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Abstract: Curb detection is an essential component of Autonomous Land Vehicles (ALV), 

especially important for safe driving in urban environments. In this paper, we propose a 

fusion-based curb detection method through exploiting 3D-Lidar and camera data. More 

specifically, we first fuse the sparse 3D-Lidar points and high-resolution camera images 

together to recover a dense depth image of the captured scene. Based on the recovered dense 

depth image, we propose a filter-based method to estimate the normal direction within the 

image. Then, by using the multi-scale normal patterns based on the curb’s geometric 

property, curb point features fitting the patterns are detected in the normal image row by row. 

After that, we construct a Markov Chain to model the consistency of curb points which 

utilizes the continuous property of the curb, and thus the optimal curb path which links the 

curb points together can be efficiently estimated by dynamic programming. Finally, we 

perform post-processing operations to filter the outliers, parameterize the curbs and give the 

confidence scores on the detected curbs. Extensive evaluations clearly show that our 

proposed method can detect curbs with strong robustness at real-time speed for both static 

and dynamic scenes. 
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1. Introduction 

Curb detection is a crucial component in both Autonomous Land Vehicles (ALV) and Advanced 

Driver Assistance Systems (ADAS). Robust curb detection in real environments can undoubtedly 

improve driving safety and benefit those systems in various tasks. In urban environments, curbs limit the 

driving area. They even have the same value as obstacles, for vehicles should not drive across the curbs. 

Curbs can also support map building and vehicle localization [1], with their continuous and static 

properties relative to the scenes. 

Curbs are continuous objects in the road scene and thus they have specific geometric and visual 

properties which serve as the backbone for robust curb detection. Traditionally, these properties are 

captured separately by different sensors. More specifically, range sensors measure the geometric 

property, while visual sensors capture the visual appearance property. We now introduce the properties of 

curbs in details and then explain how to better use these properties in our method to detect the curbs. 

From the geometric model shown in Figure 1, we can observe following critical geometric properties  

of curbs: 

1. Height property. There is a height variation over curbs, and the variation range is from 5 to 35 cm. 

2. Normal property. The normal directions change sharply near curbs. More specifically, the normal 

directions around the left curb are ‘up-right-up’, while the ones around the right are ‘up-left-up’. 

3. Consistency property. The above two properties are consistent and continuous along the curbs. 

Figure 1. Geometric model of curbs. The short arrows indicate the surface normal directions 

in different positions. 

 

From the road images containing curbs, as shown in Figure 2, we can observe the following visual 

properties of curbs: 

1. Edge property. Some curbs have visible edges in the visual image; 

2. Variety property. There is no universal appearance model of curbs applying for different scenes. 

Though curbs have the aforementioned specific properties, curb detection in various environments 

remains a challenging problem, even with state-of-the-art sensors. The major difficulty lies in that the 

curbs only have a subtle variation of height, compared with obstacles. Such subtle range changes are 

easily confused with noises and are hardly detected by range sensors. On the other hand, for visual 
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sensors, edges of the curbs are prone to being confused with other objects. Such cases will be worse in 

cluttered scenes. 

Figure 2. Curb images. (a) Curbs in illumination change; (b) Curbs in shadow; (c) Curbs in 

wide road; (d) Curbs in narrow road; (e) Curved curbs; (f) Long and short curbs. 

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

Thus, range-visual fusion seems to be a promising approach for robust curb detection. Traditional 

range-visual fusion methods [2,3] used the detection results from range data to guide the curb searching 

in the visual image, which have the advantage of enlarging the detection range. However, curb searching 

in visual images may be unreliable in cluttered scenes, due to the visual properties mentioned above. 

Therefore, in this work, we propose an alternative approach to more effectively fuse the range and visual 

data to enhance the robustness of curb detection. In particular, we base our approach on the state-of-the-art 

range-visual fusion algorithm [4], which can recover a dense depth image of the scene by propagating 

depth information from sparse range points to the whole high-resolution visual image. With this high-quality 

recovered dense depth data, our method makes full use of the aforementioned geometric properties of the 

curbs for robustly detecting curbs in various conditions. Our proposed method roughly comprises 

following four steps.  

