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Abstract: Geostationary meteorological satellite infrared (IR) channel data contain 

important spectral information for meteorological research and applications, but their 

spatial resolution is relatively low. The objective of this study is to obtain higher-resolution 

IR images. One common method of increasing resolution fuses the IR data with  

high-resolution visible (VIS) channel data. However, most existing image fusion methods 

focus only on visual performance, and often fail to take into account the thermal physical 

properties of the IR images. As a result, spectral distortion occurs frequently. To tackle this 

problem, we propose a thermal physical properties-based correction method for fusing 

geostationary meteorological satellite IR and VIS images. In our two-step process, the 

high-resolution structural features of the VIS image are first extracted and incorporated 

into the IR image using regular multi-resolution fusion approach, such as the multiwavelet 

analysis. This step significantly increases the visual details in the IR image, but fake 

thermal information may be included. Next, the Stefan-Boltzmann Law is applied to 

correct the distortion, to retain or recover the thermal infrared nature of the fused image. 

The results of both the qualitative and quantitative evaluation demonstrate that the 

proposed physical correction method both improves the spatial resolution and preserves the 

infrared thermal properties. 
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1. Introduction 

The infrared (IR) channels of geostationary meteorological satellites contain important thermal 

information for meteorological research and applications. Raw IR data are often converted to 

brightness temperature, and are readily used in weather analysis, numerical weather prediction (NWP), 

and climate modeling. One limitation of IR data is the low spatial resolution. In contrast, the VIS 

channel has considerably higher resolution. The motivation for fusing the IR and VIS data is to 

produce data with improved spatial resolution. 

Image fusion aims to integrate complementary information from multisensor data, such that the 

synthesized image is more suitable for human visual perception or further processing. Current image 

fusion methods are categorized into three levels: pixel, feature and decision [1,2]. Here, only  

pixel-level fusion is described. The simplest fusion method is based on pixel-wise comparisons, such 

as taking the maximum or average of the pixels of interest. Multi-resolution analysis [3,4] is a popular 

fusion approach. The Laplacian pyramid technique represents the first attempt to decompose and 

merge images hierarchically [5]. Another effective multi-resolution approach is the wavelet-based 

method [6–8]. After wavelet analysis, a wave of multi-resolution transform bases have been developed 

and applied to image fusion, including curvelet [9,10], contourlet [11], and nonsubsampled  

contourlet [12]. All of these methods aim to obtain better visual performance [13], but fail to take into 

account the underlying physical properties. Therefore, the fused image may suffer from spectral 

distortion despite the enhanced visual quality. 

In addition to these general multi-resolution fusion methods, many techniques have been developed 

specifically for the fusion of multispectral satellite images. Some methods applied widely include the 

Hue-Saturation-Intensity (HSI) transform, the Brovey method, and Primary Component Analysis 

(PCA) [1]. Guo and Moore introduced the pixel block intensity modulation (PBIM) method [14] to 

modulate the high-resolution panchromatic band of the Landsat Thematic Mapper (TM) into its  

low-resolution thermal band, to increase the details in the thermal band. The enhanced smoothing 

filter-based intensity modulation (SFIM) method proposed by Liu is able to integrate lower resolution 

multispectral images with higher resolution panchromatic images [15]. Choi et al. applied a  

curvelet-based approach to fuse multispectral and panchromatic images [16]. Aanaes et al. proposed a 

solution to the ill-posed fusion problem by presenting a framework for pixel neighborhood 

regularization based on prior assumptions on the image data [17]. Despite their multispectral 

capability, these methods cannot be adapted directly to the fusion of VIS and IR images. Specifically, 

the PBIM method improves only the spatial topographical resolution, rather than the actual spectral 

resolution. It is not therefore applicable to situations where the image contrasts are produced by the 

terrain’s thermal emission, such as clouds. Second, both the PBIM and SFIM methods are modeled on 

the terrain’s reflective properties. However, in our problem, the infrared radiation is dominant. 

Moreover, all methods except the PBIM require that that source images must have overlapping spectral 
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responses, such as those between RGB visible channels and the panchromatic channel. This 

requirement is not satisfied by the IR and VIS images. 

