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Abstract: This paper addresses a vision-based cooperative search for multiple mobile
ground targets by a group of unmanned aerial vehicles (UAVs) with limited sensing and
communication capabilities. The airborne camera on each UAV has a limited field of view
and its target discriminability varies as a function of altitude. First, by dividing the whole
surveillance region into cells, a probability map can be formed for each UAV indicating the
probability of target existence within each cell. Then, we propose a distributed probability
map updating model which includes the fusion of measurement information, information
sharing among neighboring agents, information decay and transmission due to environmental
changes such as the target movement. Furthermore, we formulate the target search problem
as a multi-agent cooperative coverage control problem by optimizing the collective coverage
area and the detection performance. The proposed map updating model and the cooperative
control scheme are distributed, i.e., assuming that each agent only communicates with
its neighbors within its communication range. Finally, the effectiveness of the proposed
algorithms is illustrated by simulation.
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1. Introduction

With the fast development of high resolution imaging devices and processing technologies, unmanned
aerial vehicles (UAVs) with air-borne cameras are increasingly employed in civil and military
applications such as environmental monitoring, battlefield surveillance and map building, where
ground-target search is one of the major applications [1,2]. Target tracking and search have been one of
the most popular utilizations of UAVs [3,4]. The conventional method for target search by UAVs in a
closed region divides the whole surveillance region into cells, and associates each cell with a probability
or confidence of target existence in the cell which constitutes a probability map for the whole region [5,6].

In [7], an online planning and control method is proposed for cooperative search by a group of UAVs,
where each agent keeps an individual probability map for the whole region updated according to the
Dempster-Shafer theory. A path planning algorithm is designed by using the obtained measurement
information, which requires each agent to directly communicate with all other agents. In [8], target
detection is considered as part of an integrated mission including coverage control and data collection
as parallel tasks for multi-agent networks. The coverage control method aims to maximize the
joint detection probability of random events and the probability of target existence is updated by
measurements based on the Bayesian rule. However, only the measurement information of direct
neighbors is exchanged, which makes it difficult to obtain the target information of the whole surveillance
region. In [9], a decentralized gradient-based control strategy is proposed for multiple autonomous
mobile sensor agents searching for targets of interest by minimizing the joint team probability of no
detection within action horizon based on range detection sensing model. However, each agent is required
to collect detection information from all other agents. In [10], a decentralized search algorithm is
developed which includes a two-step updating procedure for the probability maps. Each agent first
obtains observations over the cells within its sensing region and updates its individual probability map
by the Bayesian rule. Then, each agent transmits its individual probability map to its neighbors for map
fusion. This algorithm is distributed and full network connectivity is not required. However, the lack
of information correlation makes the map fusion difficult and only a heuristic fusion method is given
in [10], the performance of which has not been analyzed. In our recent work [11], a distributed iterative
map updating model is proposed to fuse the information from measurements and the maps of neighbors
based on a logarithmic transformation of the Bayesian rule. Through this, the nonlinear Bayesian update
is replaced by a linear one which simplifies the computation. The convergence speed of individual
probability map of an agent is also analyzed under fixed detection and false alarm probabilities for the
search of static targets.

The cooperative control is an important task for efficient target search by a group of UAVs. Compared
with the centralized control algorithms, distributed control algorithms are more robust to accidental
failures of UAVs and breaks of communication links [12]. In [13], a distributed multi-agent coverage
control method is proposed based on a given sensing performance function related to the distance to
robots and gradient descent algorithms are designed for a class of utility functions to optimize the
coverage and sensing performance. In [14], a distributed, adaptive control law is developed to achieve
an optimal sensing configuration for a network of mobile robots which obtain sensory information of
a static environment and exchange their estimates of the environment with neighbors. In [15], a
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three dimensional distributed control strategy is proposed to deploy hovering robots with downward
facing cameras to collectively monitor an environment. A new optimization criterion is defined as the
information obtained by each pixel of a camera. In [16], a dynamic awareness model is proposed to
control a multi-vehicle sensor network with intermittent communications. The state of awareness of
each individual vehicle is updated by its own sensing model and sharing information with its neighbors.
However, none of the coverage control schemes mentioned above has considered the detection results
of target existence which may affect UAVs’ movement decisions in target search. Moreover, there are
very few works addressing the issue of distributed vision-based cooperative search for multiple mobile
targets with probabilistic detections.

In this paper, we investigate the vision-based cooperative search for multiple ground mobile targets
by a group of UAVs with limited sensing and communication capabilities. The main contribution
of this paper is that a distributed strategy of information fusion and cooperative control is proposed
for searching multiple mobile targets using multi-agent networks based on probabilistic detections.
In addition, the time-varying detection and false alarm probabilities are considered which are due
to the varying altitudes of the agents with 3-dimensional dynamics. Each agent under our search
strategy shares local target information and controls its own behavior in a distributed manner. Based
on the probability map updating model proposed in [11], we generalize the model by considering the
information decay and transmission between cells due to environmental changes such as the target
movement. The influence of the time-varying detection probability on the update of probability maps
due to the three-dimensional UAV dynamics is also analyzed. Then, a coverage optimization problem is
formulated to balance the coverage area and detection performance. The proposed map updating model
and cooperative control scheme are distributed, i.e., each agent only communicates with the agents within
its communication range.

This paper is organized as follows: Section 2 describes the basic notations and assumptions used in
this paper. Section 3 presents the probability map updates by measurements and information sharing
with time-varying detection probabilities. In Section 4, a three-dimensional coverage control method is
presented for target search. Simulation results are shown in Section 5, and the conclusions are drawn in
Section 6.