Step 1: Depth image recovery. Provided with the sparse Lidar points and high-resolution camera 

images, we recover the dense depth image of the dynamic scene based on a filter-based fusion 

framework [4]. 

Step 2: Curb point detection. Based on the depth image representation, we propose a filter-based 

method for surface normal estimation. Using the normal property, curb point features are detected 

in the normal image row by row. 
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Step 3: Curb point linking. As aforementioned, curbs possess the consistency property. To describe 

this property, we construct a Markov Chain for each road side, where each curb point is represented 

as a node in the chain and the connection probabilities between nodes are computed based on the 

consistency degree of the neighboring nodes. The optimal curb paths which link the curb points are 

thus found by dynamic programming. 

Step 4: Curb refinement and parametrization. For filtering out the outliers, break points are used to 

cut the obtained optimal curb path into multiple segments. We choose the segment with the 

maximum probability as our final result, parameterize the curb by using weighted least square 

fitting, and compute its confidence score by considering both the node probabilities and the 

accuracy of the model. 

A diagram illustrating the above four steps is given in Figure 3. 

Figure 3. Overview of our proposed method. The method consists of four steps. For more 

details, please refer to the text. 

 

The major contributions of this paper can be briefly summarized as follows:  

1. To the best of our knowledge, we are almost the first to use the dense depth image, which are 

obtained by effectively fusing the 3D-Lidar and camera data, for curb detection. The advantages of such 

data fusion for curb detection are well demonstrated in the experiments.  

2. We propose a novel filter-based method for efficient surface normal estimation, and we show that 

the normal image can be used to accurately detect curb point features. 

3. We build a Markov Chain model, using the curb point detection result, which elegantly captures the 

consistency property for curb point linking. The optimal curb path for each side is then linked by simple 

dynamic programming, which is computationally fast and cheap. 

Step 1: Depth Image Recovery 

Dense Depth Image 

Step 2: Curb Point Detection 

Curb Feature Response 

Step 3: Curb Point Linking 

Optimal Curb Paths 

Step 4: Curb Refinement 

Curb Models and Scores 

Sparse 3D Points 

 

 

Visual Images 
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4. We propose several effective and feasible post-processing steps to filter out the outliers, to 

parameterize the curbs, and to obtain the confidence scores. 

5. Based on the above proposed methods, we obtain robust curb detection results in various conditions 

(including quite bad conditions) efficiently within a long range, which is up to 30 m from the sensors. 

This is the best result ever achieved for curb detection to our best knowledge. 

The remainder of the paper is organized as follows: in Section 2, we briefly review the existing curb 

detection methods with different sensors. In Section 3, we provide a detailed description of our proposed 

method for curb detection. In Section 4, comprehensive experiments are demonstrated in various scenes 

along with the quantitative and qualitative illustrations of our method. Finally, we give our conclusions 

and the future directions in Section 5. 

2. Related Works 

The research on curb detection has a long history [2], but it is still an attractive topic in intelligent 

robotics [5–7]. The development of these detection methods has generally followed improvements of the 

corresponding sensors. According to the used sensors, existing curb detection methods can mainly be 

categorized into: camera-based [6–13], Lidar-based [1,5,14–18], and fusion-based [2,3]. 

Camera-based curb detection methods have the advantage of low cost, but their performance is 

strongly sensitive to the outdoor conditions. For example, in low illumination, textureless, or cluttered 

scenes, their curb detection results may be unstable. Monocular methods utilize edge cues, and/or use 

texture information combined with machine learning techniques [7]. However, in curb detection, the edge 

cues can hardly be used as the curb edges are easy to be confused with other objects in cluttered scenes. 