Here we propose a novel thermal physical property-based post-correction solution to the fusion of 

geostationary satellite IR and VIS channel images. Unlike the fusion of multispectral and 

panchromatic images, for which multiple sources (R, G, B, and Pan) are required, our method requires 

only one VIS channel and one IR channel. By taking advantage of the infrared thermal properties, our 

objective is to generate a higher-resolution IR image from the VIS-IR composite image produced by 

regular fusion methods. The organization of this paper is as follows: in Section 2, we discuss the 

methodological details in two steps, namely multiwavelet fusion and the physical correction. Section 3 

presents the experimental results and quantitative evaluations of the proposed approach. This is 

followed by a discussion and conclusions in Section 4.  

2. Method 

Given the VIS and IR satellite images, we produce a higher-resolution infrared image following a 

two-step procedure. To begin with, the low-resolution IR image is resampled and interpolated so that 

both images are on the same pixel scale. Then, we fuse the resampled IR image with the VIS image 

using a regular multi-resolution fusion algorithm, so that the texture details are extracted from the VIS 

image and transferred into the IR image. In this step, many aforementioned multi-resolution analysis 

techniques can satisfy our need. Here we choose a relatively new and mature method, the multiwavelet 

analysis. Second, based on the Stefan-Boltzmann Law, we convert the original IR image to a thermal 

radiation map, and use this map as a reference to perform a physical correction on the fused image. 

The purpose of this correction is to adjust the spectral distortions induced by the fusion. The details of 

the algorithm are as follows. 

2.1. Multiwavelet Image Fusion  

We adopt a multiwavelet image fusion algorithm to extract the fine textural features from the VIS 

image and impose them on the IR image. This multi-resolution approach enables the decomposition of 

the source images into multiple resolution scales such that the structural details of the VIS image are 

readily available. At this stage, the infrared thermal properties are not considered, and we merge the 

two images only at the pixel level. This leads to further thermal physical properties-based correction 

discussed in the next section. More information on the multiwavelet algorithm and its application to 

image fusion can be found in [18–20]. It should be noted that other multi-resolution image fusion 

methods can also be used in this step. 

First, we apply the multiwavelet decomposition to the two source images. Their resultant coefficient 

arrays contain a low-frequency approximation component, or rough contrast, and multiple  

high-frequency detail components representing sharp edges and details at various scales. Fusion is 

achieved by recombining the coefficients from source images. In our case, we take the approximation 

coefficients of the IR image as the low frequency component of the fused image, so that substantial 

infrared properties are preserved. The high-frequency components are selected from either the IR or 

the VIS detail coefficients, depending on which displays more regional structural detail. This is 

implemented by comparing the regional variance of the two coefficient arrays. We take the coefficient 
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with higher local variance, indicating more structural information. The purpose here is not only to 

bring in the richest structural detail, but also to take into account the surrounding regional landscape, to 

make a more reasonable selection. Mathematically, the local variance within an N × N window around 

a position (x, y) is defined as: 
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where D(i, j) is the detail coefficient at (i, j), and μ(x, y) is the mean value in the window. The selection 

rule for the detail coefficients can thus be described as: 
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(3)  

An inverse multiwavelet transform of the selected approximation and detail coefficients recovers 

the fused image from the VIS and IR data. To sum up, this process can be summarized in the following 

steps, illustrated in Figure 1. 

Figure 1. The multiwavelet-based algorithm for IR and VIS image fusion. Only three 

levels of decomposition are displayed. 

 

First, we pre-process the resampled IR image, and decompose both IR and VIS images using the 

CL multiwavelet system [21]. The selection of the number of decomposition levels is based on 

empirical outcome. Experiments show that six-level decomposition, or decomposition of the source 

images into six detail scales produces preferable fusion effects. 

Second, we take the IR approximation coefficients as low-frequency components for the fused 

image, and use the local variance comparison method to select the high-frequency components. We 

use a 3 × 3 window to compare the local variance. Third, we apply the inverse multiwavelet transform 

on the selected coefficient arrays to produce the synthesized image from IR and VIS data. 

 

Infrared

Image

Visible

Image

Fused

Image

Preprocessing

Multiwavelet

Decomposition

Preprossing

Multiwavelet

Decompostion

Approximations 

taken from the 

infrared image

Details taken from 

the image with 

larger local variance

Postprocessing

Multiwavelet

Reconstruction



Sensors 2014, 14 10191 

 

 

2.2. Physical Property-Based Correction 

The aforementioned multiwavelet-based method greatly enhances the visual resolution, but fails to 

preserve the infrared physical properties. Although the low-frequency components from the IR image 

remain untouched, the high-frequency information from the VIS image brings in serious spectral 

distortion. The distortion is particularly severe in areas where clouds are present only in the VIS image 

but it is spared in the IR image. After fusion, these areas may appear especially bright. This suggests a 

low brightness temperature if the infrared fusion outcome is assumed, which is not what the original IR 

image indicates. Therefore, a physical property-based post hoc correction is necessary to maintain or 

restore the infrared nature of the fused image. 