2. Basic Definitions and Assumptions

The surveillance region O ∈ R2 is assumed to be on a plane ground and has been uniformly divided
into a set of cells of the same size. We assume that all UAVs (or agents) use the same global Cartesian
coordinate system and the position of each agent is denoted as µi,k =

[
cTi,k, hi,k

]T ∈ R3 for agent i
(i = 1, 2, · · · , N ) at time k (as shown in Figure 1a), where ci,k ∈ R2 is the planar coordinate of its
projection on O, hi,k ∈ R is the altitude of the agent above O, N is the total number of agents and “T”
denotes the transpose operation. Each agent is assumed to have access to its own position at any time.
Each cell in the surveillance region is associated with a probability or confidence of target existence
within the cell which is modeled using the Bernoulli distribution, i.e., θg,k = 1 (a target is present) with
probability Pi (θg,k = 1) and θg,k = 0 (no target is present) with probability 1 − Pi (θg = 1) for agent i
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and cell g at time k, where g ∈ R2 is the location of the cell center in O. If more than one target are
present within a cell, they are treated as one single target.

Figure 1. Target search by multiple UAVs. (a) A network of UAVs; (b) Target image taken
by an airborne camera.

(a) (b)

In this paper, we mainly discuss about the vision-based detections where each agent carries an
airborne camera facing downward to surveillance region (as shown in Figure 1a). Each agent
independently takes measurements Zi,g,k over the cells within its sensing region Ci,k at time k, where

Ci,k , {g ∈ O : ‖g − ci,k‖ 6 hi,k tanϕ}

and ‖•‖ denotes the 2-norm for vectors. Each agent is assumed to have the same angle of field of view,
half of which is denoted by ϕ. We also assume that the size of each cell is sufficiently small comparing
with the size of Ci,k so that we can ignore the boundary effect and roughly consider a cell as wholly
within Ci,k if its center is within Ci,k. Only two observation results are defined for each cell, Zi,g,k = 0

or Zi,g,k = 1. For all cells, P (Zi,g,k = 1|θg,k = 1) = pi,k and P (Zi,g,k = 1|θg,k = 0) = qi,k are assumed
to be known by agent i as the detection probability and false alarm probability respectively.

The topology of the network of all agents at time k is modeled by an undirected graph Gk = (Ek,V).
V = {1, 2, . . . , N} is the vertex set and Ek = {{i, j} : i, j ∈ V ; ‖µi,k − µj,k‖ 6 Rc} is the edge set,
where each edge {i, j} is an unordered pair of distinct agents and Rc is the communication range of each
agent. The graph or the network is connected if for any two vertices i and j there exists a sequence of
edges (a path) {i, ν1}, {ν1, ν2}, . . . , {νn−1, νn}, {νn, j} in Ek. Let Ni,k = {j ∈ V| {i, j} ∈ Ek} ∪ {i}
denote the set of neighbors of agent i at time k where an agent is assumed to be a neighbor of itself. The
degree (number of neighbors) of agent i at time k is denoted as di,k = |Ni,k|.

3. Probability Map Update

3.1. Bayesian Update and Consensus-Based Map Fusion

In [11], we proposed a cooperative control scheme for target search in multi-agent systems. In a
group of UAVs, each agent i keeps an individual probability map Pi,g,k of the whole region, where
Pi,g,k , Pi (θg,k = 1) and is updated by the Bayesain rule:
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Pi,g,k =
P (Zi,g,k|θg,k = 1)Pi,g,k−1

P (Zi,g,k|θg,k = 1)Pi,g,k−1 + P (Zi,g,k|θg,k = 0) (1− Pi,g,k−1)

=



pi,kPi,g,k−1
pi,kPi,g,k−1 + qi,k (1− Pi,g,k−1)

if Zi,g,k = 1

(1− pi,k)Pi,g,k−1
(1− pi,k)Pi,g,k−1 + (1− qi,k) (1− Pi,g,k−1)

if Zi,g,k = 0

Pi,g,k−1 otherwise

(1)

where 0 < Pi,g,0 < 1 and 1 > pi,k, qi,k > 0. For the cases with pi,k = 0 or 1 or qi,k = 0 or 1, simplified
conclusions can be obtained as shown in [11] and will not be considered in this paper. By letting

Qi,g,k = ln

(
1

Pi,g,k
− 1

)
(2)

we get the following transformation of Equation (1):

Qi,g,k = Qi,g,k−1 + vi,g,k (3)

where

vi,g,k ,


ln

qi,k
pi,k

if Zi,g,k = 1

ln
1−qi,k
1−pi,k

if Zi,g,k = 0

0 otherwise

(4)

KeepingQi,g,k as the updated term instead ofPi,g,k simplifies the nonlinear update in Equation (1) into
the linear one in Equation (3). For a group of UAVs, we let each agent i at time k first take measurements
and transmit the measurements to its neighbors. After receiving the measurements from all its neighbors,
Qi,g,k is updated as follows:

Hi,g,k = Qi,g,k−1 +
∑
j∈Ni,k

vj,g,k (5)

Then, each agent i transmits the updated Qi,g,k of the whole region to its neighbors for map fusion,
which is given by:

Qi,g,k =
∑
j∈Ni,k

wi,j,kHj,g,k (6)

where wi,i,k = 1 − di,k−1
N

, wi,j,k = 1
N

for j ∈ Ni,k (j 6= i) and wi,j,k = 0 for j /∈ Ni,k. Then, a matrix
composed of wi,j,k can be defined as:

Wk , [wi,j,k]N×N (i, j = 1, . . . , N) (7)

which is a doubly stochastic matrix [17]. The communications of neighboring agents are assumed to be
synchronized within a short time interval. Time synchronization in distributed networks is not the focus
of this paper and has been addressed by many works [18–21].
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3.2. Time-Varying Detection Probability

In [11], we only considered a 2-dimensional control scheme assuming that all agents move on a fixed
plane parallel to the ground plane. However, in the real world, UAVs such as helicopters can change
their altitudes according to their task requirements so as to enlarge their sensing area (here we only
consider cameras with a fixed zooming level). Therefore, in this paper, we will consider the influence of
3-dimensional dynamics of UAVs on the detection performance.

