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Abstract: The use of global navigation satellite system (GNSS) antenna arrays for 

applications such as interference counter-measure, attitude determination and signal-to-noise 

ratio (SNR) enhancement is attracting significant attention. However, precise antenna array 

calibration remains a major challenge. This paper proposes a new method for calibrating a 

GNSS antenna array using live signals and an inertial measurement unit (IMU). Moreover, 

a second method that employs the calibration results for the estimation of steering vectors 

is also proposed. These two methods are applied to the receiver in two modes, namely 

calibration and operation. In the calibration mode, a two-stage optimization for precise 

calibration is used; in the first stage, constant uncertainties are estimated while in the 

second stage, the dependency of each antenna element gain and phase patterns to the 

received signal direction of arrival (DOA) is considered for refined calibration. In the 

operation mode, a low-complexity iterative and fast-converging method is applied to 

estimate the satellite signal steering vectors using the calibration results. This makes the 

technique suitable for real-time applications employing a precisely calibrated antenna 

array. The proposed calibration method is applied to GPS signals to verify its applicability 

and assess its performance. Furthermore, the data set is used to evaluate the proposed 

iterative method in the receiver operation mode for two different applications, namely 

attitude determination and SNR enhancement. 
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1. Introduction 

Global navigation satellite system (GNSS) applications utilizing antenna arrays are starting to gain 

significant attention due to their lower hardware and computational costs. Rapid advances in electronic 

systems, software define radios (SDR) and miniaturization of radio frequency (RF) front-ends and antenna 

arrays have opened the way for array processing to play an important role in future receivers [1,2]. 

Anti-jamming and anti-spoofing methods based on antenna arrays are especially effective for  

both narrow and wideband interference mitigation and, together with signal to noise ratio (SNR) 

enhancement, make antenna array processing important for civilian and military applications [3–5]. 

In general, GNSS applications based on antenna array processing utilize calibrated and non-calibrated 

array approaches. Methods not requiring calibration do not employ any information about the array 

configuration, orientation or direction of the incident signals. They do not generally involve the 

directions of arrival (DOA) of signals in their structure and could be employed as stand-alone methods 

for anti-jamming and anti-spoofing [5,6]. Although these methods are not complicated in terms of 

implementation and complexity, they may degrade receiver performance by accidentally nullifying 

signals. However, in the latter group, the spatial features of GNSS signals are also utilized in the 

processing. In these methods, the incident directions of the signals are considered in shaping the array 

beam pattern to not only nullify the undesired signals but also to enhance the SNR of the received 

signals [7,8]. However, this initially requires an accurately calibrated array to specify the signal DOA, 

which is referred to as the steering vector or array manifold vector in the literature. 

Antenna array calibration has been studied for decades and is employed in many applications such 

as sonar, radar and direction finding [9,10]. The main array uncertainties that must be considered for  

a full calibration include uneven cable lengths, array configuration and platform orientation 

perturbations, unknown antenna element phase center variations, coupling between elements, cross 

talk in the RF front-ends, antenna gain and phase pattern characteristics and the effect of platform 

scattering on these patterns. Perturbations in antenna elements positions can occur due to turbulence or 

tilt of the platform during operation or set up preparation. Even a small inclination error of the 

platform can degrade the performance of calibration and consequently the spatial processing 

afterwards. Mutual coupling is the behavior of the coupling between the antennas according to the 

array configurations and becomes more significant in patch antenna arrays that are not properly 

isolated. The mutual coupling between antennas is generally proportional to the distances between 

them and depends on the relative antenna geometry. Phase centre variation is the other consideration 

that should be taken into account in the calibration procedure unless high quality antenna elements are 

used in which case phase centres remain constant within 1–2 mm. Although individual antenna 

elements may have identical horizontal and vertical gain patterns, these will possibly change when 

assembled into an array due to mutual coupling and scattering. Each of these uncertainties causes an 

estimated steering vector to deviate from the theoretical one as a function of relative distances between 
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antenna elements and the signal DOA. It is worth mentioning that these uncertainties do not have to be 

treated separately since most of them are related to each other and affect the array beam pattern in the 

same manner. 

Calibration is traditionally conducted in an anechoic RF chamber such that the antenna array 

receives a signal from a precisely known direction. The signal direction is changed in incremental 

steps until all directions of interest are included. Amplitudes and phases are then measured in the 

receiver as a function of the incident signal direction. The calibration methods proposed in the 

literature generally differ in modeling and estimating the uncertainties. GNSS array calibration  

can also be carried out with live line of sight signals since the satellite positions are known.  

Antenna calibration using GNSS signals and resulting challenges such as mutual coupling, phase 

centre variations, cross talk in the RF-front end and other effects have recently been studied in the  

literature [11–15]. 

