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Abstract: Tactile sensing helps robots interact with humans and objects effectively in real 

environments. Piezoelectric polymer sensors provide the functional building blocks of the 

robotic electronic skin, mainly thanks to their flexibility and suitability for detecting 

dynamic contact events and for recognizing the touch modality. The paper focuses on the 

ability of tactile sensing systems to support the challenging recognition of certain 

qualities/modalities of touch. The research applies novel computational intelligence 

techniques and a tensor-based approach for the classification of touch modalities; its main 

results consist in providing a procedure to enhance system generalization ability and  

architecture for multi-class recognition applications. An experimental campaign involving 

70 participants using three different modalities in touching the upper surface of the sensor 

array was conducted, and confirmed the validity of the approach.  

Keywords: electronic skin; touch modalities; pattern recognition; computational 

intelligence; human-robot interaction 

 

1. Introduction 

Electronic skin enables robots to sense their surroundings through touch. In this sense, robots 

represent an ideal stimulus to establish a controlled interaction with humans in a real world 
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environment, making it possible to study both the cognitive and physical aspects of the  

robot-environment interaction. To enable the robot to grasp and manipulate objects, touch sensors can 

be integrated into the hands (e.g., [1–3]). Hands and upper arms are covered with the artificial skin to 

touch-triggered withdrawal reflexes [4], while tactile sensors specifically integrated on the arms can be 

used, for example, to indicate position adjustments [5]. To improve robot-environment interaction, other 

parts of the robot body can be covered with tactile sensors, e.g., the hands, the arms, the cheeks, the feet 

and the torso. 

Nevertheless, reliable tactile systems are still an open issue as many technological and system 

issues remain unresolved and require a strong interdisciplinary effort to be addressed effectively. 

Technologies for effective signal transduction involve both materials and electronics aspects. 

However, as the overall performance depends on how the different building blocks are integrated, 

research on system issues has to be coupled to transducer development. In particular, as in the human 

perceptual mechanism a number of components of the sensory system manage information coming 

from the large number of skin receptors [6], the effective utilization of tactile sensors requires research 

attention towards issues like deciphering the information contained in tactile data [7]. Therefore, the 

design of a tactile sensing system should also include effective methods for the interpretation of sensor 

data. Such aspect is crucial in that sensor data typically support the recognition of either certain 

properties of the contact surfaces or certain qualities/modalities of touch.  

Pattern-recognition methods proved to be effective in specific tasks such as materials classification 

and/or recognition of materials textures, patterns, shapes, hardness and size (e.g., [8–12]). However, 

few works report on the classification of touch modalities and gestures [13–15]. Suitable 

computational models are required to accomplish these goals. Contact materials have been recognized 

by Support Vector Machine (SVM), Regularized Least Square (RLS) and Regularized Extreme Learning 

Machine (RELM) [8], feature extraction from sensory data using self-organizing maps (SOMs) is reported 

in [16], neural network algorithms applied on tactile data have been used to obtain specific surface 

features of the contact object [17] and Bayes trees allow one to distinguish different materials from 

their surface texture [18].  

Touch-modality recognition is the specific sensorial problem that is tackled in this paper. The skin 

surface is subject to a variety of possible stimuli, and the system is expected to discriminate the various 

modalities of physical interaction. The problem complexity stems from the bi-dimensional sensing 

structure, which is augmented by the time-varying distribution nature of the stimulus and pressure 

pattern. Figure 1 illustrates the problem setting by showing three touch modalities, namely, sliding the 

finger, brushing a paintbrush and rolling a washer. 

The application of ML techniques to touch-modality recognition showed that the processing of 

sensor data under a tensor-based representation could yield promising recognition performance without 

a significant increase in complexity [19]; that work mostly proved the specific advantages of  

tensor-based sensor processing over a conventional, vector-based representation of raw data. 

The research presented in this paper tackles the critical issue of performance evaluation and 

reliability assessment of the tensor-based approach for the accurate classification of touch modalities, 

with specific attention paid to the generalization ability of the deployed methods, and the possibility to 

address realistic recognition problems. The theoretical framework introduced in [20] is used to derive a 

ML-based system for pattern recognition that deals with the interpretation of touch modalities and is 
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specifically designed to treat tensor signals. The novelty of the proposed approach, therefore, consists 

both in characterizing the tensor-based paradigm in terms of expected performance from a quantitative 

viewpoint, and in applying ML techniques in multi-class recognition domains 

Figure 1. Touch modalities. (a) Paintbrush brushing; (b) finger sliding; (c) washer rolling. 

   

(a) (b) (c) 

In this work, tactile data have been acquired by an electronic skin based on a piezoelectric sensor 

array. An experimental campaign involving 70 participants has been conducted to employ the tensor-based 

pattern-recognition system for the classification of touch modalities in three different bi-class 

classification problems and in the 3-class classification problem involving all three touch modalities.  

This paper is organized as follows: Section 2 describes the tactile sensing system, which includes 

the sensor array based on polyvinylidene fluoride (PVDF) sensing elements, the interface electronics 

and the data acquisition and processing. Section 3 illustrates the theory of the kernel-based algorithm 

to deal with tensor data, while Section 4 suggests a practical model-selection procedure. Section 5 

describes the experimental campaign and discusses experimental results. Concluding remarks are 

contained in Section 6. 

2. Tactile Sensing System Based on Piezoelectric Transducers  

Though the only requirement for the sensor array is to provide tensor signals to be managed by the 

proposed ML-based system, in this paper the method is specifically demonstrated with an electronic 

skin based on piezoelectric transducers. In the following, the properties of the sensing material 

introduce the description of the tactile acquisition system.  

2.1. The Sensing Material 

A large number of daily tasks involve dynamic contacts and hence it is desirable to have an 

electronic skin which is responsive to a wide range of mechanical stimuli (in humans this range is 

approximately 0–1 kHz). While static and quasi-static contact events are usually managed by 

capacitive tactile elements, piezoelectric technology is suitable for detecting dynamic contact events. 

Piezoelectric polymers are particularly interesting in that they are mechanically flexible, conformable, 

and exhibit wider frequency bandwidth [21,22]. Further, they are low-cost, can be prepared in thin 

films and can be cut into any desired shape [23].  
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The electromechanical response of piezoelectric polymers can be recorded either in the form of 

charge generation or in form of a change in capacitance [24]. Accordingly, they can be easily 

manufactured and integrated with flexible PCB and electronic interface circuitry can be easily 

developed using off-the-shelf electronics. In particular, polyvinylidene fluoride (PVDF) has been 

chosen as piezoelectric polymer to build the sensor array. The PVDF film was a circular portion 

(diameter = 7 cm) of a commercial foil from MEAS—Measurement Specialties Inc. (Hampton, VA, USA). 