For vision-based detection, the detection probability relies on the picture resolutions. Figure 1b shows
the basic imaging scheme by an airborne camera similar to the one given in [15,22]. In general, a
desirable property for good target recognition is a “right” ratio between the size of the image and the
size of the target, where “right” depends on the target type and the detection algorithm that is employed.
To be more simplified, it can be assumed that the larger the image of a target in the picture (in terms of
the number of occupied pixels) obtained by the UAV, the easier for the UAV to discriminate the target
no matter what recognition method is used. Hence, we can model the target discriminability of a UAV
as a function ρ proportional to the ratio between the size of a target image taken by the camera denoted
by STI and the size of one pixel denoted by SP, i.e., ρ ∝ STI

SP
. Here, we assume that all targets are of the

same visual properties such as color, shape and size that are influential on target discriminability. It is
also assumed that each camera has a fixed focal length so that we can only consider the change of ρ due
to the variation of agent altitude. Then, by denoting the size of the projection of a target on the ground
plane as ST, we can derive that:

ρ ∝ STI

ST

ST

SP

=
b2ST

h2SP

(8)

where h is the altitude of the UAV and b is the fixed distance between the image and the lens (as shown
in Figure 1b). In a multi-agent system, for the i-th agent at time k, we have ρi,k ∝ b2ST

h2i,kSP
. From

Equation (8), we may get ρi,k → ∞ as hi,k → 0. However, in reality, ρi,k cannot be infinitely large
and there should be an upper limit when hi,k is smaller than a threshold h. That is to say, the target
discrimination ability will not be improved any more if a UAV is descending very close to the ground.

The target discriminability determines the detection probability when a UAV is detecting the
existence of targets within each cell under surveillance. It is natural to conceive that the detection
probability pi,k increases and the false alarm probability qi,k decreases as ρi,k increases. When the
altitude of the UAV becomes larger than a threshold h, it runs out of its ability to discriminate any
target from the background environment, which means that the detection result dose not rely on
the true existence of the target any more. That is, if hi,k > h, we have P (Zi,g,k = 0|θg = 1) =

P (Zi,g,k = 1|θg = 1) = P (Zi,g,k = 1|θg = 0) = P (Zi,g,k = 1|θg = 0), i.e., pi,k = qi,k = 0.5.
Generally, when hi,k ∈

[
h, h
] (
h < h

)
, pi,k should be a monotonically increasing function of ρi,k, or

more explicitly, a monotonically decreasing function of hi,k. Therefore, we assume the following
detection probability model:

pi,k =


0.5 if hi,k > h

f1 (hi,k) if h < hi,k < h

p̌ if 0 < hi,k 6 h

(9)



Sensors 2014, 14 9414

where f ′1 (hi,k) < 0 for hi,k ∈
(
h, h
)

and 1 > f1 (h) = p̌ > f1
(
h
)

= 0.5. Similarly, we can assume the
false alarm probability model as a monotonically increasing function of hi,k:

qi,k =


0.5 if hi,k > h

f2 (hi,k) if h < hi,k < h

q̂ if 0 < hi,k 6 h

(10)

where f ′2 (hi,k) > 0 for hi,k ∈
(
h, h
)
, 0 < f2 (h) = q̂ < f2

(
h
)

= 0.5. In this paper, the altitude hi,k
of an agent is allowed to vary from 0 to∞ for theoretic analysis, though it may not happen in the real
world due to system limitations.

Remark 1. Model (9) is motivated by the natural understanding of the interaction between the altitude
of an agent and its detection and false alarm probabilities. It only reflects the general relation between
those parameters, and is not restricted to a specific parametric representation of f1 and f2. Hence,
our method is applicable for any detection probability function that fits for the model. An experimental
detection probability model of CCD camera has been given in [22].

Remark 2. pi,k and qi,k can also be cell-dependent, i.e., they may vary from place to place due to
environment conditions. For example, the target is often easier to be discriminated on an open ground
than on a land with trees. In complex environments, agents must know the detection probability and false
alarm probability models of different type of regions. For the ease of expression, we assume the models
to be constant across the whole surveillance region.

Denoting by mi,g,k the number of observations taken over cell g up to time k by agent i and defining
mg,k =

∑N
i=1mi,g,k, we can get the following conclusions for the update of Qi,g,k.

Theorem 1. Given the initial prior probability map 0 < Pi,g,0 < 1 ∀i ∈ V , if there exists a constant
ε > 0 such that pi,k > 0.5 + ε and qi,k 6 0.5 − ε ∀i ∈ V , and the network topology Gk is connected at
all times, the following conclusions hold by implementing the map updating rule (5) and (6).

(1) If a target is present within cell g, Qi,g,k
a.s.−−→ −∞ (i.e., Pi,g,k

a.s.−−→ 1) ∀i ∈ V as mg,k → +∞.

(2) If no target is present within cell g, Qi,g,k
a.s.−−→ +∞ (i.e., Pi,g,k

a.s.−−→ 0) ∀i ∈ V as mg,k → +∞.

Proof. See Appendix A.