This paper first derives a new model taking all of the factors that produce calibration uncertainties 

into account. This model separates the constant unknown parameters and those that are dependent on 

signals DOA to simplify the interpretation of the calibration uncertainties and, more importantly, 

enable the use of the calibration results for steering vector estimation. A two-stage optimization is 

employed to fit the measurements with the proposed model in which the first stage estimates the 

constant unknown parameters and the second stage finds the DOA dependent part and save them in the 

form of a set of look up tables, each of which assigns amplitude and phase compensation coefficients 

to one antenna element. 

In the next part of the paper, the second mode, which is the receiver operation mode, is described. 

During the calibration procedure, accuracy is the main concern rather than processing time and 

computational complexity since the calibration procedure for a fixed antenna array platform generally 

needs to be performed only once. However in applying the calibration results in the receiver operation 

mode, the processing time and computation complexity are important concerns. For this reason, in the 

operation mode, an iterative method with a very fast convergence is proposed to estimate the steering 

vectors of the satellite signals by applying the estimated calibration coefficients and matching the 

compensation phase and amplitude coefficients from prepared look up tables. 

In order to evaluate the performance and effectiveness of both methods introduced above, a set of 

real GPS L1 signals was collected and processed. The experimental set up was similar to [15] where a 

tactical grade IMU, to provide the orientation angles (pitch, roll, and heading) and an antenna array 

were mounted on a moving vehicle collecting GPS signals. In [15], an effective approach was 

proposed in which a certain number of virtual antennas was considered to take potential phase centre 

variations of 1 cm into account. For this purpose, a least squares algorithm was used to find the best fit 

for all measurements without assigning any explicit model to the uncertainties. In this approach, the 

virtual antennas were positioned at a distance of 1 cm from each physical antenna in each direction in 

the body frame coordinate system. This may reduce the accuracy of calibration since only the phase 

centre variations in certain positions and directions were considered. 

In Section 2 the system model is presented. Section 3 introduces the two-stage optimization for 

calibration, followed by proposing the iterative method for estimating satellite steering vectors. 

Practical tests and data analyses are provided in Section 4 and finally, Section 5 concludes the paper. 
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Notation: Throughout this paper, the following notation is adopted: small bold letters stand for vectors 

and capital bold letters stand for matrices. Superscripts H and T denote conjugate transpose and 

transpose, respectively. Function ( )vec A  denotes the vectorization operator obtained by stacking the 

rows of the matrix A  on top of one another. Function ( )diagMat A  returns a column vector of the 

main diagonal elements of A  and function ( )diagVec a  returns a square diagonal matrix with the 

elements of a . 
1( )A  and 

#( )A  symbolize the inverse and pseudoinverse of matrix A , respectively. 

a  denotes the Euclidean norm of vector a . a  and a  denote vectors containing the amplitude and 

phase of the elements of a . Finally, NI  and N M0  represent the N×N identity matrix and N×M all-zero 

matrix, respectively. 

2. System Model 

Assume an N-element antenna array with an arbitrary configuration placed on a platform which is 

fixed with respect to the body frame coordinate system. In this configuration, one antenna is chosen as 

a reference antenna. For the sake of simplicity, it is assumed that the origin of the body frame 

coordinate system is located at the reference antenna location shown in Figure 1. 

Figure 1. Antenna array configuration in the body frame coordinate system. 

 

Under the assumption of perfect antenna elements (identical isotropic elements) and ignoring the 

measurement noise, the 1N   complex baseband signal vector consisting of measured phases and 

amplitudes at different antennas received from one satellite can be written as: 

( )j te y Ca  (1) 

where ( )t  considers the phase changes due to the Doppler frequency variation, which is a function of 

time due to both satellite and vehicle motions and a  is an 1N   vector representing the steering vector 

of the satellite signal defined as [16]: 
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in which   is the wavelength of the signal and ,  2, ,n n Nr  is a 3 1 vector pointing to the n
th

 

antenna element and B
e  is a 3 1  unit vector pointing to the satellite in the body frame coordinate 

system. Without loss of generality, the first antenna is chosen as the reference antenna where the 

coordinate system origin is located. In Equation (1), C is a N N  matrix representing constant 

uncertainties due to any imperfection from antennas to digitizers. The diagonal elements of C model 

the difference in amplitudes and phases due to unequal cable lengths and other electronic parts and its 

off-diagonal elements represent the coupling coefficients between antennas. Nevertheless this model is 

not yet sufficiently accurate since the antenna elements are not isotropic and they have different gain 

and phase radiation patterns. Moreover, phase center variations and uncertainties of the array 

configuration should be also taken into the account to increase the accuracy of the calibration process. 

To include these variant uncertainties, y  should be re-expressed as: 

( )( , )B B j te  y CP a  (3) 

where ( , )B B P  is a N N  matrix defined as: 
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in which nr  is a 3 1  vector representing the perturbation of the n
th

 antenna element position in the 

body frame coordinate system, and ( , )B B

na    and ( , )B B

n   are amplitude and phase deviations of 

the received signal at elevation 
B  and azimuth B  in the body frame coordinate system for the n

th
 

antenna element. This term considers imperfection of the antenna elements, radiation patterns, phase 

center variations and any other signal DOA-dependent phenomena. 