The learning-based methods cannot apply for curb detection either. The reason is that the road and curb 

have great variations, and the model learned from one scene may not be suited for others. In [7], the authors 

tried to use Structure From Motion (SFM) to assist the information, but SFM cannot provide reliable 

structure estimation results under different conditions. Recently, stereo methods have become the most 

popular ones for curb detection [8–13]. These methods usually build the Digital Elevation Map (DEM) 

from the disparity, and use the edges with a certain height variation in the DEM as the cues for curb point 

detection. However, in textureless areas, stereo methods generally cannot provide stable range 

measurements, and this limits their applications. 

In contrast with camera-based methods, Lidar-based methods can achieve reliable and accurate results 

in their valid range. However, common used Lidar sensors can only provide sparse data in a certain 

range, so their applicability is severely restricted in a limited area. For instance, a 2D-Lidar can only 

measure the distance in one scanning plane each time [5,14,15]. In order to improve the detection 

reliability, sequential data can be aligned with the ego-motion states [5]. At the same time, the error from 

ego pose estimation, which may come from abnormal shaking or relative pose drifting, will contaminate 

the detection result. A 3D-Lidar can give multilayer scanning data of the scene. The methods with the 

3D-Lidar usually segment the ground plane first [19], and then detect the curbs in the ground  

surface [16,18]. For example, in [18] the authors used surface normal information, and the curbs were 

defined as the boundary of the plane in [17]. All those methods achieved remarkable results in their 

specific applications. 
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Fusion-based methods generally achieve better results, compared with pure camera or Lidar based 

methods, by integrating different information. The principle of existing fusion-based methods is to 

estimate reliable curbs in near region with range data at first, and then extend this result to be faraway by 

using the image data [2,3]. In [2], previous detection results were projected into the current image frame, 

and used to initialize the curb tracking in the image. In [3], the authors detected the curbs in stereo data, 

and used the results as the supervision signal to learn the monocular model for extended searching. The 

fusion-based curb tracking utilizing both 2D-lidar and camera data was proposed in [20]. There are still 

other sensors used for curb detection, such as the Time-of-Flight (ToF) camera [21]. However, this kind 

of sensor does not work at long range, or in bright sunlight. 

No matter what sensors are used, all the above methods need a curb model. There are various models 

used in different methods, such as the straight line and line segment chain model [8], the polynomial 

model [9], and the polynomial spline model [10]. Generally, simple models are more robust to outliers, 

and sophisticated models are more accurate for describing the curb. The model parameters can be 

estimated by Hough Transform [8], RANdom SAmple Consensus (RANSAC) [9,18] or Weighted Least 

Square [2]. In [11,12] both the ground plane and curb were modeled, and in [12] past information was 

integrated, which can detect curbs in a range of 20 m 

Other cues can also help to improve curb detection, such as the static property of the curb and the 

detection results of obstacles. Curbs are static relative to the road, hence, multi-frame data can be aligned 

to keep the persistent ones for denoising [8–10]. Explicit obstacle detection can also benefit curb 

detection, by removing the candidate points in obstacle region [2]. 

3. Fusion-Based Curb Detection Method 

An overview of our method is provided in the Introduction. In this section, we introduce the details of 

four components of our proposed method along with the implementation details. 

3.1. Depth Image Recovery 

Geometric properties are important cues for curb detection. However, as mentioned, the geometric 

properties measured solely from the sparse range data are not robust and reliable for curb detection. In 

order to more effectively utilize the geometric properties of curbs, in this work, we propose to first 

recover a dense depth image of the scene for better curb detection, through fusing sparse range points 

(from the Lidar sensor) and high-resolution camera images. The dense depth image obtained in the fusion 

has the same resolution as the input visual images, and meanwhile has the precise depth value for each 

point/pixel. Thus the recovered depth image has significantly larger signal-to-noise ratio than the original 

range data, which is advantageous for the following curb detection. In particular, the fusion method used 

in this work is built on the observations that different points sharing similar features (including position, 

time, color, and/or texture etc.) generally have similar depth values. Fusion methods based on such 

assumption have shown great success in recent works [4]. Specifically, in this paper, we use the fusion 

algorithm proposed in [4] considering its real-time efficiency and outperforming accuracy in dynamic 

environments. In the implementation, the algorithm first aligns the sparse depth points with the points in 

the visual image frames. Then a high dimensional Gaussian filter is applied to spread the depth 
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information from sparse points to all the image points at real time speed and generate the recovered dense 

depth image. For more details of the algorithm, we refer interested readers to the original paper [4]. 