The basic principle is to trace back to the fundamental property of the IR image, i.e., the thermal 

radiation. Satellite infrared data are derived from the Earth’s thermal radiation. This measured thermal 

radiation can be converted to brightness temperature. Inversely, given a brightness temperature, the 

original thermal radiation can be estimated. This temperature-to-radiation conversion can be 

approximated using the Stefan-Boltzmann Law, which is the integral of Planck’s Law over the 

wavelengths and solid angles: 

4Tj   (4)  

Here j represents the total energy radiated per unit surface area per unit time, T is the temperature in 

Kelvin, ε is the emissivity and σ is the Stefan-Boltzmann constant. To dictate the infrared properties of 

the fused image (i.e., to assume that the fused pixel values represent the brightness temperature), it is 

imperative that the underlying thermal radiation be comparable to that of the original IR image. The 

objective of the post hoc correction is therefore to constrain the regional radiation energy to the 

original IR level. 

Specifically, we first converted both the IR image and the synthesized fused image F into the 

radiation map, such that the values at each pixel, jIR(u, v) for IR image and jF(x, y) for the fused image, 

are the approximate amount of radiation energy observed at that pixel. Second, we traverse the two 

images and proportionally adjust the radiation energy in the fused image to ensure that the regional 

radiation is equal to the IR image within each window of interest. The choice of size of the window η 

takes the resolution disparity between the IR image and fused image (equal to the original VIS image) 

into account, such that one single pixel in the IR image corresponds to a η × η window in the fused 

image. This is essentially an interpolation process using the nearest-neighbor method (Figure 2). For 

instance, the satellite data have a VIS resolution of 1 km, and IR resolution of 4 km, so η is 4 in our 

case. Mathematically, letting jF*(x, y) be the corrected radiation energy at pixel (x, y), we expect that 

the following relation holds within each η × η: 
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Accordingly, the old radiation value at pixel (x, y) in the fused image should be updated to: 
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After the correction, the radiation maps are converted back to the brightness temperature.  

Figure 2. Illustration of physical correction. (a) A η × η window in the fused image. Here, 

η = 4. (b) One pixel in the low-resolution IR image. It is interpolated to the same scale as (a). 

Both windows in (a) and (b) should have the same amount of radiation energy. 

 

Figure 3. Improved physical correction. (a) An M × M area in the fused image is used to 

correct the highlighted η × η window in the center. (b) An N × N area in the low-resolution 

IR image. The objective is to let both areas in (a) and (b) have the same radiation energy. 

 

However, a blocking result may occur due to the tight constraints. Because the process depends on 

only a single point in the IR image to correct a region, it fails to take into account the surrounding 

radiation landscape. If the values in one region need to be scaled upward while the adjacent window is 

scaled downward, for example, a clear border will be exposed. Consequently, the constraint needs to 

be loosened and more surrounding regions need to be included. Although a correction is still applied to 

each η × η window, we now consider a surrounding N-by-N area that is mapped to an M-by-M area in 

the IR image (Figure 3), instead of a single point, to decide the degree to which the radiation energy 

needs to be scaled. The M-to-N ratio is still kept equal as the ratio of the VIS and IR image resolution 

for computational ease. In this case, the equality of the regional radiation energy is expressed as: 
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Accordingly, the corrected value in the fused image should be: 
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3. Experimental Results and Analysis 

We tested the proposed algorithm using the data collected by the Multifunctional Transport Satellite 

(MTSAT), a geostationary satellite operated by the Japan Meteorological Agency (JMA). It has five 

spectral bands: one visible channel (VIS) with 1-km resolution, and four IR channels (IR1~4) with  

4-km resolution. The VIS (0.55–0.90 μm) and IR1 (10.3–11.3 μm) channels were used to test  

the fusion algorithm. In this section, we first present three case studies to evaluate the algorithm  

based on visual inspection. Then, we introduce several objective measurements to quantitatively assess 

its performance. 