Since the proposed calibration method is based on receiving GNSS signals during antenna platform 

motion, Doppler frequency varies due to the changes in the relative velocity between the antenna array 

and the satellites, which are not negligible. Even in the static case, Doppler frequency is gradually 

changing due to satellite motion. In the calibration process using a multi-antenna receiver, acquisition, 

tracking and positioning procedures can be only performed for the received satellite signals at the 

reference antenna (reference antenna) and the generated local codes can be used to despread the 

received signals at the other antennas (secondary antennas) as shown in Figure 2. 
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Figure 2. Multi-antenna receiver structure in the calibration mode. 

 

During the tracking stage of the signal of each satellite, the phase of the signal at the reference 

antenna is kept approximately zero and the phase of the signals at the other antennas are measured 

relative to that of the reference antenna. For simplicity, amplitudes are also normalized with respect to 

the signal at the reference antenna. This removes the term responsible for Doppler frequency changes 

from observations as well as phase changes due to the alteration of signal DOA for the master antenna. 

Therefore, the normalized signal vector that is actually obtained from the multi-antenna receiver, 

denoted by , is related to y  as: 

( )T j te 


y
y

δ CPa
 (5) 

where  
1

1 0 0
T

N
δ  (with the first antenna chosen as the reference antenna). In Equation (4), 

( , )B B P  is a function of B  and B  in the body frame coordinate system. However, a GNSS 

receiver provides azimuth and elevation angles in the geographic coordinate system such as local 

coordinate system ENU. Azimuth and elevation angles in the ENU coordinate system, symbolized 

with ENU  and ENU , can be related to the B  and B  as: 

B T ENUe R e  (6) 

in which eB  and ENU
e  are unit vectors pointing to the satellite in the body frame and ENU coordinate 

systems, respectively, which can be expressed as: 
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In Equation (6), R is a transformation matrix from the ENU coordinate to the body frame 

coordinate defined as: 
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in which r , p and y  refer to the roll, pitch and yaw (heading) angles, respectively (shown in Figure 1). In 

the proposed method, an IMU is providing accurate estimates of these angles. 

3. Proposed Method 

3.1. Receiver Calibration Mode 

The model proposed in Equation (3) separates the uncertainties into constant and variable parts 

wherein the variable part is a function of the received signal DOA. In the calibration process, the polar 

plane formed by 
B  and B  is first partitioned into a uniform grid consisting of a set of cells 

represented by their centre coordinates as {( , ); 1, , , 1, ,g }l k A El g k    , where Ag  and Eg  

specify the resolution of the grid. This provides a trade-off between accuracy and computational 

complexity. Considering this model, for each cell in the grid, the calibration process can be expressed 

as the following optimization problem: 

2
( )

, ( , )
min ( , ) , |( , ) ( , )

l k

j t B B

i l k i i i l k

i

e i  
 

      
C P

y CP a  (9) 

where index i refers to observables from different satellites at different times. For each cell in the grid, 

only those observables whose azimuth and elevation angles are located at that cell are employed and 

( , )P l k   is a diagonal matrix representing the DOA-dependent part of the array uncertainty 

associated to that cell of the grid. Without considering any specific assumption, the unique estimation 

of C  and ( , )P l k   is not possible. In appendix A, it is proven that ( ( , ))CP l kvec    belongs to a 

subspace with a dimension of 
2 1N N   and therefore any vector in this subspace satisfies the 

optimization in Equation (9). As one solution for this optimization ( C  and ( , )P l k  ), a two-stage 

process is considered. The first stage finds the best constant matrix C  from all observables in the 

entire grid and then, considering C , the second stage obtains the corresponding diagonal compensation 

matrix ( , )P l k   for each cell in the grid from the observables corresponding to that cell. This  

two-stage optimization can be expressed as follows: 

(1) In the first stage, it is assumed that there is no dependency on signals DOA, i.e., 

( , )l k N  P I  and only the constant matrix C  is considered. Given Equations (5) and (9), C  

can be estimated from the following minimization problem: 

2

( ) 1

min T

i i i

i
vec 


C

C

y δ Ca Ca  
(10) 

(2) In the second stage, the estimated C  is substituted in Equation (9) and the corresponding 

diagonal compensation matrix ( , )P l k   for each cell in the grid is estimated as: 
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In Equations (10) and (11), constraints avoid trivial solutions that are 0C   and ( , ) 0P l k   . 

