manual integration process is also 
error-prone as slacks or disconnected parts in between the CTPE-based fibers and the silicone blocks 
can occur which can change the sensor output due to physical interaction.  

While we look at the sensor outputs in experimental cases, we see that the curves have a non-linear 
tendency unlike the simulation estimates. There are two major contributing factors for this difference. 
The most influential factor is the amount of data points collected in the simulation estimates. For a 
complete stimulus range, there are seven data points for all of the deformations. An estimate depending 
on this amount of data points influence the final sensor output to have an almost linear trend. As 
experimental results reveal that sensors actually have non-linear output trends, it shows that collecting 
more data points within a stimulus range can capture the sensor behavior more correctly. Also the 
linear elasticity assumption for material models in our simulations influences the sensory output. 
Similar to the lack of multi-material physics in our simulation, the linear elasticity assumption is also 
an effective limiting factor for the current state of our approach. 

The path planning algorithm as described in Algorithm 2, also influences significantly the final 
sensor morphology, therefore the sensor output. In our paper we chose a straightforward planner which 
uses Equation (7) as its cost function while it connects possible region lines to each other. Although 
this cost function guarantees the selection of region lines with higher magnitude or length, it does not 
specifically consider the length of the connection lines. Connection lines can span across multiple 
strain regions disregarding their strain direction just for the sake of connecting the ends of region lines. 
When a strain sensor is placed on top of these lines, it can pick up strain information from multiple 
regions which were actually eliminated in vector subtraction method. This creates irrelevant strain 
information which disturbs the quality of sensor performance.  

5.2. Possible Future Application 

So far we have shown the details of the SVAS3 approach and tested its designs on generic soft 
deformable blocks. Regarding the scalability of the general method and ease of applicability of the 
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sensorization using CTPE-based sensors, we claim that this solution can be used in many fields such as 
wearable electronics, smart textile and especially robotics.  

Here we show that our approach can be applied to a simple glove to discriminate hand signs from 
American Hand Sign Language [45] which represent letters “E”, “T” and “H”. In addition to the 
obvious reason, these letters are selected due to characteristic postures of metacarpophalangeal and 
proximal interphalangeal (first and second joints from the base of the finger) joints of the middle 
finger. We have simulated a hand model and gestures to generate these selected letter hand signs. Our 
simulations also have chosen these locations for the sensors to perform successful discrimination.  

To evaluate the sensors, we have used a commercially available water sealant glove (Mapa-Pro® 
Alto 258) made out of natural latex. We placed the CTPE-based sensors in the same way as in previous 
experiments using the silicone paste and pin anchors. In order to show the potential use of CTPE-based 
sensors and our flexible morphology design, we have taken the initiative to re-rout the sensory 
pathways to start and end at the same location on the wrist. This enabled cabling interface of the 
sensors to be centralized in the same region to allow more flexible and comfortable operation. 
However, as the current state of our approach does not suggest this re-routing, the final morphologies 
of the sensors on the chosen joint locations are designed by the authors. We decided to apply the signal 
enhancement by line multiplication option by placing the part of the sensors in a “W” and “V” shape 
on the characteristic strain regions on the finger joints. Figure 9a shows snapshots from the final 
morphology of sensors in experimental setups. The end points of the sensors are then connected to a 
simple voltage divider circuit, whose output is processed with an Arduino Due® microprocessing unit.  

Figure 9. Experiments with CTPE sensors attached on plastic gloves to detect complex 
hand postures (a); In our case, American hand sign language is used to discriminate letters 
“E”, “T” and “H” in the experiments (b). 

 

The experimental results clearly present the potential use of this approach. Initially it can be seen 
that the designed sensors have a unique response to each of the letters, which can be easily used for 
discrimination. For clarity, we will call the sensor that span through first and second joints as “Sensor 
W” and the other shorter sensor as “Sensor V” with respect to the shapes they have on the joints.  