The recovered depth image is located within two coordinate systems, i.e., the image coordinate system 

and the camera coordinate system, as shown in Figure 4. The image coordinate system is fixed with 

respect to the image frame, whose origin is located at the left-top corner of the image, U-axis direction is 

from left to right, and V-axis direction is from top to down. Different from the image coordinate system, 

the camera coordinate system is fixed with respect to the camera, with its origin located at the optical 

center and its XC, YC, ZC–axis paralleling with U, V, optical-axis respectively. The units of image 

coordinates are in terms of pixels, while the units of camera coordinates are based on meters.  

Figure 4 shows a depth image in these two coordinate systems. For a point having the camera 

coordinates ( , , )C C Cx y z , the coordinates of its projection point in the image coordinate system ( , )u v  can 

be computed as in Equations (1) and (2) following the pinhole camera model: 

C
x x

C

x
u f c

z
    (1) 

C
y y

C

y
v f c

z
    (2) 

In Equations (1) and (2), ( , , , )x y x yf f c c  are intrinsic camera parameters, which can be obtained in 

advance and known here. In this paper, we use the pinhole model without lens distortion to do the 

projection. In the cases that there is significant distortion, a distortion correction step should be conducted 

before the coordinate computations. 

Let D denote a depth image, and ( , )d u v  denote the depth value of the point with image coordinates 

( , )u v . As aforementioned, D has the same resolution as the input visual image. ( , )d u v  equals to the zC 

in Equations (1) and (2), which is obtained from the above fusion method. 

Figure 4. Illustration of a depth image within both the camera coordinate and image 

coordinate systems. 

 

Here we provide an illustrating example in Figure 5 to demonstrate the advantages of using the depth 

image for curb detection. Figure 5a shows the top view of the visual image (containing random noises 

and shadow) of a curb segment, and Figure 5b shows the sparse range data aligned with the image. Due 

to the noises and shadow, we cannot accurately detect the curb on the visual or range data individually. 

Figure 5d shows the depth image recovered via fusing Figure 5a and Figure 5b. Obviously, recovering 
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the dense depth image increases the resolution and meanwhile suppresses the noises/shadow of Figure 5a,b. 

Moreover, the curb geometric properties are clearly presented, compared with the ground truth curb 

shown in Figure 5c. This makes the curb detection and localization easier and more accurate. 

Figure 5. (a) Visual image containing noises and shadow; (b) Sparse range points;  

(c) Ground truth curb data; (d) Recovered depth image shown in 3D. 

  

(a) (b) 

  

(c) (d) 

A real example of depth recovery in outdoor scenes is demonstrated in Figure 6. Similar to the above 

example, we obtain a dense depth image of the scene along with its confidence using the algorithm in [4]. 

It can be observed that depth recovery also increases the resolution and filters out the noises for the 

realistic scene. The confidence scores are shown in Figure 6d, in which three colors (black, white, blue) 

are used to distinguish different confidence levels (zero, low, high), as [4]. 

Figure 6. (a) Visual image; (b) Sparse range data in image frame; (c) Recovered depth 

image; (d) Confidence scores of the dense depth estimation. 

  

(a) (b) 
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Figure 6. Cont. 