2.2. The Tactile Acquisition System 

To fabricate an electronic skin system based on piezoelectric transducer arrays, issues concerning 

the manufacturing technology, the interface electronics and the system integration have to be 

addressed. PVDF must be first integrated into structures which also include a substrate and a protective 

layer. The piezoelectric film is glued to a flexible printed circuit board (PCB) structure which is 

conformable and flexible, covered by an elastic layer to protect the sensor from physical damage or 

chemical contamination. 

Figure 2. Tactile sensor made of an array of piezoelectric polymer transducers. 

 

 

In order to build the sensor array (Figure 2), the piezoelectric film features ad hoc metal contacts 

(16 square electrodes on the PVDF lower surface and a ground layer on the PVDF top), which are 

deposited by inkjet printing [25]. The underlying PCB substrate is provided with metal electrodes and 

tracks to extract the lower PVDF signals. Once the PVDF film has been glued on the PCB substrate, a 

polydimethylsiloxane (PDMS) 2 mm thick elastomer layer is directly integrated on top [24]. Figure 3 

shows a scheme of the overall tactile acquisition system. 

The mechanical-to-electrical transduction by each PVDF taxel is measured as a generated charge 

and converted to a voltage by a 16-channel charge amplifier. It includes a charge amplifier (CA) [26] 

cascaded with a band pass filter (BPF) featuring a bandwidth from 0.3 Hz to 1.5 kHz. The bandwidth 

of the CA + BPF is 2.5 Hz–1.5 kHz.  

The subsequent step is to acquire the tactile system output data both to be visualized by the operator 

and to be processed by the pattern-recognition system for touch modality classification. For this aim, 

output signals are acquired at 3 k Samples per second by a DAQ board (NI PCI-6071E) and visualized 

by a LabVIEW
TM

 graphic user interface (GUI) in the time domain. 
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As the time-varying tactile interaction is conveyed through the skin protective layer to the 2D 

geometry of the sensor array, it seems that a touch-modality aware sensing framework should involve 

a tactile hardware that can yield a tensor signal. This morphology of the tactile signal includes both 

time-varying features that actually contribute to determine the touch modality (e.g., contact pressure on 

the electronic skin, stimulus duration, etc.) and the sensor spatial arrangement. The following sections 

illustrate an approach to the management of tensor-like data for extracting directly meaningful 

information about the original mechanical stimulus.  

Figure 3. Scheme of the tactile acquisition system. Focus is on the tensor representation  

of output data.  

 

3. Machine Learning for Touch Modality Recognition 

Several works in the literature adopt Machine Learning (ML) algorithms for pattern-recognition 

tasks in tactile sensing systems (e.g., [8,27–30]). The rationale is that ML techniques can support 

predictive systems that make reliable decisions on unseen input samples [31]. This ability is especially 

appealing in the case of the interpretation of sensor data, as complex, non-linear mechanisms 

characterize the underlying phenomenon to be modeled and an explicit formalization of the  

input-output relationship is difficult to attain. ML technologies model the input-output function by a 

―learning from examples‖ approach; eventual implementations can vary according to different 

application scenarios, but all share a common probabilistic setting.  

Tactile data are first processed by feature-extraction and transformed into a multi-dimensional 

vector to feed the learning algorithm. The ability of the feature space to characterize the underlying 

perceptual phenomenon is crucial to the effectiveness of the whole pattern-recognition task.  

The feature-extraction process, though, may bring about the loss of some structural information 

embedded in the original structure of the tactile data. The literature already proved [20,32,33]  

that tensors provide an efficient tool to describe multidimensional structured data, and that the 
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corresponding learning methods can favorably exploit the a priori information of data structure to 

achieve satisfactory generalization abilities. The theoretical framework introduced in [20] allows one 

to extend every learning machine based on kernel methods to a tensor-based learning model. Such 

feature is attractive in that kernel methods support both supervised paradigms (i.e., learning schemes 

that address classification problems) and unsupervised paradigms (i.e., learning schemes that address 

clustering problems). This in turn may provide an effective tool in the specific case of touch 

recognition, as the inherent complexity in discriminating classes of gestures/modalities that are often 

overlapping may hinder a straightforward implementation of supervised learning tools. This aspect will 

actually be discussed in more details in Section 4. The following Section 3.1 will deal briefly with 

kernel methods for ML-based pattern recognition. Section 3.2 will discuss the theoretical framework 

that allows one to extend kernel methods to tensor data.  

3.1. Kernel Methods for Pattern Recognition and Tensor-Based Representation  

The empirical learning of a generic mapping function γ stems from a training procedure that uses a 

dataset, X, holding Np patterns (samples). In a binary classification problem, each pattern includes a 

data vector, x  
n
, and its category label y  {−1, 1}. When developing data-driven classifiers, the 

learning phase requires both x and y to build up a decision rule. After training, the system processes 

data that do not belong to the training set and ascribes each test sample to a predicted category, ŷ .  

The function that predicts the class of a sample is a sharp decision function, ŷ  = sign(f(x)), where f(x) 

is expected to effectively approximate the ‗true‘ mapping function γ.  

In pattern-recognition technologies, the class of kernel methods embeds the techniques that express 

f(x) as a weighted sum of some nonlinear  ―kernel‖ basis functions. Generalization ability relies on two 

main concepts: the function f(x) belongs to a reproducing kernel Hilbert space (RKHS), and 

regularization theory is used as the conceptual basis [31]. The former concept—in practice—means  

that kernel classifiers benefit from the so-called kernel trick [31]: patterns xi and xj are projected in a 

high-dimensional Hilbert space, where the mapping function is easier to retrieve. A kernel function 

K(xi, xj) allows to handle only inner products between pattern pairs, disregarding the specific mappings 

of individual patterns. The kernel trick allows setting up the non-linear variant of virtually any 

algorithm that can be formalized in terms of dot products.  

Regularized Least Square (RLS) [34] and Support Vector Machines (SVM‘s) are very popular 

implementations of such kernel machines [31]. Both techniques belong to the class of regularized 

kernel methods. Thus, they identify the f(x) that best approximates γ by exploiting a cost function in 

which a positive parameter, λ, rules the tradeoff between the empirical error and a regularizing term. 