Considering appendix A and after some matrix manipulations, one can verify that the matrices C  and 

( , )P l k   can be estimated from the following eigenvalue decomposition problems as: 
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and Ai  is 2N N  matrix defined as: 
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From Equation (12), c  and ,pl k  are the eigenvectors corresponding to the smallest eigenvalues of 

B  and ,Dl k , respectively. It is straightforward to verify that ( ( , ))CP l kvec    is one of the solutions of 

minimization in Equation (9). Applying C  and ( , )P l k  , 1, , Al g  1, ,gEk  , to the received 

signal vectors leads to a calibrated array and consequently to accurate estimates of satellite steering vectors. 

The second stage of the calibration process takes significant time (a few hours is needed to allow 

the elevation angles of satellites to change in the sky for a full calibration) to extract the DOA-dependent 

calibration uncertainties. On the other hand, the first stage which compensates for the constant 

parameters can be performed rapidly (in a few seconds). In many applications, the antenna array 

configuration is fixed with respect to the body-frame coordinate system and therefore, the radiation 

pattern of the array, obtained once from the second stage of calibration, does not change. However, the 

cable lengths, the initial phases of front-end channels and other parameters modeled through the 

constant matrix C  may change from one operation to another one. In this case, by considering 

( , )l k P  stored in the look up tables, a fast recalibration process can be performed to only reestimate C . 

3.2. Receiver Operation Mode 

Estimation of steering vectors of the incoming signals can be employed in many GNSS  

multi-antenna applications such as anti-interference, multipath mitigation, SNR enhancement. 
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However, in most cases this cannot be done unless employing a calibrated array. In this section, it is 

assumed that the antenna array is calibrated using the method introduced in the previous section.  

In other words, the amplitude and phase compensation coefficients are available through matrix 

( , )l k P , 1, , Al g  1, ,gEk  , in the form of several look-up tables, and the constant matrix C . 

The block diagram of a multi-antenna receiver in the operation mode is shown in Figure 3. It is worth 

mentioning that in order to estimate satellite signal steering vectors, position information is only used 

to calculate the azimuth and elevation angles of incident signals in the ENU coordinate system. These 

angles can be accurately estimated even with a low cost GNSS receiver (due to the long distance 

between satellite and the receiver). Therefore, assuming a perfect calibration, position errors do not 

significantly affect the accuracy of the estimated angles and consequently of the estimated steering vectors. 

Figure 3. Multi-antenna receiver structure in the operation mode. 

 

An iterative approach for estimating the steering vector is now proposed. Considering Equation (3), 

after calibration, the steering vector can be stated as a normalized solution of a least squares (LS) 

problem represented by (normalized since amplitude of a steering vector does not convey any information): 
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Although the values of ,l k   are not available at the beginning, these angles are related to the 

unknown steering vector of interest through Equations (2) and (7). For this reason, herein, an iterative 

method is suggested to solve Equation (15) through the following steps: 
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Step (1) Initialize âi  as 
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in which array configuration matrix T  ( which is known) is defined as: 
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Step (3) Considering Equation (7), compute (q), (q)l k  ; 

Step (4) Use Equation (15) to compute ˆ (q)ai  as follows: 
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Step (5) Set q q 1   and return to Step 2 (next recursion). 

It can be observed that estimating the uncertainties in two stages (the constant part and the 

compensation look up tables) enhances the robustness of the current steering vector estimation method. 

In fact, the initialization from the input measurement and constant matrix C  leads to a rough estimate 

of the steering vector and then, after a few iterations, a proper compensation matrix for an accurate 

estimate of the steering vector can be obtained. Without this initialization, the method would not 

necessarily converge. Since C  and T  are constant matrices and P  is a diagonal matrix, one can 

easily verify that matrix inverses are not required in the loop. For example 
#( )T T T

H H
 and 

1( )C C C
H H

 can be calculated beforehand. These features make the proposed method low-complex and 

fast-converging, which is suitable for real-time applications employing a precisely calibrated antenna array. 

4. Testing 

4.1. Data Collection Setup 

A set of GPS L1 signals was collected to test the proposed calibration approach. In this data 

collection, an array of three antennas (Antcom L1 GPS antennas due to their relatively stable phase 

centre) mounted on the top of a vehicle was employed. The three antennas, after amplification, were 

connected to a three-channel National Instrument (NI) RF front-end in which the channels are 

synchronized through a common clock. The received signals were then sampled, down converted and 

stored for post processing. One of the antennas was chosen as the reference antenna and the origin of 

the body frame coordinate system. The received signal at this antenna was split into two branches and 

the second branch was connected to a NovAtel SPAN
TM

 LCI system (NovAtel Inc., Calgary, AB, 

Canada), which includes a NovAtel SPAN
®

 enabled GNSS/INS receiver (SPAN SE) and a tactical 

grade IMU LCI. The low noise and stable biases of the accelerometer and gyro sensors make the IMU 



Sensors 2014, 14 9679 

 

 

well suited for ground or airborne survey applications. IMU measurements were sent to the receiver 

where a blended GNSS/INS position, velocity and attitude solution was generated at a rate of 200 Hz [17]. 