3.3. Environment-Based Probability Map

In the map updates (5) and (6), the effect of the environmental changes such as the information
decay and transmission between cells has not been considered. For example, if targets may randomly
appear or disappear during search, the historical information about the target existence cannot reflect the
true current situation and revisits of certain frequency to the detected cells are needed for information
update. This problem can be formulated as the information decay for each cell. If a target may
move from one cell to another, then part of the information for the former cell should be removed
and counted as the new information for the latter cell. This problem can be formulated as the
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information transmission between each two cells. Therefore, we need to generalize the aforementioned
map updating model to be applicable to the case with such environmental changes. Similar to the
assumption made in [16], we assume that Qi,g,k decays exponentially for each cell if there is no prior
knowledge and/or no measurement information. The information transmission between cells due to
target movement is modeled based on the transition of probabilities. In addition, the prior knowledge
about the environmental change is taken as the system input. All these lead to the following generalized
updating model for Qi,g,k:

Hi,g,k = e−αT
∑
r∈O

ai,g,r,kbi,g,r,kQi,r,k−1 +
∑
j∈Ni,k

vj,g,k + ξi,g,k

Qi,g,k =
∑
j∈Ni,k

wi,j,kHj,g,k

(11)

where α > 0 is the information decaying factor, T is the sampling period of all UAVs, ai,g,r,k and
bi,g,r,k are the information transmission factors which are nonnegative, and ξi,g,k is the input information
vector given by the prior knowledge about the target existence within cell g. Specifically, bi,g,r,k satisfies
bi,g,g,k = 1 and bi,g,r,k = 0 (g 6= r) for Qi,r,k−1 > 0, and bi,g,r,k = P

(
θg,k = 1

∣∣∣θr,k−1 = 1
)

for
Qi,r,k−1 6 0. ai,g,r,k is determined by ai,g,r̂i,k = 1 and ai,g,r,k = 0 (r 6= r̂i), where

r̂i = arg min
r∈Bi,g,k

bi,g,r,kQi,r,k−1

Bi,g,k = {r ∈ O : bi,g,r,k > 0}
(12)

Remark 3. ai,g,r,k and bi,g,r,k are defined based on the physical meaning of information transmission due
to the target movement in the real world. Since the combination ofQi,r,k (r ∈ O) into a cell g involves the
combination of historical measurement information of all cells r ∈ O, the correlation of which may not
be known, we need to be careful in dealing with the fusion of such information. IfQi,g,k > 0, we are more
confident that no target exists within cell g. Otherwise, we are more confident that a target exists within
cell g. Since an information transmission out of a cell at time k is expected to occur only when a target
exists within the cell at time k−1, we let bi,g,r,k = 0 ifQi,r,k−1 > 0, which means there is no transmission
of information (or target movement) from cell r to cell g. If Qi,r,k−1 6 0, an information transmission
occurs from cell r to cell g due to the possible target movement from r to g and the amount of information
transmitted should be proportional to P

(
θg,k = 1

∣∣∣θr,k−1 = 1
)

, i.e., equal to bi,g,r,kQi,r,k−1. The smaller
bi,g,r,k is, the less amount of information is retained for cell g. Furthermore, by assuming that within one
cell there can only exist up to one target at a time, i.e., at most one target can move into a cell at a time, we
select the information stream with the largest transmitted amount as the newly stored information for cell
g when there are incoming information streams from multiple cells r ∈ Bg,k. That is, to take the smallest
bi,g,r,kQi,r,k−1 subject to Qi,r,k−1 6 0 as the newly stored information after the transmission, which
corresponds to the most probable target movement to g in all possible movements to g from different
cells. The information decaying factor α is set to be positive in the case that the prior knowledge of
bi,g,r,k is not accurate or targets may appear and disappear unpredictably during the search. In this
case, the information decay makes the agents revisit the detected regions at a certain frequency. As for
the input information vector ξ, it only denotes the effect brought by the prior knowledge and there is no
need to calculate it out in real implementations, because any prior knowledge on the target existence
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can be directly used to update the probabilities of target existence and thus update directly following its
definition in Equation (2).

Here we give a simple example to illustrate how the parameters are designed if the true target dynamic
model is give by xk+1 = Ψxk where xk is a vector including the target location. In this case, one can
calculate the transition probability P (θg,k+1 = 1|θr,k = 1) for any two cells r and g where θr,k = 1

represents that the target locates within cell r at time k. Following this, given the current accumulated
information on target existence Qi,r,k of agent i for cell r at time k, one can calculate bi,g,r,k following its
definition. Further, with the results of bi,g,r,k for any two cells r and g, one can calculate ai,g,r,k according
to its definition in Equation (12). If the target will not suddenly disappear/appear, the decaying factor α
can be set as zero.

Define the following augmented variables:

Qi,k = [Qi,g1,k, . . . , Qi,gM ,k]
T ,Qk ,

[
QT

1,k, . . . ,Q
T
N,k

]T
Vi,k =

[∑
j∈Ni,k vj,g1,k, . . . ,

∑
j∈Ni,k vj,gM ,k

]T
Vk =

[
VT

1,k, . . . ,V
T
N,k

]T
ξi,k = [ξi,g1,k, . . . , ξi,g1,k]

T , ξk =
[
ξT1,k, . . . , ξ

T
N,k

]T
Ai,k = [ai,gτ ,gs,kbi,gτ ,gs,k]M×M (τ, s = 1, · · · ,M)

Ak = diag [A1,k, . . . , AN,k]

where τ and s are respectively the row and column indices of an appropriate cell in Ai,k, and M is the
total number of cells, we get the following generalized updating model:

Qk = e−αT (Wk ⊗ I)AkQk−1 + (Wk ⊗ I) (Vk + ξk) (13)

where ⊗ denotes the Kronecker product.
According to Theorem 1, ‖Qk‖ can be seen as the gathered information for decision making on

the target existence and the larger the ‖Qk‖, the less the uncertainty about the target existence or
nonexistence. Hence, our aim of controlling the UAVs is to maximize ‖Qk‖ in some sense, which
will be discussed in the following section.

4. Cooperative Coverage Control

In the previous section, a distributed map updating scheme was proposed for fusion of the knowledge
of multiple agents. In this section, we will design a cooperative control strategy that optimizes the
trajectories of agents for target search based on their real-time updated knowledge about the target
information. Within each time interval, an agent first updates its probability map by the the map updating
scheme designed in Section 3.3 and then makes a control decision on which place it should move to for
the next observation by collective optimization which will be addressed in this section. The two steps
make the whole network form a closed-loop sensing and feedback control system.