(b) (a) 
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When the response to each letter is investigated, several different implications can be perceived. For 
the letter “E”, we see that only sensor W responds as only the second joint of the middle finger flexes. 
In letter “T”, both of the sensors respond due to the flexion of both joints, however the magnitude of 
Sensor W’s response is nearly the double of Sensor V, as it spans through both joints. This is a good 
indicator that, by using CTPE-based continuous sensors, complex responses can be achieved even with 
a single sensor and multiple postures can be discriminated as the sensor output combination will no 
longer be discrete. When we look at letter “H”, we see that none of the sensors respond as there is no 
strain on any of the joints.  

We also see that the responses of the sensors are very fast with respect to the motion as well. This is 
generally due to the relationship between the sensor’s and target structure’s elasticities. As long as the 
elasticity of the target platform is lower than the sensor, the total amount of strain will be dictated by 
the structure and the deformation of the sensor will be controlled by it. This will result in a more robust 
and reliable sensory data to be gathered. 

6. Conclusions/Outlook 

In this paper we have proposed a novel approach named SVAS3 which designs flexible sensor 
morphologies by using the strain information generated in soft deformations. In this context, our 
method involves simulation tools to model soft structures and deformations to extract necessary strain 
information to construct sensor morphology designs. We have chosen a carbon black/thermoplastic 
elastomer material (CTPE) to model and generate strain gauge sensors with linear sensitivity response 
characteristics. The current state of our method models fibrous strain gauge sensors and uses extracted 
strain information to design custom pathways for these fibers to follow. In order to show the scalability 
of our approach to various soft structure materials and applications, we have performed simulations 
and experiments to discriminate complex behaviors. We have generated two sensor morphologies by 
using our method to discriminate three postures on various shapes of silicone blocks due to bending, 
twisting and pushing deformations. To validate the efficacy of our approach and sensor performance 
estimations, we have casted different shaped blocks out of silicone, fabricated fiber shaped CTPE 
sensors and integrated them following the morphology designs generated by the simulations. By 
comparing the simulation and experimental results, we confirm that the proposed approach is able to 
discriminate the three motion patterns with tunable performance. We also proposed the application of 
this method in other research fields by showing an example case on gloves to discriminate American 
Hand Sign Language based “E”, “T” and “H” letters. With respect to the current state of our approach, 
we used sensor locations suggested by our simulation method and experimentally applied the sensor 
morphologies based on the simulation results. The experiments showed successful discrimination 
results as well as the potential of the use of our approach for more complex applications. Overall, we 
showed that our approach can design sensor morphologies by simulating soft deformations and 
estimate sensor performances which are validated by following experiments. Such a sensor design 
approach can have an impact on sensor morphology for detecting complex behaviors and postures for 
soft continuum bodied structures. The usage of CTPE as a material for the fabrication of strain gauge 
sensors also supports this idea, as many different morphologies can be created and easily integrated 
into soft structures. 
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The comparison of simulation and experimental results still shows a quantitative gap between 
simulation and experiments that should be closed using a multi-material physics approach in the future 
and by the investigation of non-linear elastic models, sensors hysteresis and drifts. Another aspect 
could be a more detailed analysis on the simulation parameters such as threshold values and limits 
used in decision making, region clustering and path planning algorithms. The effect of voxel 
resolution, the size of the target structure and the shape limits could be discussed even further to 
investigate the limits and scalability of our approach. Similarly, different path planning algorithms 
could be investigated to maximize sensor response and improve discrimination performances by 
minimizing the amount of error generated by connection lines. Also collecting more data points in the 
simulations can capture the expected performance of the sensors. 

In our paper we have chosen CTPE material due to our familiarity with the fabrication of strain 
gauge sensors with it in addition to its compatibility to our example applications in means of electrical 
and mechanical properties. However alternative state-of-the-art materials can also be investigated to 
model and fabricate strain gauge sensors for different applications. This will have a positive effect on 
the range of applications for these sensors as softer types of target platforms would generate more 
reliable results. Also alternative sensor embedding techniques such as printing and casting can be 
investigated as our method generates designs of flexible sensor morphologies which can be adapted  
by other methods as a design guideline. Finally, an extension to dynamics applications can be 
researched [46] to show the applicability to robotics field. Soft robots which require elastic and 
adaptive sensor systems can benefit from this approach to include embedded sensorization.  
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