Raw GPS data was also collected under LOS (line of sight) conditions using a NovAtel ProPak-V3 

receiver as a base station (fixed on the rooftop of a building located on the campus of the University of 

Calgary) to provide the navigation data bits and differential positioning. The data collected by SPAN 

LCI system and the base station file were then fed to the NovAtel Inertial Explorer
®

 post-processing 

software to produce reference positions, velocities and high accurate orientation components. 

The data collection setup and the test trajectory are shown in Figure 4. In order to operate under an 

open-sky environment, a parking lot was chosen for the data collection. This parking area is almost 

surrounded by empty fields (low multipath). Circular motion was performed for the calibration process 

to cover all azimuth angles. In order to cover all possible elevation angles, the circular motion should 

be repeated during several time intervals with long enough separations to allow satellites to move 

significantly in the sky. 

Figure 4. Data collection set up. 

 

4.2. Calibration Results 

An open source MATLAB-based single antenna software receiver in [18] was further developed for 

multi-antenna receiver and the tracking, acquisition and position solution parts of the original software 

were modified. As shown in Figure 2 showing the receiver structure, only the satellite signals received 
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at the reference antenna are acquired, tracked and used for the positioning and the locally generated 

codes obtained from processing the signal of this antenna are used to measure the phases and 

amplitudes of the signals at the other antennas. Therefore, the estimated discriminator outputs at 

different antennas differ only on phases and amplitudes (changing only by changes in the signal DOA). 

For illustration, in Figure 5, the tracking results of the multi-antenna receiver for the signal of one 

satellite are shown. In this figure, the scatter plots and measured amplitudes and phases of antenna 

elements are shown. Outputs of phase lock loops (PLL) and delay lock loops (DLL), early, late and 

prompt correlation results and C/N0 variations are also shown. 

Figure 5. Tracking results of the multi-antenna receiver for one satellite signal. 

 

Figure 6 shows the position errors in the ENU coordinate system for the first 200 s of the 

calibration stage that includes 80 s in the static mode followed by two circular motions (each 60 s). 

The reference trajectory is obtained using NovAtel’s Inertial Explorer software. This figure also shows 

the satellites constellation at the time of data collection. The GPS satellite PRN number and their 

azimuths and elevation angles are presented in Table 1. 

Table 1. Azimuth and elevation angles of satellites at the time of the data collection 

employed for the array calibration. 

PRN 20 16 30 32 31 23 

Azimuth (Degree) 204.1 146.6 78.3 163.7 58.8 292.2 

Elevation (Degree) 52.1 37.5 45.2 29.1 28.9 68.6 
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Figure 6. Estimated position solutions and the corresponding errors by the software receiver. 

 

The measured amplitudes and phases for these satellite signals versus time are shown in Figures 7 

and 8, respectively. In each figure, the measured values for Antenna 2 and 3, from the discriminator 

outputs after filtering, are shown (as mentioned before, the phase of reference antenna is kept almost 

zero and its amplitude is kept to 1). An exponential filter is used for filtering with a smoothing factor 

of 0.05   as: 
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 (18) 

in which, iz  and iz  are the amplitude and phase of the filter output vector. Due to the normalization 

with respect to the reference antenna, Doppler frequency and its variations, which are precisely tracked 

by the receiver PLL, are removed from the measurements. These plots indicate that the measured 

amplitudes from each antenna not only are different but also vary by the changes in the signal DOA in 

the body frame coordinate. For example, the amplitude of the signal at Antenna 2 varies in the range  

of 3dB  with respect to the reference antenna. The plots in Figure 8 show that the measured relative 

phases also vary depending on the satellite signal DOA and the array orientation. For example, the 

signal received from the satellite with PRN number 23 which is the one with the highest elevation has 

the least variation in the circular motion and the signals of the satellites with low elevation angles show 

the highest variations. 

  



Sensors 2014, 14 9682 

 

 

Figure 7. Measured amplitudes for Antenna 2 and Antenna 3 for PRNs 20, 16, 30, 32, 31 and 23. 

 

Figure 8. Measured phases for Antenna 2 and Antenna 3 for PRNs 20, 16, 30, 32, 31 and 23. 

 

Figure 9 shows the amplitudes and phases of the estimated calibration coefficients from the first 

stage of the calibration process. The plots illustrate the estimated elements of the matrix C  versus the 

number of measurements from the first minimization in Equation (12). The results show that after a 

few hundred measurements, the estimated coefficients do not change significantly. 
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Figure 9. Amplitude and phase of the estimated calibration coefficients. 