Here we consider the waypoint motion model for each agent:

µi,k = µi,k−1 + ui,k (14)
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where ui,k ∈ R3 is the control input (or the waypoint displacement) of the i-th agent at time k. Note
that the above motion model only deals with the waypoints of agents at discrete-time steps. The true
dynamics of agents is not discussed in this paper since we do not want to limit our results on the dynamic
model of any specific type of UAV. How to make the agents achieve the desired waypoints by their
inner-loop flight controllers is a technical issue which will not be addressed in this paper but left to be
solved in our real system experiments. Our job is to optimize the selection of the next waypoint (i.e., ui,k)
for each agent given its current waypoint (i.e., ui,k−1).

Following Equation (13), we can get

Qk = Gk + (Wk ⊗ I)Vk

where Gk , e−αT (Wk ⊗ I)AkQk−1 + (Wk ⊗ I) ξk. At time k − 1, Gk can be seen as the prior
information, and Vk the information gathered from measurements. Since Vk and E [Vk] are both related
to the true target existence which is unknown, we cannot predict the values of Qk or E [Qk] before taking
measurements. What we can do at time k − 1 is to find the optimal next time sampling position µi,k so
as to maximize the information to be gathered at time k. More precisely, the problem can be formulated
as the optimization problem:

max
µk

E
[
‖Qk −Gk‖2

∣∣∣Qk−1, ξk

]
(15)

where µk ,
[
µT
1,k, . . . , µ

T
N,k

]T. Considering that Wk includes the global topological information which
is often hard to obtain for each individual agent in a distributed system, and ‖(Wk ⊗ I)Vk‖ 6 ‖Vk‖,
we replace Equation (15) with the following suboptimal optimization:

max
µk

E
[
‖Vk‖2

]
=
∑
g∈O

N∑
i=1

∑
j∈Ni,k

E
[
v2j,g,k

]
1{g∈Cj,k} (16)

Notice that Equation (16) is not an approximation of Equation (15), but a new cost function we intend
to optimize which is an upper bound of Equation (16). Such way of defining the cost function is very
common in statistics and estimation theory such as the Cramér–Rao lower bound, which is often selected
as the cost function if the true variance of estimation error is time-varying and unknown.

Following Equation (16), we should try to maximize E
[
v2j,g,k

]
and the collective sensing area of all

agents. From Equation (4), we get for g ∈ Cj,k:

E
[
v2j,g,k

]
=


∥∥∥pj,k ln

qj,k
pj,k

+ (1− pj,k) ln
1−qj,k
1−pj,k

∥∥∥2 if θg,k = 1∥∥∥qj,k ln
qj,k
pj,k

+ (1− qj,k) ln
1−qj,k
1−pj,k

∥∥∥2 otherwise

It is straightforward to find that E
[
v2j,g,k

]
is monotonically increasing with respect to pj,k and

monotonically decreasing with respect to qj,k no matter θg,k = 1 or not. Thus, Equation (16) is further
replaced with the following optimization problem:

max
µk
H (µk) =

N∑
i=1

∫
Mi,k

φk (r) (pi,k − qi,k) 1{r∈Ci,k}dr (17)

where φk is a given nonnegative weighting function of r ∈ O at time k, and its influence on the control
law will be shown later. {M1,k, . . .MN,k} is a partition of O at time k subject to µi,k ∈Mi,k, such as the
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Voronoi partition. The introduction of the partition is for avoidance of collision between UAVs and ease
of dealing with the overlapped sensing regions between neighboring agents, which will be discussed
later. Since pi,k > qi,k, H (µk) is always nonnegative and H (µk) ≡ 0 if hi,k > h. Denoting by ∂ (•) the
boundary of the corresponding region and n∂(•) (r) the outward pointing normal vector of the boundary
∂ (•) at point r, we can compute the gradient ofH (µk) as follows.

Theorem 2. The gradient of the cost functionH (µk) with respect to µi,k (hi,k < h) is given by

∂H (µk)

∂ci,k
= (pi,k − qi,k)

∫
S2i

φk (r)nS2i (r) dr

∂H (µk)

∂hi,k
= (f ′1 (hi,k)− f ′2 (hi,k))

∫
S1i

φk (r) dr + (pi,k − qi,k) tanϕ

∫
S2i

φk (r) dr

(18)

for hi,k ∈
(
h, h

)
, and

∂H (µk)

∂ci,k
= (p̌− q̂)

∫
S2i

φk (r)nS2i (r) dr

∂H (µk)

∂hi,k
= (p̌− q̂) tanϕ

∫
S2i

φk (r) dr

(19)

for hi,k ∈ (0, h), where ci,0 ∈ O, hi,0 ∈
(
0, h

)
, S1

i = Mi,k

⋂
Ci,k, S2

i = Mi,k

⋂
∂ (Ci,k).

Proof. See Appendix B.

Following Theorem 2, a gradient-based control law is given by

ui,k = Ku
∂H (µk)

∂µi,k

∣∣∣∣∣
µk=µk−1

(20)

where Ku is a positive gain parameter. A larger Ku may lead to faster convergence of to the sub-optimal
configuration, but may also cause larger convergence error or oscillation around the settle points due to
the discrete-time control. In real system implementations, users should choose the parameter by trading
off the two performance indices.

Remark 4. Note that the control input is always upper bounded in real systems, i.e., ‖ui,k‖ 6 umax for
some positive number umax and the height of each agent is also bounded by hi,k < h to have meaningful
detections. Moreover, to avoid collision when neighboring agents are at the same altitude, the motion of
each agent should be constrained by ci,k+1 ∈Mi,k. Therefore, the control law (20) is modified as follows
to be adapted to the constraints:

ui,k = λi,kKu
∂H (µk)

∂µi,k

∣∣∣∣∣
µk=µk−1

(21)
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where λi,k is a scaling factor defined by

λi,k = arg max
06λ61

∥∥∥∥λKu
∂H (µk)

∂µi,k

∥∥∥∥
s.t.