The decision function fRLS(x) can be formalized as follows: 


Np

i

iiRLS Kf ),()( xxx   (1) 

where K( , ) is a kernel function and β = [β1,…,βNp] is a vector of scalar coefficients; β can be obtained 

as follows: 

yIKβ
1)(    (2) 
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where λ is the regularization parameter, and K is the matrix of kernel functions K(xi, x). In the case of 

SVMs, the decision function fSVM(x) is given by:  

 
Nsv

i
iiiSVM bKyf ),()( xxx   (3) 

where the number of support vectors Nsv, the ―bias‖ term b, and coefficients αi are computed by the 

training algorithm, which minimizes a quadratic cost function [31]. The eventual generalization 

performance of a SVM also depends on the setting of a scalar parameter, C, which rules the trade-off 

between accuracy and complexity in the training process, and actually plays the role of 1/λ [31]. 

The theoretical framework presented in [20] showed that the above formalism can be fruitfully 

applied to the sensor-based domain, and introduced a kernel function for developing tensor-based 

models. This result is noteworthy in that it allows every kernel machine to deal with tensors, provided 

that the kernel function proposed in [20] is used. This in turn means that both the kernel methods 

discussed above can be extended to tensor-based learning. For the sake of repeatability, the Appendix 

provides the procedure to handle sensor data and represent them in a tensor-based framework, for 

further processing within a kernel-based paradigm. 

3.2. Applying the ML-Based Framework to the Recognition of Touch Modalities 

The proposed framework tackles the interpretation of touch modalities by adopting a classification 

scheme that exploits tensor-based kernel methods. The ML approach splits the pattern-recognition 

problem into two tasks: 

(1) The definition of a suitable descriptive basis for the input signal provided by the sensor  

(or sensor array), i.e., a tensor-based description L ∈ L, where L is a tensor space: 

L = ɸS (4) 

In Equation (4), S is the 3rd order tensor that characterizes sensor outputs, and the process ɸ 

works out a tensor-based description from S, thus preserving the structure of the signal 

originally provided by the tactile sensor. 

(2) The empirical learning of a model for the non-linear function, γ that maps the feature space, 

F, into the set of tactile stimuli of interest:  

L →T (5) 

In principle, the learning system in Equation (5) could be designed to receive as input the tensor S 

directly. However, a pre-processing may be needed to better characterize the underlying tactile 

phenomenon. In this regard, one should take into account that the pre-processing ɸ should satisfy  

L  
l(1)

  
l(2)

  
l(3)

, where l(1), l(2), and l(3) are pattern-independent quantities.  

Accordingly, the proposed ML scheme models the mapping function γ by using a dataset X holding 

Np patterns (samples), where each pattern includes a data tensor L and its category label  

y  {−1, 1}. Even though T usually includes several tactile stimuli and a multiclass problem is 

addressed, this paper aims to evaluate the advantages of introducing a tensor-based approach; hence a 

binary classification problem is considered without loss of generality. The literature indeed  
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provides several effective strategies to tackle a multiclass classification scheme by integrating binary 

classifiers [35].  

The setting of the machine adjustable parameters affects the generalization ability of a machine-learning 

model, i.e., its ability to attain a reliable accuracy of previously unseen patterns. Indeed, the training 

phase is usually supported by a model-selection procedure, which is designed to estimate the parameter 

setting that may yield the most effective generalization ability. Such crucial aspect will be addressed in 

Section 4. In the case of tensor-SVM, three parameters are involved. The first parameter is the quantity 

C, which characterizes the learning model itself (see Section 3.1). The remaining parameters 

characterize the kernel function K described in the Appendix: the width σ of the Gaussian kernel, and 

the number of columns α in the matrices )(

)(


ziV  and )(

)(


zjV . The last two parameters obviously are also 

involved in the configuration settings of tensor-RLS; in this case the configuration set is completed by 

the regularization parameter λ, as per Equation (2). 

Although a specific value of σ and α parameters can be set for each factor kernel k
z
, the present 

research adopts one σ value and one α value for every k
z
. The role of the latter parameter is crucial 

because α is the only quantity that is not included in the configuration of a conventional kernel 

machine. As anticipated above, a conventional choice for this parameter is α = Qzz  {1, …, Z}.  

On the other hand, one should also consider that SVD can effectively take out redundancy or noise 

from data, and this property may prove appealing in the pattern-recognition application at hand.  

Thus, by fine tuning α one can expect to decrease the quantity of noise that affects the tensor patterns 

(or, more precisely, the unfolding of the tensors themselves), and in turn boost the generalization 

ability. As a result, in the present research the α quantity is treated as a configurable parameter whose 

value can vary between 1 and Qz. 

4. Effective Model Selection to Boost Generalization Performance 

4.1. The Problem of Effective Model Selection 

The specific problem of interpretation of touch modalities poses major challenges to inductive 

learning methodologies, which induce a general rule from a set of observed instances. In fact,  

a relevant constraint is that the training set (i.e., the observed instances) actually conveys reliable 

information about the unknown general rule. In the case of interpretation of touch modalities, though, 

the setup of such training set may not represent a straightforward task, due to the impossibility of 

collecting training data that are not affected by the subjective nature of the interpretation of a 

predetermined ‗abstract‘ touch modality. For example, the same touch modality may generate stimuli 

that differ in the amount of pressure applied and in the length of the time window spanned by the 

gesture. Eventually, one cannot avoid the presence of a level of overlap between stimuli that in 

principle generate from different touch modalities. 

The presence of noise in the training data is obviously a problem that learning machines should 

cope with. Indeed, the interpretation of touch modalities represents an applicative scenario in which 

such problem may prove critical. In this sense, the main concern is the generalization ability of the 

pattern-recognition system (determined by the settings of the corresponding model parameters), i.e.,  

its ability to correctly classify patterns that were not included in the training set. The accuracy at 
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predicting unseen data is the practical criterion to evaluate the effectiveness of a trained system. 

Hence, the final goal of a training procedure is to define the machine parameterization that can lead to 

the most effective generalization performances; this process is usually named model selection. In fact, 

estimating the generalization performance of a learning machine is not a straightforward task.  

In principle, the literature [31] provides a variety of theoretical criteria to bound the generalization 

error of a ML system, but these approaches often lack in practicality. On the other hand, one may 

exploit empirical criteria [36], which use a subset of training data to support the estimation of the 

generalization performance. However, the empirical estimation of the generalization error may prove 

difficult in the presence of limited training set or in the presence of noisy data. Indeed, applications 

that deal with the interpretation of tactile data may suffer from both problems, as: (1) collecting 

training data can be onerous and (2) it is difficult to remove noise from this kind of experiments.  

In the conventional formalization, the ―true‖ generalization error, π, of a classifier is unknown 

because one cannot predict the classifier‘s behavior over the entire distribution of data; therefore, one 

uses the performance on the empirical training set as an estimate of π, and bounds the associate 

generalization performance by means of statistical penalty terms:  

π ≤ν + χ + τ (6) 

where ν is the error scored on the empirical training set, χ measures the complexity of the space of 

classifying functions, and τ penalizes the finiteness of the training set. In general, the task of 

computing χ may prove quite difficult, as the notion of ―complexity‖ is not standard. 