 

Figure 10. Normalized errors for two stages of the calibration process. 
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4.3. Results for the Receiver Operation Mode 

It was shown in Section 3.2 that the use of the proposed iterative method along with using the 

estimated C  and ( , )P l k  , leads to accurate estimates of satellite signal steering vectors in the 

receiver operation mode. This method provides estimates of satellite signal steering vectors based on 

the received signals and calibration results without any aiding information from the IMU. Estimating 

the steering vectors of the GNSS signals can be used in different multi-antenna applications such as 

enhancing SNR, anti-interference, multipath mitigation and attitude determination. 

In this section, the calibrated three-element array is used in two practical applications to highlight 

the effectiveness of the proposed method in the receiver operation mode. In the first example, the 

heading angle of the moving vehicle is estimated from the signal of only one satellite and in the second 

example, using the signal of each satellite, the antenna array beam pattern is shaped to steer the main 

lobe of the beam pattern toward the direction of that signal and accordingly to enhance its carrier to 

noise ratio (C/N0). 

4.3.1. Attitude Determination 

Precise attitude determination is essential in various applications. Differential carrier phase 

measurements from several receivers with precisely determined baselines can be employed to derive 

attitude parameters. Since performance degrades by shortening the baselines between receivers, the 

applicability of these methods might be confined to applications where, antennas separation is 

extremely limited. Herein, beamforming using a calibrated antenna array is employed for attitude 

determination, which can be an alternate option in these situations. Moreover, in contrast to standard 

attitude determination, in this method only one GNSS signal along with an adequate number of 

antenna elements is enough for attitude determination. This is another advantage of this approach, 

especially in challenging environments where the number of available signals is low. However, the 

challenge is carrier phase multipath. 

In order to evaluate the performance of attitude determination based on beamforming, a test was 

performed with the calibrated antenna array. For the sake of comparison, the SPAN LCI system was 

used as a reference to evaluate the accuracy of the estimated heading angles. Assuming a  

horizontal motion and considering Equations (7) and (8), the heading angle can be estimated using the 

following relation: 
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where ENU
e  and B

e  are obtained from Equations (7) and (16), respectively. 

Since the measurements employed in heading estimation are the same as those used for the 

calibration process, this test is more of a consistency test than an accuracy performance test. 

Figure 11. Heading angle determination results and the estimated errors compared to the 

IMU estimates for PRN 16, 30 and 31. 
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Figure 11 shows the results of heading determination for PRN 16, 30 and 31. In Figure 11, 

estimated heading angles for a moving vehicle for two cases are compared with the IMU derived 

heading angles. In the first case, only the first stage of the optimization method is employed (only 

constant uncertainty matrix C is considered) whereas in the second case look-up tables obtained from 

the second stage are also used for improving the heading estimation. Five iterations were adopted for 

the iterative method in order to estimate the steering vectors. Figure 11 also plots the root mean square 

(RMS) agreement with the IMU estimates. The precise calibration process improves the agreement by 

3° to 9°. However, it is not the case for all PRNs. PRNs with the higher elevation angles show poorer 

accuracy for heading angle estimation such that the satellite located in zenith cannot be used to sense 

the horizontal motion. Moreover, the errors due to multipath and noise are higher for the signals of 

satellite with low elevation angles. 

In order to check the consistency between the estimated heading angles from these three PRNs, 

estimated heading angles from PRN 16 and 30 are subtracted from those of PRN 31. The results, along 

with the mean and the RMS values are shown in Figure 12. The results show a consistency of 5° to 7° 

between the estimated heading angles for these PRNs. 

Figure 12. Consistency of heading estimates for different satellites (PRN 16 and 30 are 

compared to PRN 31). 

 

In another test, in order to verify the calibration and estimated heading results independently,  

PRN 31 is excluded from the calibration process and stage 1 and 2 of the calibration method are 

repeated without using this PRN. Then the heading angles are estimated using the signal of this PRN 

and the calibrated array. The results for this test are shown in Figure 13. This figure shows a very small 

degradation compared to the results shown in Figure 11 for PRN 31. 
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Figure 13. Heading angle determination results for PRN 31 when this PRN is not used in 

the calibration process. 

 

4.3.2. C/N0 Enhancement 

In order to show the performance of C/N0 enhancement employing the calibrated array, the 

measured C/N0 values after beamforming for the array antenna and for the single antenna are 

compared. The C/N0 values are calculated as the ratio of the received satellite signal power to the noise 

density calculated by a noise floor estimator that correlates the received signal with a normalized 

fictitious PRN [19]. The minimum power distortionless response (MPDR) beamformer is employed to 

shape the array beam pattern [16]. In doing so for the signal of each satellite, the steering vector is 

estimated in the receiver operation mode and the corresponding optimal array weight vector w  is 

obtained as: 
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 w R a a R a  (21) 

where R̂  is the estimated correlation matrix which is defined as: 
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k k

kK






R y y  (22) 

The expression in Equation (22) is the estimation of the covariance matrix using K successive 

measurements. The MPDR beamformer maintains the main lobe of the antenna array beam pattern in 

the direction of the desired signal thereby minimizing the power of noise and interference. Figure 14 

shows the normalized polar beam patterns versus azimuth and elevation angles for the satellite signals. 