3.1. Case Studies 

The first case (Figure 4) shows a cyclone near the South China coast and Taiwan on 1300 LST  

24 July 2006. In Figure 4a, the VIS channel fails to capture some peripheral clouds of the cyclone that 

are present in the IR1 channel in Figure 4b. The multiwavelet fusion retains this feature of the IR1 

image, and increases the overall image resolution, as shown in Figure 4c. However, as indicated in the 

red box, without a well-defined physical spectral characterization direct fusion incurs spectral 

distortion, exhibited by a prominent low temperature region. After the physical correction, the 

underlying pseudo-radiation level of the fused image is confined to the IR level, and therefore its 

infrared physical identity is established. As shown in Figure 4d, the corrected image has eliminated the 

abnormal temperature caused by spectral distortion, while the overall image maintains a higher 

resolution than the original IR1 image. 

Figure 4. MTSAT images of South China and Taiwan on 1300 LST 24 July 2006. (a) VIS 

image. It fails to capture the peripheral clouds of the cyclone. (b) IR image. It presents the 

peripheral clouds that are absent in (a). (c) Fused image. It has higher resolution, and 

retains the cyclone peripheral clouds as in (b). The red box indicates an area with abnormal 

temperature. (d) Corrected image.  

 

(a) 
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Figure 4. Cont. 

 

(b) 

 

(c) 

 

(d) 

The second case (Figure 5) was taken from the same region on 1300 LST 25 July 2006. The boxed 

regions illustrate how spectral distortion is incurred and corrected with our method. In the VIS image 

(Figure 5a), the red boxes enclose two regions with thick and bright cloud tops.  

If these pixels are directly merged into the IR image (Figure 5b), unusually low temperatures will 

be induced, as illustrated in Figure 5c. The physical correction properly controls the level of distortion, 

and the abnormally low temperatures are recovered to the normal range (Figure 5d). 

The third case (Figure 6) was taken from the border of China’s Hebei, Shanxi and Henan Provinces 

on 1300 LST 25 July 2006. The VIS image (Figure 6a) indicates that most of the region is covered 

with scattered clouds, but the IR image (Figure 6b) suggests a relatively high brightness temperature in 

the entire region, and no obvious clouds are displayed. A direct fusion of VIS and IR images yields 

higher spatial resolution and incorporates fine cloud details from the VIS image. However, the overall 

temperature in the region is lowered significantly (Figure 6c). After the physical correction, the 
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temperatures in this region are refined to the infrared level, as shown by the reduced brightness in 

Figure 6d, while the general cloud pattern from the VIS image is retained. 

Figure 5. MTSAT images of South China and Taiwan on 1300 LST 25 July 2006. (a) VIS 

image; (b) IR image; (c) Fused image. Red boxes indicate areas with serious spectral 

distortion; (d) Corrected image.  

 

(a) 

 

(b) 

 

(c) 

 

(d) 
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Figure 6. MTSAT image of the borders of Hebei, Shanxi and Henan Provinces of China 

(1300 LST 25 July 2006). (a) VIS image; (b) IR image; (c) Fused image; (d) Corrected image. 

    

(a) (b) (c) (d) 

3.2. Quantitative Analyses 

In addition to the visual inspection, we used the following five categories of parameters to 

objectively examine the performance of the fusion algorithm: 

(1) Information Entropy (IE) and Mutual Information (MI). IE quantifies the amount of information 

contained within an image, and MI measures how much information is shared between images. 

These parameters can characterize the flow of information during the fusion process and the 

similarity of the synthesized and source images. 

(2) Average Gradient (AG). The gradient at a pixel measures how sharply the pixel values change 

in the surrounding region. Fine details, sharp edges and complex textures produce high varying 

regional characteristics and are reflected by high gradients. The AG is the average of all regional 

gradients and reflects the overall sharpness of the image. 

(3) Objective Fusion Performance Measure (Qabf). Proposed by Xydeas and Petrović [22], Qabf is a 

measurement of how much detailed edge information is transferred from the source images to 

the fused image. This parameter ranges between 0 and 1, where the value 0 represents the 

complete loss of edge information and 1 represents the perfect preservation of edges. 

(4) Universal Image Quality Index (QI) and Edge-dependent Quality Index (QE). QI was initially 

proposed as a universal measure of image quality by modeling the structural distortion [23], but 

here we use it as an index of image similarity. This index does not depend on individual 

observers or testing conditions, and exhibits consistency with subjective evaluations. The dynamic 

range of QI is [−1, 1] [23]. The closer QI is to 1, the more similar the two images are in 

comparison. QE is adapted from QI such that edge information is taken into account [24]. In 

addition to the QI of the original images, QE also incorporates the QI of the corresponding edge 

images obtained from source images. Similarly, the values of QE still range between −1 and 1, 

with the best value of 1 achieved by perfect image similarity. 