∥∥∥∥λKu
∂H (µk)

∂µi,k

∥∥∥∥ 6 umax

ci,k−1 + λKu
∂H (µk)

∂ci,k
∈Mi,k−1\Λi,k−1

hi,k−1 + λKu
∂H (µk)

∂hi,k
6 h− ε2

(22)

Λi,k is a buffer region enclosing the border of Mi,k defined as follows:

Λi,k =

{
r∈Mi,k : min

(
ε1, min

s∈∂Mi,k
‖ci,k−s‖

)
< min

s∈∂Mi,k
‖r−s‖

}
(23)

where ε1, ε2 > 0 are given parameters for limiting the width of the buffer region and the height of each
agent respectively.

Generally, it is favored that UAVs stay longer in the region with less gathered information to take more
measurements. Thus, we define the weighting function φi,k (g) as a function of the gathered information
‖Qi,g,k−1‖ for each cell, i.e.:

φi,k (g) = e−Kφ‖Qi,g,k−1‖ (24)

where Kφ is a positive gain parameter. By this model, cells with less gathered information are given
higher weights for detection. There is no specific rule for choosing the optimal Kφ since it only denotes
the user’s preference on the search priority for different cells. In general, Kφ is only required not to be
too large or too small in order to properly scale the weights of different cells. For example, we find that
Kφ = 2 is one of the many suitable settings in our simulation.

Remark 5. The partition {M1,k, . . .MN,k} can be static or time-varying. Partition is commonly used
where each UAV only takes charge of one part of the whole surveillance region so that the whole
searching task is shared by multiple agents. Users can predefine the task regions for each UAV or let the
UAVs dynamically compute the partition following some rules. An example of the dynamic partition is
the Voronoi partition which has been widely used in the distributed control [13].

5. Simulation

5.1. Simulation Environment

We deploy multiple UAVs to search for four ground targets. The whole surveillance region is a square
region of [0, 50] × [0, 50] m2 as shown in Figure 2a, within which lie two crossing roads denoted by
OR ⊂ O. The four targets stay or move only on the roads and no target appears outside the roads in
the surveillance region. At time k, each target z (z = 1, 2, 3, 4) randomly moves to one of the cells in
the set {g ∈ OR : ‖g − Tarz,k−1‖ 6 VTar} where Tarz,k−1 is the cell it stays in at time k − 1 and VTar is
the largest possible speed of target movement. Hence, P

(
θg,k = 1

∣∣∣θr,k−1 = 1
)

= 1/
∑

g∈OR 1{g∈Dr} for
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r ∈ OR, whereDr = {g ∈ OR : ‖g − r‖ 6 VTar}. Initially, we setQi,g,0 = 0 for all i and g within roads
(i.e., Pi,g,k = 0.5 for g ∈ OR), and Qi,g,0 to a fixed large value for g outside the roads (i.e., Pi,g,k ≈ 0

for g /∈ OR). The detection probability function and the false alarm probability function are assumed

to be f1 (hi,k) = K1e
−K2(hi,k−h)

2

, and f2 (hi,k) = K3e
K4(hi,k−h)

2

respectively where K1, K2, K3, K4

are positive parameters satisfying the conditions in Equations (9) and (10). We test the proposed target
search method in two scenarios. In Scenario I, all targets appear at k = 0 and keep stationary during
the whole searching process, i.e., VTar = 0 m/s. In Scenario II, we set VTar = 1 m/s to test the influence
of target mobility on the convergence of probability maps. The four targets also appear at k = 0 but
do not disappear during the search. In these two scenarios, we verify the effectiveness of the proposed
target search method by deploying different number of UAVs and using different information decaying
factors. The initial positions of UAVs are randomly selected within region [0, 5]3 m3. The partition
{M1,k, . . .MN,k} is generated by Voronoi partition. The communication range is set as Rc = 20 m
and the communication control protocol in [11] is applied for connectivity maintenance. A distributed
K-connectivity maintenance algorithm has also been developed by the authors in [23] which can be
applied in cooperative target search. Readers may refer to the references for more details on the
communication protocols or maintenance algorithms. The cell size is fixed as 1 × 1 m2 Other key
parameters are respectively set as Ku = 0.3, Kφ = 2, q = 0.1, p̌ = 0.99, q̂ = 0.01, h = 10 m, h = 5 m,
α = 0, umax = 2 m/s and T = 1 s.

Figure 2. The convergence of the probability map of an agent in Scenario I. (a) k = 0 s;
(b) k = 10 s; (c) k = 30 s; (d) k = 50 s; (e) k = 70 s; (f) k = 90 s.
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Since the convergence of the individual probability map Pi,g,k of agent i implies that the weight
φi,k (g) defined by Equation (24) approaches 0 for each cell, we define the following average weight to
evaluate the convergence performance of the whole network:

φk =
1

NMR

N∑
i=1

∑
g∈OR

φi,k (g)

where MR denotes the total number of cells within the roads. It is easy to find that the initial value of
φk is φ0 = 1

NMR

∑N
i=1

∑
g∈OR e

−Kφ‖Qi,g,0‖ = 1. In the simulations, we compare the results of φk with
different system parameters. The results are averaged from 200 Monte Carlo simulations.

5.2. Simulation Results

Figure 2 shows an example of the convergence process of individual probability maps in Scenario I
with stationary targets, where the probabilities converge to 1 for the cells within which targets truly
exist and 0 for the cells within which no target exists. The snapshots of UAVs in Scenario I are shown in
Figure 3. Additionally, φk finally converges to 0 and the more agents are deployed, the faster it converges
as shown in Figure 4a.

Figure 3. Snapshots of UAVs in Scenario I. (a) k = 0 s; (b) k = 10 s; (c) k = 30 s;
(d) k = 50 s; (e) k = 70 s; (f) k = 90 s.