4.2. Conventional Approaches to Model Selection 

The literature provides a certain variety of methods for the analytical estimation of a classifier's 

generalization ability; most approaches derive a bound for implementing Equation (6) by taking into 

account the degrees of freedom in the classifier adjustable parameters, and the configuration of the 

space of admissible functions that the classifier may take upon [37,38]. These methods involve a 

profound theoretical formalism and exhibit general applicability; nonetheless, due to the general 

assumptions in the classifier characterization, they mostly fail in deriving bounds that have some 

practical value.  

On the other hand, empirical approaches to the estimation of generalization performance prove 

effective in practical domains, and are therefore widely adopted in real-world applications.  

Cross-validation [37,39] represents a popular option toward that end; the rationale of this approach is 

to estimate the error, π, by using available data to mimic the overall training problem. In practice, one 

splits the available data into a training set, used to minimize ν by adjusting the machine parameters, 

and a test set, which does not enter the training process and is only used to measure the actual 

prediction of π In order to minimize any biasing from the random-splitting process, one iterates the 

entire procedure in several independent runs, and computes the eventual estimated value by some 

statistical descriptor (e.g., average, minimum, maximum, etc.). One typically retains the ―best‖ 

classifier, that is, the parameter settings that yielded the smallest predicted error. Although that 

procedure is quite popular in the literature, it might yet suffer from some statistical biasing, since the 
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test-set performance often drives the choice of the implemented classifier, and thus enters the training 

process, albeit in an indirect manner.  

The research presented here, therefore, adopts a more rigorous approach, involving the splitting into 

three independent data sets: a ―training‖ set, a ―cross validation‖ set (having the same meaning and 

purpose described above), and a ―test‖ set, which is taken into account only after selecting the target 

classifier, and is used to predict the machine's generalization ability. Iterating this procedure over 

several independent runs removes any randomness sampling influence. This procedure will be adopted 

in the experimental verification of the touch-modality recognition. 

An issue of these methods might consist in the fact that the empirical methods do not take into 

account the actual capabilities of the classifier model that is being trained, and only rely on the iterated 

training process for scanning the space of admissible functions. Integrating both the empirical sample 

and the theoretical model of the classifier yields a more accurate estimate of the generalization ability. 

4.3. Enhancing Model Selection by Maximal-Discrepancy Method 

The analysis described in [40] showed that the estimate of π in Equation (6) can be improved by 

exploiting the notion of complexity formalized in the Maximal Discrepancy (MD) framework [40] to 

assess χ. Given a training set, a classifier, and a classifier‘s parameterization, the MD framework 

estimates χ by exploiting the quantity  ;   represents the average error scored by the classifier on N 

artificial datasets obtained by randomly swapping each time half of the labels in the original training 

set. Eventually, one sets χ = 1−2 ; therefore, the complexity χ is high if the classifier can learn noise.  

In fact, a complex classifier is usually prone to overfitting [36], i.e., an effective performance on the 

data included in the training set but a poor performance when processing unseen data. Thus, a highest 

representation capability may also lead the classification machine to model noise.  

In [41], the authors indeed showed that the ability of the MD framework to estimate complexity 

could be further improved. In particular, the methodology discussed in [41] proved that a more 

accurate estimate of χ can be achieved by taking as reference the level of complexity reached by the 

classifier when tackling the problem represented in the original training set (i.e., the complexity 

reached to score the training error ν). As a result, the quantity   should be assessed by using classifiers 

that do not show a complexity greater than the ―reference‖ complexity. A convenient procedure to 

estimate the reference complexity is given in [41]; it requires to compute two quantities: 

 the hyperplane β 
(RKM)

 that separates the two classes (―+1‖ and ―−1‖) of the dataset X according to 

a classifier based on a regularized kernel machine; 

 the hyperplane β 
(REF)

 that one obtains by a unsupervised evaluation of the dataset X. 

The latter quantity can be actually computed by adopting a two-step process: 

(1) divide the dataset X into two clusters by using an unsupervised clustering method; let X
(a)

 

denote the subset of data assigned to the first cluster, and X
(b)

 denote the remaining subset of 

data assigned to the second cluster.  
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(2) obtain the hyperplanes β 
(+)

 and β 
(−)

 as follows: 

a. assign the artificial label ―+1‖ to the data belonging to X
(a)

, and the artificial label ―−1‖ to 

the data belonging to X
(b)

; apply a conventional training to this problem to obtain the 

hyperplane β 
(+)

 that separates the two classes.  

b. Assign the artificial label ―−1‖ to the data belonging to X
(a)

, and the artificial label ―+1‖ to 

the data belonging to X
(b)

; apply a conventional training to this problem to obtain the 

hyperplane β 
(−)

 that separates the two classes. 

c. Set β 
(REF)

 as follows 

 )()()()()( ,minarg   RKMRKMREF
βββββ

w
 

 (7) 

The rationale behind this approach can be explained by analyzing the configuration schematized in 

Figure 4. Figure 4a proposes a problem in which the data belonging to X are intrinsically organized in 

two clusters. Thus, the unsupervised evaluation of the dataset would lead to the situation illustrated in 

Figure 4b, which reports the approximate position of the hyperplane β
(REF)

. One may conclude that 

β
(REF)

 characterizes the ―natural‖ distribution of data. On the other hand, the position of the hyperplane 

β
(RKM)

 would result from the analysis of the empirical data; i.e., β
(RKM)

 is obtained by taking into 

account the actual labels associated to each pattern. As a result, two different situations may arise from 

the proposed example. Figure 4c refers to the first situation, in which it is supposed that clusters match 

the actual classes. Conversely, Figure 4d refers to the opposite situation, in which it is supposed that 

actual classes do not match the natural distribution of data. In the case of Figure 4c, β
(REF)

 ≡ β
(RKM)

; in 

the case of Figure 4d, β
(REF)

  β
(RKM)

. Therefore whenever the result of clustering matches the true 

distribution of pattern classes, the unsupervised separation surface β
(REF)

 and the real classification 

surface must coincide β
RKM)

. Of course, the opposite case may occur, in which the target distribution is 

totally uncorrelated with the obtained clusters. In general, however, β
(REF)

 and β
(RKM)

 set the constraints 

for the admissible solutions to the classification problem at hand, as proved in [41]. As a major 

consequence, such constraints should represent the reference when assessing χ by adopting the  

MD framework. 