It can be observed that for the signal of each PRN, the main lobe is steered toward the direction of that 

PRN. In order to have an actual sense of the improvement achieved by applying the beamforming 

process, the measured C/N0 values for the satellite signals at the reference antenna and the beamformer 

are illustrated in Figure 15 in which, after 30 s, the receiver switches from the single antenna structure 

to the multi-antenna structure. Due to the non-uniform antenna gain patterns and different amplifier 

gains, C/N0 values increase differently for signals coming from different directions. 
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Figure 14. Normalized array antenna beam patterns after beamforming for PRNs 20, 16, 

30, 32, 31 and 23. 

 

Figure 15. Comparing C/N0 for a single antenna receiver and the beamformer for PRNs 

20, 16, 30, 32, 31 and 23. 

 

5. Conclusions 
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was shown that they could be separated into two parts; one is constant and the other one consists of 

DOA-dependent parameters. One solution for the associated optimization to this problem was 

introduced in the form of two eigenvalue decomposition problems. Although the estimated constant 

term could provide coarse estimates of satellite steering vectors, for more precise calibration the 

second stage provided compensation amplitude and phase for each incident signal corresponding to its 

DOA in a form of a set of look up tables for each antenna element. The proposed two-stage calibration 

process not only simplified the interpretation of uncertainties, but also was used to come up with an 

iterative method with a fast convergence to accurately estimate satellite signal steering vectors.  

The effectiveness of this method in both calibration and receiver operation modes was evaluated by 

using a set of collected GPS signals in two different GNSS multi-antenna applications. Although an 

IMU unit was employed in this case for calibration and its performance evaluation, heading, roll and 

pitch angles could also have been provided by the carrier phase measurements obtained by the antenna 

array using standard GNSS attitude determination methods. In this paper, the measurement noise and 

carrier phase multipath were not explicitly considered in the mathematical model of the calibration 

although the measurements might be affected by them. This may reduce the accuracy of the calibration 

results. For example, although carrier phase multipath might be compensated in the second stage of the 

calibration process for certain observables, the compensation values are not necessarily applicable to 

the other observations. Moreover, a weighting model could be used to reduce the effect of noisier 

observations (e.g., signals from satellites with lower elevation angles) instead of using the equal weight 

model employed in this paper. Herein the results of calibration were verified through attitude 

determination and beamforming applications and employing the IMU measurements as a reference. 

However, estimating the accuracy of the calibration procedure as an independent block has not yet 

been investigated. Studying an approach to express the accuracy of the calibration results as a function 

of azimuth and elevation angles is suggested as future work. Furthermore, repeating the performed 

data collection for a certain antenna array for a long period of time in different environments and 

checking the consistency between the results to observe the effect of carrier phase multipath is 

suggested for further research on this paper. 

Author Contributions 

Authors namely, Gérard Lachapelle, Saeed Daneshmand, Negin Sokhandan and Mohammad 

Amirani-Zaeri, have cooperated in technical parts, data collections and analyses and writing of this 

paper. Fund for this research was provided by Lachapelle’s iCORE grant. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Chen, Y.-H.; Juang, J.-C.; Seo, J.; Lo, S.; Akos, D.M.; de Lorenzo, D.S.; Enge, P. Design and 

implementation of real-time software radio for anti-interference GPS/WAAS sensors. Sensors 

2012, 12, 13417–13440. 



Sensors 2014, 14 9690 

 

 

2. Kappen, G.; Haettich, C.; Meurer, M. Towards a robust multi-antenna mass market GNSS 

receiver. In Proceedings of the 2012 IEEE/ION Position Location and Navigation Symposium 

(PLANS), Myrtle Beach, SC, USA, 23–26 April 2012; pp. 291–300. 

3. Daneshmand, S.; Broumandan, A.; Nielsen, J.; Lachapelle, G. Interference and multipath 

mitigation utilising a two-stage beamformer for global navigation satellite systems applications. 

IET Radar Sonar Navig. 2013, 7, 55–66. 

4. Fante, R.; Vaccaro, J.J. Wideband cancellation of interference in a GPS receive array. IEEE 

Trans. Aerosp. Electron. Syst. 2000, 36, 549–564. 

5. Zoltowski, M.D.; Gecan, A.S. Advanced adaptive null steering concepts for GPS. In Proceedings 

of the 1995 IEEE Conference Record, Military Communications Conference (MILCOM’95),  

San Diego, CA, USA, 5–8 November 1995; Volume 3, pp. 1214–1218. 

6. Seco-Granados, G.; Fernández-Rubio, J.A.; Fernández-Prades, C. ML estimator and hybrid 

beamformer for multipath and interference mitigation in GNSS receivers. IEEE Trans. Signal 

Process. 2005, 53, 1194–1208. 