0
10

20
30

40

50

0

10

20

30

40

50

0

2

4

6

8

10

(a)
0

10

20
30

40

50

0

10

20

30

40

50

0

2

4

6

8

10

(b)
0

10

20
30

40

50

0

10

20

30

40

50

0

2

4

6

8

10

(c)

0
10

20
30

40

50

0

10

20

30

40

50

0

2

4

6

8

10

(d)
0

10

20
30

40

50

0

10

20

30

40

50

0

2

4

6

8

10

(e)
0

10

20
30

40

50

0

10

20

30

40

50

0

2

4

6

8

10

(f)

The convergence process of an individual probability map in Scenario II with mobile targets is shown
in Figure 5, where the probabilities for the cells around targets may not converge to 0 as in Scenario I
due to the random mobility of targets. However, we still can infer that there are four targets on the roads
and have a rough estimation of their positions based on the envelopes of the final probability maps of
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UAVs. The snapshots of UAVs in Scenario II at according times are shown in Figure 6. In this case, φk

does not converge to 0 as shown in Figure 4b. However, a smaller φk can be obtained with more agents
deployed since the collective sensing area becomes larger. Compared with the results in Scenario I, the
number of deployed agents has a greater impact on the convergence performance of probability maps in
Scenario II with random target mobility. Hence, the algorithm is more robust with more UAVs deployed.

Figure 4. Weight average φk by different number of agents. (a) Scenario I; (b) Scenario II.
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Figure 5. The convergence of the probability map of an agent in Scenario II. (a) k = 0 s;
(b) k = 10 s; (c) k = 30 s; (d) k = 50 s; (e) k = 70 s; (f) k = 90 s.

0

10

20

30

40

50

0

10

20

30

40

50

0

0.2

0.4

0.6

0.8

1

(a)
0

10

20

30

40

50

0

10

20

30

40

50

0

0.2

0.4

0.6

0.8

1

(b)
0

10

20

30

40

50

0

10

20

30

40

50

0

0.2

0.4

0.6

0.8

1

(c)

0

10

20

30

40

50

0

10

20

30

40

50

0

0.2

0.4

0.6

0.8

1

(d)
0

10

20

30

40

50

0

10

20

30

40

50

0

0.2

0.4

0.6

0.8

1

(e)
0

10

20

30

40

50

0

10

20

30

40

50

0

0.2

0.4

0.6

0.8

1

(f)



Sensors 2014, 14 9423

Figure 6. Snapshots of UAVs in Scenario II. (a) k = 0 s; (b) k = 10 s; (c) k = 30 s;
(d) k = 50 s; (e) k = 70 s; (f) k = 90 s.
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Figure 7. Weight average φk by different information decaying factor. (a) Scenario I;
(b) Scenario II.

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time k (second)

φ
k

α = 0

α = 0.2

α = 0.3

(a)

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time k (second)

φ
k

α = 0

α = 0.2

α = 0.3

(b)

In addition, we also test the impact of the information decaying factor on the convergence results.
According to the simulation results (as shown in Figure 7), a larger decaying factor will lead to larger
average uncertainty about the target existence in the whole region, because the accumulated information
for each cell decays faster. In fact, the design purpose of the decaying factor is to let agents revisit each
cell at certain frequency to update the latest information about target existence in the cell. Therefore, the
tradeoff lies in that, a larger decaying factor leads to larger uncertainty, but makes the agents pay more
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attention to the cells with fewer observations. However, there is no quantitative means of choosing the
decaying factor and users may find a proper one via simulation method.

6. Conclusions

In this paper, we studied the three-dimensional vision-based cooperative control and information
fusion in target search by a group of UAVs with limited sensing and communication capabilities.
First, heuristic detection probability and false alarm probability models were built which are related
to the target discriminability of a camera and varies as a function of altitude. Then, we formulated
the target search problem as a coverage optimization problem by balancing the coverage area and the
detection performance. A generalized probability map updating model was proposed, by considering
the information decay and transmission due to environmental changes such as the target movement. The
simulation results showed that the proposed algorithms can make the individual probability maps of all
agents converge to the same one which reflects the true environment when the targets are stationary. The
influence of target mobility and the number of deployed UAVs on the convergence of probability maps
has also been illustrated by simulation. Following this work, there is still a big potential area for future
development and generalization of the proposed method. For example, the extension for detection by
heterogenous sensors is an interesting topic since more types of information can be combined to improve
the detection performance. More realistic environmental and system conditions that can affect the search
results need to be considered such as the light intensity, block on the line of sight, camera with adjustable
focus, asynchronous communication, etc.

Author Contributions

Jinwen Hu, Lihua Xie and Jun Xu conceived and designed the study. Jinwen Hu and Zhao Xu
designed and implemented the simulation and method validation. Jinwen Hu wrote the paper. Lihua Xie
and Jun Xu reviewed and edited the manuscript. All authors read and approved the manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

Appendix A. Proof of Theorem 1

First, we consider Case 1, where a target is present within cell g. Define the following augmented
notations for the entire system:

Υg,k , [Q1,g,k, Q2,g,k, . . . , QN,g,k]
T

Φg,k , [v1,g,k, v2,g,k, . . . , vN,g,k]
T

Then, the updating rule (5) and (6) can be replaced by the following equation:

Υg,k =
k∏
t=1

WtΥg,0 +
k∑
l=1

k∏
t=l

WtΦg,l (25)
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Hence,

E

[
N∑
i=1

Qi,g,k

]
=

N∑
i=1

E [Qi,g,0] +
k∑
t=1

N∑
i=1

∑
j∈Ni,t

E [vj,g,t]

where

E [vj,g,t] =

[
pj,t ln

qj,t
pj,t

+ (1− pj,t) ln
1− qj,t
1− pj,t

]
1{g∈Cj,t}

and 1{g∈Cj,t} is the indicator function defined as:

1{g∈Cj,t} =

1 if g ∈ Cj,t

0 otherwise

Since Qi,g,0, vj1,g,η1 and vj2,g,η2 are independent for j1 6= j2 or η1 6= η2, we can get the variance

D

[
N∑
i=1

Qi,g,k

]
=

N∑
i=1

D [Qi,g,0] +
k∑
t=1

N∑
i=1

∑
j∈Ni,t

D [vi,g,l]

where

D [vj,g,t] = pj,t (1− pj,t)
(

ln
qj,t
pj,t
− ln

1− qj,t
1− pj,t

)2

1{g∈Cj,t}

Considering that D [vj,g,t] is a continuous function of pj,t and 1 > p̌ > pj,t > 0.5 + ε > 0.5,
0 < q̂ 6 qj,t 6 0.5 − ε < 0.5, there exists a constant real number σ = 2

√
p̌ (0.5− ε) ln 0.5−ε

0.5+ε
such that

D [vj,g,t] 6 σ2 for g ∈ Cj,t, which implies

lim
mg,k→+∞

k∑
t=1

N∑
i=1

∑
j∈Ni,t

D [vj,g,t]

m2
g,t

6 lim
mg,k→+∞

mg,k∑
l=1

N2σ2

l2
<∞

According to the Kolmogorov Strong Law of Large Numbers, [24] we get∑k
t=1

∑N
i=1

∑
j∈Ni,t E [vj,g,t]

mg,t

a.s.−−→ 0, as mg,t → +∞

Hence, ∑N
i=1Qi,g,k

mg,k

=

∑N
i=1Qi,g,0

mg,k

+

∑k
t=1

∑N
i=1

∑
j∈Ni,t E [vj,g,t]

mg,t

+

∑k
t=1

∑N
i=1

∑
j∈Ni,t (vj,g,t − E [vj,g,t])

mg,t

a.s.−−→
∑k

t=1

∑N
i=1

∑
j∈Ni,t E [vj,g,t]

mg,t

, as mg,t → +∞

On the other hand, since pj,t > qj,t, it is straightforward to get

∂E [vj,g,t]

∂pj,t
= ln

pj,t
qj,t
− ln

1− pj,t
1− qj,t

< 0

∂E [vj,g,t]

∂qj,t
=
pj,t
qj,t
− 1− pj,t

1− qj,t
> 0
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which implies

E [vj,g,t] 6 2ε ln
0.5− ε
0.5 + ε

< 0

Hence,

lim sup
mg,k→+∞

∑N
i=1Qi,g,k

mg,k

6 lim sup
mg,k→+∞

∑k
t=1

∑N
i=1 E [vi,g,t]

mg,t

= p̂ ln
q

p̂
+ (1− p̂) ln

1− q
1− p̂

< 0

which implies
∑N

i=1Qi,g,k
a.s.−−→ −∞. Since the network is connected all the time, Qi,g,k for each agent

i will almost surely converge to −∞ by implementing the average consensus protocol (6) (as shown
in [11,25]).

Following the same procedure of the proof above, we can prove the conclusion of Case 2.

Appendix B. Proof of Theorem 2

We first consider hi,k ∈
(
h, h

)
. From Equation (17), we get

H (µk) =
N∑
i=1

∫
Mi,k

φk (r) (pi,k − qi,k) 1{r∈Ci,k}dr =
N∑
i=1

∫
Mi,k

⋂
Ci,k

φk (r) (pi,k − qi,k) dr

Defining a set of agents for agent i, i.e., N̂i,k , {j : ∂ (Mj,k)
⋂
Ci,k 6= ∅}, it follows that

∂H (µk)

∂µi,k
=

∫
S1i

φk (r)

(
∂pi,k
∂µi,k

− ∂qi,k
∂µi,k

)
dr +

∫
S2i

φk (r) (pi,k − qi,k)
∂r

∂µi,k

T

nS2i (r) dr

+
∑
j∈N̂i,k

∫
S3i

φk (r) (pi,k − qi,k)
∂r

∂µi,k

T

nS3i (r) dr

+
∑
j∈N̂i,k

∫
S4i

φk (r) (pi,k − qi,k)
∂r

∂µi,k

T

nS4i (r) dr

where S1
i , Mi,k

⋂
Ci,k, S2

i , Mi,k

⋂
∂ (Ci,k), S1

i,j , (∂ (Mj,k) \∂ (O))
⋂
Ci,k, S2

i,j ,

(∂ (Mj,k)
⋂
∂ (O))

⋂
Ci,k. For r ∈ S1

i,j1

⋂
S1
i,j2

(j1, j2 ∈ N̂i,k and j1 6= j2), we have nS3j1
(r) = −nS3j2

(r).

For r ∈ S2
i,j (j ∈ N̂i,k ), we have ∂r

∂µi,k

T
= 0. Hence,

∂H (µk)

∂µi,k
=

∫
S1i

φk (r)

(
∂pi,k
∂µi,k

− ∂qi,k
∂µi,k

)
dr +

∫
S2i

φk (r) (pi,k − qi,k)
∂r

∂µi,k

T

nS2i (r) dr

From Equation (9) and according to the results of [15], we get

∂pi,k
∂ci,k

= 0,
∂pi,k
∂hi,k

= f ′1 (hi,k) ,
∂qi,k
∂hi,k

= f ′2 (hi,k)

and

∂r

∂ci,k

T

nS2i (r) =
∂r

∂ci,k

T

nS2i (r)

∂r

∂hi,k

T

nS2i (r) = tanϕ
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where ϕ is half of the angle width of the field of view of each agent (as shown in Figure 1b). Therefore,
Equation (18) holds.

According to Equation (9), pi,k = p̌ for hi,k ∈ (0, h). It is straightforward to get Equation (19)
following the same procedure of proof as above.
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