Figure 4. Difference between natural distribution of data and true distribution of data. 

 

For the sake of clarity, Algorithm 1 reports the full procedure to assess χ. In the case of the present 

framework, the tensor-based versions of SVM and RLS are the classification tools that support the 
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interpretation of touch modalities. Therefore, model selection is designed to set the best 

parameterization for those machines. The tensor-based version of the kernel k-means clustering 

method provided the unsupervised tool to be used in the model selection procedure. 

 

Algorithm 1 Complexity Assessment 
Input:  training set X= {(L, y)i; i = 1,..,Np},  

 kernel parameters  and   

 regularization coefficient  

 scaling coefficient 



Output:  estimated complexity  


I. Compute the kernel 

Build the kernel matrix K on data {Li; i = 1,..,Np} with parameters  and  


II. Unsupervised Clustering  

1. Divide the data {Li; i = 1,..,Np} into two clusters by exploiting kernel-kmeans with kernel K 

2. Denote with X(a) and X(b) the two clusters 

 

III. Compute (RKM) 

Train the RC on the original training set X: (RKM)= RCtraining(, K, y) 

 

IV. Compute (+) 

1. Apply an artificial labeling schema: X(a)y = +1, X(b)y = −1  

2. Train the RC on the dataset X(a) X(b) with kernel K: (+)= RCtraining(, K, y) 

 

V. Compute (-) 

1. Apply an artificial labeling schema: X(a)y = +1, X(b)y = −1  

2. Train the RC on the dataset X(a) X(b) with kernel K: (-)= RCtraining(, K, y) 

 

VI. Set reference 

Set 0 = t
K 

where:  )()()()( ,minarg   RKMRKM
βββββ

w
   

 

VII. Compute    

1. Set  = 0 

2. for i = 1 to N 

a. Set ̂  =  

b. Generate an artificial training set X* = {(L, y*)i; i=1,..,Np}, where y* is obtained by randomly swapping half of the label 

in y 

c. Train the RC on X*  

= RCtraining( ̂ , K, y*) 

 

d. Set   =  t
K 

e. Compute the classification error * on X* 

f. if ( > 0) then: set ̂  = ; goto 2.c; 

g.  = + * 

 

3. Set = 1 – 2 / N 
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5. Results and Discussion 

5.1. Dataset and Preprocessing  

The 70 participants involved in the experiments were required to touch the outer surface of the 

sensor array using three reference actions (= modalities of touch): sliding the finger, brushing a 

paintbrush and rolling a washer. The corresponding outputs of the sensor array were collected to build 

the dataset used as benchmark to test the proposed framework. Not to influence the participant and to 

allow his/her subjective gesture interpretation, each person was given a written protocol as a guide for 

the experiments. No particular indications were given to the participants about the duration of the 

stimuli and the pressure level to apply (the only constraint was to complete every single touch within a 

time window of 7 s).  

For each reference action, every participant was asked to first touch the sensor array moving 

horizontally over a random line, then repeating the action over a randomly chosen vertical line  

(two different acquisitions). The participant was therefore asked to repeat the six experiments in the 

same order to get a second sampling. This is because the first sampling was intended as practicing the 

imagined gesture by touching the real skin, therefore enabling a ―more spontaneous and natural 

behavior‖ for the more aware second sampling. 

The number of acquired patterns (each pattern consists of 16 time signals corresponding to charge 

response vs. time provided by each sensor building the sensor array) was 840 (70 participants, three 

modalities, four patterns for each modality—i.e., horizontal and vertical gestures, two runs each). Half 

of these patterns were actually used in the pattern-recognition analysis, corresponding to the second 

sampling by each participant and ensuring more spontaneous behavior.  

The collected patterns were expressed by a 3-dimensional tensor, S  
4
  

4
  

21000
.  

The extension of the 3rd component was determined by the time window allowed in each experiment  

(7 s) and the adopted sample rate (3 ksps). In fact, when applying the tensor-based kernel approach to 

those original signals, one is expected to work out the SVD of a matrix having 21,000+ elements in 

one of its dimensions; such a computationally impractical task would prove ineffective in terms of 

numerical accuracy. As a consequence, the pre-processing ɸ discussed in Section 3.2 remapped the 

original tensor mostly to reduce the dimensionality of the 3rd component of S.  

The implementation of ɸ adopted in this work was designed to take into account two main issues. 

First, only a limited portion of the 21,000 elements in the 3rd component of S actually carry 

information about the tactile stimulus: for any pattern, the signal of interest lies within a limited time 

window, whose width depends on the pattern itself. Secondly, the preprocessing, ɸ, should satisfy:  

L = ɸS, with L  
4
  

4
  

l(3)
, where l(3) is a pattern-independent quantity. 

The localization of the relevant time window in the 3rd component of S was obtained by analyzing 

the amount of energy provided by the single elements of the sensor. In the following, for the i-th 

pattern, 
iS is the 3rd-order tensor obtained after extracting the relevant time window from Si; thus  

iS   
4
  

4
  

Si
. Then, Algorithm 2 was adopted to shrink the 3rd component of 

iS . In this 

algorithm (Figure 5), a subsampling strategy is applied to work out Li from 
iS . The tensor 

iS and 

the expected size D of the 3rd component of Li are the algorithm inputs.  
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Figure 5. A schematization of the pre-processing strategy based on sub-sampling. 

 

Algorithm 2 Data Pre-processing 

Input:  tensor S  

 parameter D  

 

Output:  tensor L 

 

I. Compute the sampling interval 

= Si / D 

 

II. Obtain L  

 p = 1 

for d = 1,..,D  

L (:,:,d) = ):,(:, pS  

p = p +  

5.2. Experiments: Binary Classification  

The effectiveness of the pattern-recognition system in the classification of touch modalities was 

evaluated by using the dataset obtained as per Section 5.1. The final dataset only covered 65 out of the 

original 70 participants to remove apparent outliers or extremely noisy results, and only the patterns 

collected in the 2nd run from each participant entered the pattern-recognition simulations. The 

experimental session involved three binary classification problems: 

A ―brushing a paintbrush‖ versus ―rolling a washer‖; 

B ―brushing a paintbrush‖ versus ―sliding the finger‖; 

C ―rolling a washer‖ versus ―sliding the finger‖. 

The dataset included—for each modality and for each participant—both the horizontal and the vertical 

gestures, thus each binary testbed held 260 patterns (2 modalities × 65 participants × 2 gestures). The 

generalization performance of the ML-based classification was measured by randomly splitting the 

dataset into a training set and a validation set, holding 180 patterns and 80 patterns, respectively. The 

former drove the adjustment of the classifiers parameters, thus supporting model selection.  