(5) Thermal Energy Deviation (AVGD and RMSD). Because the fusion method in this paper is 

based on thermal radiation, we introduce two new parameters: the average thermal energy 
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deviation (AVGD), and the root-mean-square thermal energy deviation (RMSD). These allow 

us to evaluate the deviation of thermal energy between the synthesized image and the original 

IR image. 

Assuming that the VIS-to-IR resolution ratio is η, a single pixel at (u, v) in the IR image 

corresponds to a η × η area in the fused image, which can be conceptualized as a simple interpolation 

(Figure 7). In each η × η window, the local thermal energy deviation from the original IR image is: 
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Similarly, the RMSD is defined as: 
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Figure 7. Illustration of the thermal energy deviation. (a) A η × η window in the fused 

image. In this case, η = 4. (b) One pixel in the low-resolution IR image. It is interpolated to 

the same scale as (a). The thermal energy deviation characterizes the difference of radiation 

energy in these η × η areas between fused image and IR image. 

 

The purpose of the quantitative analysis is to evaluate the changes at the physical level. However,  

to the best of our knowledge, few metrics in the literature measure the similarity of the images’ 

underlying thermal properties. Most of the metrics of choice here, e.g., AG and Qabf, are quality 

measures at the image level, so they may not perfectly satisfy our need. Fortunately, the fundamental 

physical-level similarity often externalizes at the image level, as demonstrated in the qualitative case 

studies in the previous session. Therefore, these image-level metrics may be of indirect interest to a 

certain extent. We have also customized two metrics, AVGD and RMSD, to compare the images’ 

thermal properties directly. Moreover, it should be noted that what we evaluate is the relative change 

before and after the physical correction, instead of the simple absolute similarity with the original IR 

image. This reflects the compromise and trade-off between visual resolution and physical reality.  

jF(x, y):

thermal 

radiation at 

(x, y) in the 

fused image

1 ≤ x, y ≤ η

jIR(u, v):

thermal radiation 

at (u, v) in the 

infrared image
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We arbitrarily selected the MTSAT data collected on 1300 LST 26 July 2006 to apply the 

multiwavelet fusion and physical correction, and calculated these performance parameters. The results 

are shown in Tables 1 and 2. 

Table 1. Quantitative analysis of IR and VIS image fusion and physical correction. The 

satellite data were collected on 1300 LST 26 July 2006. IR: infrared image. VIS: visible 

image. FUS: fused image using multiwavelet. COR: corrected image. 

 IE AG Qabf AVGD RMSD 

IR 6.9091 0.6502    

VIS 4.9791 2.4797    

FUS 7.0560 2.7412 0.6510 667.0806 924.3553 

COR 6.9890 2.8865 0.5633 375.2017 557.3362 

Table 2. Quantitative analysis of IR and VIS image fusion and physical correction. The 

satellite data were collected on 1300 LST 26 July 2006.  

 MI QI QE 

IR + FUS 1.2882 0.1644 0.0867 

VIS + FUS 0.8890 0.7895 0.7932 

IR + COR 1.7235 0.1850 0.0893 

VIS + COR 0.8350 0.7285 0.7169 

As shown in Table 1, the IE of the fused and corrected images are considerably higher than those of 

the original VIS and IR images, suggesting that the fusion process has indeed managed to integrate 

information from the two sources. Despite a slight loss of IE after the physical correction (from FUS to 

COR, about −0.9%), a significant amount is preserved. The MI values in Table 2 further reflect the 

“trade-off” and movement of information during the physical correction. The MI between COR and IR 

is about 33.8% higher than that between FUS and IR, yet a decrease of 6.1% is observed from FUS to 

COR with regard to the VIS image. This shift indicates that the physical correction obtains more 

meaningful information from the IR image while abandoning less relevant information from the VIS 

image. Notably, the 33.8% increase is greater than the 6.1% decrease, which means that much 

information from the VIS image is retained. Furthermore, with regard to the AG, both the FUS and 

COR images have higher gradients and thus higher spatial edges and details than the original IR image. 