7. Daneshmand, S.; Broumandan, A.; Sokhandan, N.; Lachapelle, G. GNSS Multipath Mitigation 

with a Moving Antenna Array. IEEE Trans. Aerosp. Electron. Syst. 2013, 49, 693–698. 

8. Hwang, S.; Shynk, J.J. Multicomponent receiver architectures for GPS interference suppression. 

IEEE Trans. Aerosp. Electron. Syst. 2006, 42, 489–502. 

9. Gupta, I.J.; Baxter, J.R.; Ellingson, S.W.; Park, H.G.; Oh, H.S.; Kyeong, M.G. An experimental 

study of antenna array calibration. IEEE Trans. Antennas Propag. 2003, 51, 664–667. 

10. Aumann, H.M.; Fenn, A.J.; Willwerth, F.G. Phased array antenna calibration and pattern 

prediction using mutual coupling measurements. IEEE Trans. Antennas Propag. 1989, 37, 844–850. 

11. Kim, U.-S.; de Lorenzo, D.S.; Gautier, J.; Enge, P.; Akos, D.; Orr, J.A. Precise Phase Calibration 

of a Controlled Reception Pattern GPS Antenna for JPALS. In Proceedings of the 2004 Position 

Location and Navigation Symposium (PLANS 2004), 26–29 April 2004; pp. 478–485. 

12. Konovaltsev, A.; Basta, N.; Greda, L.A.; Cuntz, M.; Heckler, M.V.T.; Dreher, A. Calibration of 

adaptive antennas in satellite navigation receivers. In Proceedings of the Fourth European 

Conference on Antennas and Propagation (EuCAP), Barcelona, Spain, 12–16 April 2010; pp. 1–5. 

13. Chen, Y.H. A Study of Geometry and Commercial Off-the-Shelf (COTS) Antennas for Controlled 

Reception Pattern Antenna (CRPA) Arrays. In Proceedings of the 25th International Technical 

Meeting of The Satellite Division of the Institute of Navigation (ION GNSS 2012), Nashville, 

TN, USA, 17–21 September 2012; pp. 907–914. 

14. Anantharamu, P.; Borio, D.; Lachapelle, G. Self-Contained Antenna Array Calibration Using 

GNSS Signals. NAVIGATION J. Inst. Navig. 2012, 59, 209–220. 

15. Backen, S.; Akos, D.M.; Nordenvaad, M.L. Post-Processing Dynamic GNSS Antenna Array 

Calibration and Deterministic Beamforming. In Proceedings of the 21st International Technical 

Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2008), Savannah, 

GA, USA, 16–19 September 2008; pp. 2806–2814. 

16. Van Trees, H.L. Optimum Array Processing, Detection, Estimation, and Modulation Theory Part IV; 

John Wiley & Sons: New York, NY, USA, 2002; pp. 428–699. 

17. Novatel. Available online: http://www.novatel.com/ (accessed on 1 February 2014). 



Sensors 2014, 14 9691 

 

 

18. Borre, K.; Akos, D.; Bertelsen, N.; Rinder, P.; Jensen, S.H. A Software-Defined GPS and Galileo 

Receiver: Single-Frequency Approach; Birkhäuser: Boston, MA, USA, 2007. 

19. Kaplan, E.D.; Hegarty, C.J. Understanding GPS Principles and Applications, 2nd ed.; Artech House: 

London, UK, 2006; pp. 113–153. 

Appendix A 

Considering Equation (5), the cost function in Equation (9) can be rewritten as: 
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 (A.1) 

or equivalently as: 

( ( , )) ( ( ) ( ) ) ( ( , ))H H T H T

l k i i N i N i l k

i

vec vec      CP A y δ I y δ I A CP  (A.2) 

where Ai  is defined in Equation (14) and the rank of each matrix in the inner summation of Equation (A.2) 

is 1N  . Ignoring the noise and gridding resolution effect, all of the matrices in the summation are the 

same, since for all of them the signals arrive from the same direction. Hence, the rank of matrix 

( ) ( )H T H T

i i N i N i

i

 A y δ I y δ I A  is 1N  . Singular value decomposition of this matrix can be 

expressed as: 

 ( ) ( )

H
sH T H T s

i i N i N i s n H
i n n

  
     

   


S 0 U
A y δ I y δ I A U U

0 S U
 (A.3) 

where sS  and nS  are the diagonal matrices of the eigenvalues corresponding to the signal and null 

spaces, respectively, and sU  and nU  are the matrices of the normalized eigenvectors corresponding to 

the signal and null spaces, respectively. Using this notation, the solution of ( ( , ))CP l kvec    is in the 

null space and belongs to ( )UnSPAN  with the dimension of 
2 ( 1)N N  . Considering noise 

measurement and the gridding resolution, the dimension of the null-space (or noise space) becomes 

smaller; however there are still many solutions available for ( ( , ))CP l kvec   . 
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