The latter was used to measure classification accuracy on unseen data (i.e., an empirical estimation of 

the term π in Equation (6)). The two sets never shared any participant; this made it possible to estimate 
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the generalization ability of the ML algorithm with respect to unseen users, as well. To provide 

statistical robustness in the generalization estimates, the splitting process was iterated over five 

different training/validation pairs (i.e., five different, independent runs were completed).  

The following settings were adopted for the three kernel parameters that determined the 

generalization performances of the tensor-based classifiers: 

 λ  {10
−3

, 10
−2

, 10
−1

, 10
0
, 10

1
}; 

 σ  {2
−4

, 2
−3

, 2
−2

, 2
−1

, 2°, 2
1
, 2

2
, 2

3
, 2

4
}; 

 α  {1, Qz/2, Qz}. 

Parameter C in SVM plays the role of 1/λ, where λ is the quantity that rules the trade-off between 

the empirical error and a regularizing term (as per Section 3.1). Parameter σ characterizes the specific 

kernel function adopted in this work (see Appendix). The options for the parameter α indicate three 

options to the removal of columns from matrixes V(z) in the kernel computation (see Appendix): setting 

α = 1 meant that only the column associated with the largest singular value was retained; when  

α = Qz/2, half of the significant columns were kept, whereas setting α = Qz implied that no column was 

removed from V(z). Overall, the model selection procedure aimed to pick out the most effective setup 

from among the various available configurations. In each run, the procedure described in Algorithm 1 

processed the training set and identified the parameter values yielding the best predicted performance. 

Eventually, the performance on the validation set gave an estimate of the actual generalization error, π, 

thus measuring the relative effectiveness of the model selection procedures.  

Tables 1–3 give the simulation results for the classification problems A, B, and C, respectively. 

Each table reports on the performance attained on the associate problem when applying the  

tensor-SVM model. The experiments involved three settings for parameter D, which drove the  

sub-sampling rate in the pre-processing approach as per Algorithm 2: D  {20, 50, 100}. As a result, 

for each pair (run, D), the table gives:  

 the classification error percentage attained on the validation set by the ML-based predictor; 

 the parameters setting {λ, σ, α} used in the predictor as a result of the model selection procedure. 

Likewise, Tables 4–6 report on the simulation results obtained by using the tensor-RLS predictor model. 

The graphs in Figure 6 recap visually the table results, and provide a chart for each classification problem. 

In each chart, the x axis marks the five runs, and the y axis gives the classification error on the validation 

set. For each run, six values are plotted: the classification errors attained by tensor-SVM @  

D = {20, 50, 100}, and the classification errors attained by tensor-RLS @ D = {20, 50, 100}.  

Table 1. Simulation results: problem A, tensor-SVM. 

 D 

20 50 100 

run #1 12.5 (0.1, 21, Qz /2) 5.0 (10, 23, 0) 10.0 (1, 21, 0) 

run #2 5.0 (0.1, 21, 0) 2.5 (1, 21, 0) 2.5 (1, 21, 0) 

run #3 12.5 (0.1, 22, Qz /2) 12.5 (1, 22, Qz) 10.0 (0.1, 1,Qz /2) 

run #4 12.5 (0.1, 21, 0) 12.5 (0.1, 1, Qz /2) 7.5 (0.1, 2−1, 0) 

run #5 12.5 (1, 21,Qz) 10.0 (10, 23, 0) 10.0 (1, 21, 0) 
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Table 2. Simulation results: problem B, tensor-SVM. 

 D 

20 50 100 

run #1 15.0 (0.1, 1, Qz/2) 10.0 (0.1, 2−1, Qz/2) 10.0 (0.1, 2−1, Qz/2) 

run #2 10.0 (0.1, 2−2, Qz/2) 7.0 (0.1, 2−2, Qz/2) 10.0 (0.1, 2−1, Qz/2) 

run #3 15.0 (0.1, 1, Qz/2) 10.0 (0.1, 1, Qz/2) 7.5 (0.1, 1, Qz/2) 

run #4 17.5 (1, 22, Qz/2) 10.0 (0.1, 2−1, Qz/2) 10.0 (0.1, 2−1, Qz/2) 

run #5 15.0 (1, 2−1, Qz/2) 10.0 (1, 22, Qz/2) 7.5 (1, 22, Qz/2) 

Table 3. Simulation results: problem C, tensor-SVM. 

 D 

20 50 100 

run #1 15.0 (0.1, 1, Qz/2) 17.5 (0.1, 1, Qz/2) 17.5 (0.1, 1, Qz/2) 

run #2 12.5 (1, 24, Qz/2) 15.0 (10, 23, Qz/2) 10.0 (1, 2−1, 0) 

run #3 20.0 (0.1, 21, Qz/2) 12.5 (1, 22, Qz/2) 10.0 (1, 22, Qz/2) 

run #4 20.0 (1, 22, Qz/2) 12.5 (0.1, 2−1, Qz/2) 12.5 (0.1, 2−1, Qz/2) 

run #5 20.0 (1, 21, Qz/2) 20.0 (10, 23, Qz/2) 20.0 (10, 23, Qz/2) 

Table 4. Simulation results: problem A, tensor-RLS. 

 D 

20 50 100 

run #1 10.0 (0.1, 22, Qz/2) 7.5 (1, 23, Qz/2) 5.0 (10, 24, 0) 

run #2 12.5 (1, 23, Qz/2) 12.5 (1, 23, Qz/2) 12.5 (0.1, 23, Qz/2) 

run #3 5.0 (0.1, 22, 0) 2.5 (10, 24, 0) 5.0 (1, 22, 0) 

run #4 12.5 (10, 24, Qz/2) 10.0 (10, 24, Qz/2) 10.0 (1, 23, Qz/2) 

run #5 10.0 (1, 24, Qz/2) 10.0 (1, 23, Qz/2) 7.5 (1, 24, Qz/2) 

Table 5. Simulation results: problem B, tensor-RLS. 