This is consistent with subjective perception. The increase of AG from FUS to COR may be attributed 

to the disturbance caused by the introduction of noise. 

In Table 2, both the FUS and COR images have higher QI with VIS images than with the IR image. 

The same trend is also observed for the QE parameter. The fusion result was closer to the VIS image 

than the IR image, indirectly suggesting increased spatial resolution after both the multiwavelet fusion 

and physical correction. Besides, by comparing the results before and after the physical correction; i.e., 

FUS and COR, we noticed that the QI and QE increased from FUS to COR in the IR, while it 

decreased in the VIS. This again was due to the information trade-off in the physical correction, 

reflecting a gain in the meaningful thermal physical properties from the IR image and the loss of 

inaccurate visual information from the VIS image. 
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From the perspective of thermal radiation, as shown in Table 1, compared with the FUS image, the 

COR image exhibited much lower AVGD and RMSD (43.8% and 39.7% less, respectively), indicating 

that after the physical correction, the COR image deviated much less from the original IR image in 

terms of the underlying thermal radiation than the FUS image pre-correction. This was not surprising, 

because the physical correction process referred to the IR thermal radiation level to constrain that of 

the fused image, such that the outcome resembled the infrared physical properties. However, the cost 

was a slight loss of spatial resolution, especially the fine edge information, as reflected by the 13.5% 

decrease in Qabf in Table 1.  

Table 3. Quantitative analysis of IR and VIS image fusion and correction (1300 LST 24 

July 2006). 

 IE AG Qabf AVGD RMSD 

IR 6.9091 0.6502    

VIS 4.9791 2.4797    

FUS 7.0552 2.6771 0.6740 649.6730 906.2315 

COR 6.9934 2.9388 0.5407 366.8883 551.5277 

Table 4. Quantitative analysis of IR and VIS image fusion and correction (1300 LST 24 

July 2006). 

 MI QI QE 

IR + FUS 1.3277 0.1829 0.0957 

VIS + FUS 0.8830 0.8006 0.8114 

IR + COR 1.7530 0.1936 0.1045 

VIS + COR 0.8021 0.6969 0.6835 

Table 5. Quantitative analysis of IR and VIS image fusion and correction (1300 LST 25 

July 2006). 

 IE AG Qabf AVGD RMSD 

IR 6.9567 0.6722    

VIS 5.0491 2.1981    

FUS 7.0574 2.4357 0.6451 578.3445 838.8759 

COR 7.0288 2.6651 0.5244 336.5270 516.8839 

Table 6. Quantitative analysis of IR and VIS image fusion and correction (1300 LST 25 

July 2006). 

 MI QI QE 

IR + FUS 1.6075 0.2314 0.1405 

VIS + FUS 0.9005 0.7447 0.7590 

IR + COR 2.0161 0.2382 0.1278 

VIS + COR 0.8724 0.6562 0.6478 

Fortunately, the case studies have shown that such a loss is not catastrophic, and the final corrected 

image still has high resolution compared with the original IR image. This is consistent with our fusion 



Sensors 2014, 14 10200 

 

 

objective, where the re-establishment of physical truth is the primary goal, instead of visual sharpness. 

Tables 3–6 present similar results using data obtained on different days. 

4. Conclusions  

We propose a thermal physical properties-based correction method for fusing geostationary 

meteorological satellite IR and VIS images. Most existing image fusion techniques are capable of 

synthesizing multiple source images and producing satisfactory visual effects, but often fail to take into 

account the thermal physical properties of the IR images leading to spectral distortion. Our method 

mitigates the spectral distortion and reinstates the infrared physical properties of the fused image. We 

first apply a well-developed multiwavelet-based fusion method to merge the VIS and IR images, so 

that the rich textural details from the VIS image are used to increase the spatial resolution. Then, we 

use the thermal radiation inferred from the IR image as a reference to correct the fused image, to 

maintain a similar level of thermal radiation. The experimental results have demonstrated that the 

proposed method both improves the IR spatial property and preserves its spectral consistency. 

The proposed fusion method has one limitation. This method is sensitive to the altitude of the sun at 

the time of data acquisition, or more precisely, the solar elevation angle. The algorithm performs best 

on data collected between 1100 and 1300 LST. At other times, the oblique incidence of sunlight may 

lead to a degradation of the data quality in the visible channel, compromising the fusion result. It will 

therefore be necessary to improve the method in the future by incorporating the influence of the angle 

between the sun and the satellite. 
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