  

(c) (d) 

With the depth image, it is easy to calculate the word coordinates and camera coordinates for each 

point. The word coordinate system is fixed with respect to the vehicle, with its origin located at the 

projection point of the camera centre on the ground plane, its XW-axis pointing to the right side, YW–axis 

pointing to ahead, and ZW–axis pointing to the up side. The extrinsic parameters translating world 

coordinates to camera coordinates are the rotation matrix R and the translation vector T, which can be 

estimated in advance and assumed to be known here. With ( , )d u v  and known intrinsic parameters, we 

estimate the camera coordinates ( , , )C C Cx y z  as in Equations (3), (4) and (5). The XC, YC images are 

shown in Figure 7a,b, respectively. Then, by applying Equation (6), world coordinates can be readily 

obtained with known ( , , )C C Cx y z  and extrinsic parameters: 

( , ) ( , )x
C

x

u c
x u v d u v

f


   (3) 

( , ) ( , )
y

C

y

v c
y u v d u v

f


   (4) 

( , ) ( , )Cz u v d u v  (5) 

1

W C

W C

W C

x x

y R y T

z z



    
    

      
        

 (6) 

When zW is known, it is easy to identify the road region, whose W Zz T . In this paper, we set TZ = 0.4 

m, and the found road region and road image are shown in Figure 7c,d. 

3.2. Curb Point Detection 

After recovering the depth image and point coordinates in several systems, we now proceed to 

perform the curb point detection. First, we devise a filter-based normal estimation method using the depth 

image. Then, we use the curb pattern in the normal image to detect the curb point features row by row. 

The height property of curbs, or more precisely the fact that curbs are above the road surface from 5 to 35 cm, 

is also utilized for filtering out the non-road region. 
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Figure 7. (a) XC Image; (b) YC Image; (c) Road region; (d) Road image. 

  

(a) (b) 

  

(c) (d) 

3.2.1. Filter-Based Normal Estimation 

In 3D information processing, surface normal direction estimation is of great importance for 

robotics/ALV to describe objects and understand the scenes. For unorganized 3D points, the  

statistics-based method is commonly used, which estimates a plane to fit each point and its neighboring 

points. However, this method is time-consuming for dense data. In contrast, in [22] the authors 

demonstrated that well organized depth data can make normal estimation fast, and they used del operator 

to estimate the surface normal in the spherical space. In this work, we use del operator together with the 

depth image representation to derive a filter-based normal estimation algorithm for dense depth images. 

In particular, for one point with camera coordinates ( , , )x y z , its image coordinates ( , )u v  and depth 

value ( , )d u v  can be calculated by Equations (7), (8) and (9): 

x x

x
u f c

z
    (7) 

y y

y
v f c

z
    (8) 

( , )d u v z  (9) 

In camera coordinates, the normal estimation is formulated as del operator [22]: 

ˆ ˆ ˆx y z
x y z

  
   

  
 (10) 

where x̂ , ŷ , ẑ  correspond to the unit vectors of different axes. 

With the chain rule of the derivative, the partial derivatives in Equation (10) can be expanded as: 

u v d

x u x v x d x

      
  

      
 (11) 
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u v d

y u y v y d y

      
  

      
 (12) 

u v d

z u z v z d z

      
  

      
 (13) 

We apply the above partial derivatives onto Equations (7), (8) and (9), and then substitute the 

derivative results into Equation (10), which gives: 

2 2

ˆ( 0 0)

ˆ( 0 0)

ˆ( 1)

x

y

x y

f
x

u z v d

f
y

u v z d

x y
z f f

u z v z d

  
       

  

  
     

  

    
      

  

 (14) 

This can be written in a compact matrix form: 

 

1 0 0

ˆ ˆ ˆ 0 1 0

1

x

y

f

u z

f
x y z

v z
x y

z z
d

 
      

   
       

   
    

    

 (15) 

In the above Equation (15), note that x

x

u cx

z f


  and 

y

y

v cy

z f


 are fixed for each point in the image 

with known intrinsic parameters ( , , , )x y x yf f c c ; thus they can be calculated and saved beforehand to 

accelerate the computation. ( , )d u v
u




 and ( , )d u v

v




actually compute the gradients in the u and v 

directions of the depth image respectively, which correspond to performing two spatial convolutions 

(details are given in the following), and ( , ) 1d u v
d





. 