 D 

20 50 100 

run #1 15.0 (0.1, 22, Qz) 17.5 (0.1, 23, Qz) 15.0 (0.1, 22, Qz) 

run #2 10.0 (10, 22, Qz/2) 10.0 (10, 21, Qz/2) 10.0 (10, 21, Qz/2) 

run #3 10.0 (0.1, 22, Qz/2) 5.0 (1, 23, Qz/2) 5.0 (0.1, 22, Qz/2) 

run #4 10.0 (1, 24, Qz) 12.5 (1, 24, Qz) 12.5 (1, 24, Qz) 

run #5 12.5 (1, 23, Qz/2) 12.5 (1, 23, Qz/2) 10.0 (1, 23, Qz/2) 

Table 6. Simulation results: problem C, tensor-RLS 

 D 

20 50 100 

run #1 15.0 (1, 24, Qz/2) 15.0 (1, 24, Qz/2) 20.0 (0.1, 24, Qz/2) 

run #2 10.0 (1, 23, 0) 10.0 (1, 23, Qz/2) 7.5 (1, 24, 0) 

run #3 12.5 (1, 23, Qz/2) 12.5 (0.1, 22, Qz/2) 10.0 (1, 23, Qz/2) 

run #4 15.0 (0.1, 23, Qz/2) 10.0 (10, 21, Qz/2) 10.0 (10, 21, Qz/2) 

run #5 20.0 (100, 21, Qz/2) 15.0 (1000, 23, Qz/2) 17.5 (10, 22, Qz/2) 



Sensors 2014, 14 10968 

 

 

Empirical evidence proves that the tensor-based pattern-recognition technologies could effectively 

support the classification problems. An analysis of numerical results leads deriving some remarks. 

First, accuracy values confirmed that the touch-modality recognition problem involved a challenging 

task. In some ways, this might be ascribed to the protocol for data collection, which was designed to 

avoid specific constraints on the participants‘ behavior but ultimately widened the variance in 

empirical data. On one hand, the protocol ensured that gestures were spontaneous and natural; on the 

other hand, this inevitably induced a level of overlap between stimuli that in principle belonged to 

different touch modalities 

Figure 6. Results obtained with tensor-SVM and tensor-RLS for the classification 

problems A, B, C: (a) problem A; (b) problem B; (c) problem C. 

 

(a) 

 

(b) 

 

(c) 

The core of the research presented in this paper consists in a practical approach to the  

model-selection problem for effective parameter setting in real applications. Toward that purpose, the 

graphs in Figure 7 highlight the advantages of the Maximal-Discrepancy criterion to model selection, 

and compare the model selection performed according to Algorithm 1, and the model selection 
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resulting from conventional cross-validation. In the latter tests, the training set including 180 patterns 

was repeatedly split into a training and a test set for model selection, and the remaining 80 patterns 

formed the validation set for unbiased error estimate; the same validation set was used to evaluate the 

generalization error scored by the former method under MD-based selection. For the sake of brevity, 

Figure 7 only refers to problem A, but similar results were observed for all problems. The graphs give 

the classification errors (on the common validation set) by the tensor-SVMs. Figures 7 refer to the 

experiments with D = 20, D = 50, and D = 100, respectively. In each graph, the x axis marks the five 

different runs, whereas the y axis gives the classification error (error percentage on the validation set). 

Figure 7. A comparison between the generalization performance obtained by applying the 

model selection of Algorithm 1 and conventional cross-validation. The graphs refer to 

problem A, tensor-SVM: (a) D = 20; (b) D = 50; (c) D = 100. 

   

(a) (b) (c) 

Figure 8 illustrates the results obtained on problem A with tensor-RLS. The graphs again prove that 

model selection supported by Algorithm 1 mostly yielded lower validation errors than those achieved 

by conventional cross-validation. 

Figure 8. A comparison between the generalization performance obtained by applying the 

model selection of Algorithm 1 and conventional cross-validation. The graphs refer to 

problem A, tensor-RLS: (a) D = 20; (b) D = 50; (c) D = 100. 

   

(a) (b) (c) 
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Secondly, numerical results seem to suggest that–overall–tensor-SVM slightly outperformed  

tensor-RLS on the various classification problems. However, one should consider that, in both cases, 

the classification error scored on a specific classification problem varies significantly across the 

different runs. This behavior actually confirms that the presence of noise and variance may be a major 

concern when dealing with tactile data. 

Finally, classification problem C proved to be the most difficult task for the ML systems, as the 

predictors sometimes could not attain a lower classification error than 20%. Such a result indicates that 

the involved touch modalities (―sliding the finger‖ and ―rolling a washer‖) proved quite difficult to 

discriminate. Conversely, the best performances in terms of classification error were obtained for 

problem A, in which tensor-SVM scored a classification error of 2.5%. 

5.3. Experiments: Multiclass Problem 

A second empirical session addressed a 3-class classification problem, involving the touch 

modalities covered by the dataset. Three ―1-versus-all‖ predictors were independently trained to solve 

as many binary classification problems (―one touch modality versus the others‖); as a result, each 

predictor could yield two alternative results: either the test pattern was ascribed to the classifier-specific 

touch modality, or the classifier prompted a ―don‘t know‖ outcome. The system finally assigned a 

touch modality to a test pattern according to the following rules: 

(1) if one classifier ascribed the test pattern to a specific touch modality, whereas the other 

modules both prompted a ―don‘t know‖ outcome, the pattern was classified accordingly; 

(2) otherwise, the pattern was categorized according to the predictor whose decision function, f(x), 

turned out to be highest. 

The multiclass experiment was set up according to the following algorithm: 

(1) Randomly split the set of 65 participants into two subsets, TG and TT, including 45 participants 

and 20 participants, respectively. 

(2) For each 1-vs-all classification problem, generate a training set containing a total of 180 patterns. 

Half of the patterns are gathered by including –for each participant in TG—the horizontal and 

the vertical gestures associated to the touch modality addressed by the specific classification 

module (45 participants × 2 gestures = 90 patterns). The remaining 90 patterns are obtained by 

randomly selecting—for the participants in TG—gestures associated to the other two touch 

modalities.  

(3) Generate a test set by including -for each modality and for each participant in TT- both the 

horizontal and the vertical gestures. As a result, the test set holds (3 modalities × 20 

participants × 2 gestures =) 120 patterns. 

To ensure statistical robustness in the generalization estimates, the splitting/training/testing process 

was iterated over five different runs. Table 7 gives the simulation results for the classification problem. 

The table reports on the performance attained with the tensor-SVM and the tensor-RLS. Two 

quantities measure overall performances: (1) the best classification error attained on the test set over 

the five different runs; (2) the classification error on the test set, averaged over the five different runs. 

In the table, the last row points out the parameter settings that yielded the reported performances. 
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Table 7. Results for the 3-class classification problem. 

 Tensor-SVM Tensor-RLS 

best 23.4 22.7 

average 29.0 26.3 

settings  = 2
1
; C = 10  =Qz/2; D = 100  = 2

-1
; C = 100  =Qz/2; D = 100 

The results reported in Table 7 show that the tensor-based method was able to address the 3-touch 

classification problem. Measured performances, though, confirmed that the recognition of touch 

modalities did prove a challenging task, as one should deal with classification errors that are larger 

than 22%. As anticipated above, such results should be analyzed by taking into account the protocol 

adopted for data collection.  

6. Conclusions 

This paper addressed the development of computational intelligence techniques to recognize touch 

modalities using an artificial skin as sensor system. The proposed pattern-recognition system is 

specifically designed to deal with the tensor morphology of the tactile signals.  

A dedicated experimental campaign, involving a high number of participants, gave a representative 

tactile data set, e.g., a wide range of interpretations of the experimental protocol. The reported results 

prove that the proposed pattern-recognition system achieves consistent performance on the bi-class 

classification problems adopted as test bed. In this regard, the paper introduced a framework  

that embedded a criterion to drive model selection effectively, and therefore supported practical 

applications involving tactile interaction problems.  

The paper focused on the discrimination of touch modalities, but it is worth noting that a  

tensor-based approach might be useful in general for discriminating tactile data. When extending the 

framework to a wider range of tactile data, the major benefits would certainly consist in the specific 

tensor-based representation, which best fits the nature of empirical data, and in the capability of 

Machine Learning tools to acquire classification procedure in an automated and empirical way.  

On the other hand, some drawbacks might derive from the need for adequate and effective features to 

express the mission-critical data contents, and in the requirement of a considerable amount of 

empirical observations to avoid or limit over-fitting phenomena. 

A fair comparison with other ML-based approaches to the classification of touch modalities [13–15] 

may prove difficult to carry out because of both the lack of a common test bed and the dissimilarity in 

the prescribed targets. Actually, it is worth noting that the approaches proposed in the literature 

exploited ML technologies without addressing explicitly the issue of model parameterization, hence 

the specific contribution of those works consists in showing that ML tools such as SVM, SOM, 

AdaBoost can tackle effectively the interpretation of touch modalities. On the other hand, those 

methods do not cover the problem of model selection and its related outcomes, which is instead the 

core of the framework tackled in this paper. 

Predicting generalization performance is in fact extremely important, in that every learning machine 

is characterized by a set of adjustable parameters. The design of an effective classifier requires that, 
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first, a criterion to drive model selection should always be defined, and, second, generalization 

performance is evaluated only after the model parameters have been set for run-time operation. This is 

especially true in the presence of complex domains when few empirical data are available, as is the 

case of touch-modality recognition.  

From this viewpoint, the paper has confirmed the complexity of the underlying sensorial problem, 

but, on the other hand, the research yielded a reliable and practical procedure to predict a system 

performance before deployment. A comparison of the Maximal-Discrepancy method with conventional 

cross-validation supported the advantages of the former approach in the tensor-based paradigm. 
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Appendix: Tensor-Based Sensorial Signal Processing 

This Appendix outlines the steps to compute the entries of a tensor-based kernel function, K.  

The scheme refers to the computation of a generic entry K(i, j) of the complete matrix, where i and j 

are two patterns of the dataset. First, some notations are introduced: 

 L is a Z-th order tensor; thus, L
l(1)

  
l(2)

  
l(Z)

. 

 Li and Lj are the tensors that characterize the i-th pattern and the j-th pattern, respectively. 

 K(i, j) is the kernel entry for patterns Li and Lj; hence, K(i, j) ≡ K(Li, Lj).  
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The four steps to be completed to work out a kernel entry K(i, j) can be formalized as follows. For the 

sake of clarity, each step ends by reporting the inputs to be processed and the generated outputs. 

I. Unfolding  

The unfolding of a tensor implies to convert the elements of L to a matrix [20]. As L is a Z-th 

order tensor, Z matrixes are obtained by applying as many unfolding ways (or modes) [42]. 

Accordingly, L(z) ∈ 
Mz

  
Nz

 is the z-th mode matrix unfolding, where  

Mz. = l(z)  

Nz. = l(z + 1), l(z + 2) l(Z), l(1), l(2) , l(z − 1). 

Inputs: Li and Lj 

Outputs: {L i(1), L i(2),…, Li(Z)} and{L j(1), L j(2),…, Lj(Z)}, where Li(z), Lj(z)  
Mz

.  
Nz

. 

II. Singular Value Decomposition  

All the matrix unfoldings Li(z), Lj(z) are factorized by using Singular Value Decomposition (SVD) [20].  

In general, a matrix unfolding L(z)  
Mz

  
Nz

 yields the following factorization: 

L(z) = t
zzz )()()( VSU   

where U is an Mz × Mz orthogonal matrix and V is an Nz × Nz orthogonal matrix. S is an  

Mz × Nz matrix whose off-diagonal entries are all zeros and whose diagonal elements satisfy  

s1 ≥ s2 ≥  ≥ sQz ≥ 0  

where Qz = min(Mz, Nz). Actually, SVD allows one to obtain a matrix approximation of L(z) by 

removing from both S and V all the columns from the ( + 1)th to the Nzth (thus, 1 ≤  < Nz). 

Inputs: {L i(1), L i(2),…, L i(Z)} and{L j(1), L j(2),…, L j(Z)} 

Outputs: {V i(1), V i(2),…, V i(Z)} and {V j(1), V j(2),…, Vj(Z)}, where V i(z),V j(z)  
Nz

  
Nz

 

III. Factor Kernel  

A factor kernel k
z
 is worked out for each z∈1, …, Z. The factor kernel is defined as: 











2
  t)(
)(

)(
)(

 t)(
)(

)(
)(22

1
exp),(

F
zjzjzizi

z jik



VVVV  A1 

where ||||F is the Frobenius norm. In (A1), )(
)(


ziV  is the matrix obtained by removing from Vi(z) all the 

columns from the ( + 1)th to the Nzth, The same notation holds for )(
)(


zj

V . In principle, one can set  

α = Qz z  1, …, Z, as the remaining columns of V(z) do not carry any useful information on  

L(z) (see Step II). However, the present work will show that can be considered a tunable parameter 

(with α < Qz). Such aspect will be discussed in details in Section 3.3. 

Inputs: {Vi(1), Vi(2),…, Vi(Z)} and {Vj(1), Vj(2),…, Vj(Z)} 

Outputs: k
z
(i, j), with z = 1,..,Z 

IV. Kernel Entry  

The kernel entry K(i, j) is finally obtained as follows: 





Z

z

z jikjiK
1

),(),(

 
A2 
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Expressions (A1) and (A2) show that K(i, j) is a product of Gaussian kernels. Thus the kernel 

function (A2) actually extends to tensor patterns the conventional Gaussian (RBF) kernel [31], which 

represents a popular choice for standard learning systems based on kernel machines. 

Inputs: {k1(i, j), k2(i, j), …, kZ(i, j)} 

Output: K(i, j) 
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