For suppressing the noises, we first smooth the depth image with a Gaussian kernel (with kernel width 

s ) before normal estimation. Afterwards, we use the Sobel operators, defined in Equations (16) and (17), 

to efficiently calculate the gradient in a image convolution manner: 

1 0 1

2 0 2 / 8

1 0 1

uSobel

 
 

 
 
  

 (16) 

1 2 1

0 0 0 / 8

1 2 1

vSobel

   
 


 
  

 (17) 

The normal estimation results, using the above convolution kernels and different smoothing kernel 

widths s , are shown in Figure 8. It can be observed that, with appropriate value of s , the convolution 



Sensors 2014, 14 9057 

 

 

method gives pretty good normal estimation results. Generally the best value of s  depends on the 

application, which is a trade-off between reserving the details and suppressing the noises. In this paper, 

2s   is empirically chosen throughout the experiments. 

Note that this normal estimation method only needs three spatial convolutions with small kernels and 

some pixel-level operations, so the computation cost is quite cheap. This method can achieve accurate 

surface normal estimation for each point in the image. In displaying the normal direction, we use the 

following color codes throughout the paper. When ( , , )x y zN N N  is the normal vector of one point, the 

corresponding pseudo-color used in this paper to show the normal direction is: ( 1) / 2xr N  , 

( 1) / 2yg N  , ( 1) / 2zb N  , where ( , , )r g b  are the red, green, and blue signals respectively. 

Figure 8. Normal images with different Gaussian kernels: (a) 1s  ; (b) 2s  .  

(c) 4s  ; (d) 8s  . 

  

(a) (b) 

  

(c) (d) 

Figure 9. (a) Normal image; (b) Normal projection in ZW; (c) Normal projection in XW. 

 

(a) 
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Figure 9. Cont. 

  

(b) (c) 

3.2.2. Curb Point Detection in the Normal Image 

As in Figure 9, the normal property of curbs is clearly shown in the normal image and its projections 

in XW and ZW directions. In particular, in Figure 9b, both sides of the curbs appear a bright-dark-bright 

(BDB) pattern in row direction. Moreover, in Figure 9c, the left curb appears a dark-bright-dark (DBD) 

pattern, while the right curb appears a BDB pattern. 

Based on above observations, we design multi-scale row patterns for better detecting curb features, 

which are illustrated in Figure 10. The value of M (in pixel) in Figure 10 controls the detection scale and 

is chosen from {1, 2, 4, 8, 16} in this paper. For each pattern, the largest response over different scales at 

one point is taken as its final output at this point. Some examples of the responses of the designed 

patterns in road region are shown in Figure 11. 

Figure 10. (a) ‘bright-dark-bright’ pattern. (b) ‘dark-bright-dark’ pattern. 

  

(a) (b) 

We define the curb feature for each side of the curb based on the pattern responses. The left curb 

feature, as shown in Figure 12a, is detected by the ‘BDB’ response on the ZW projection map (Figure 11a) 

multiplied by the ‘DBD’ response on the XW projection map (Figure 11b). Similarly, the right curb 

feature, as shown in Figure 12b, is detected by the ‘BDB’ response on the ZW projection map (Figure 11a) 

multiplied by the ‘BDB’ response on the XW projection map (Figure 11c). As observed from the point 

feature detection results shown in Figure 12, the real curb positions have significant responses, although 

there are still some isolated noises. 

1/M 
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-1/M  
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Figure 11. (a) ‘BDB’ pattern response on ZW projection map; (b) ‘DBD’ pattern response on 

XW projection map; (c) ‘BDB’ pattern response on XW projection map. 

 

(a) 

 

(b) 

 

(c) 

Figure 12. (a) Left side curb feature; (b) Right side curb feature. 

 

(a) 

 

(b) 
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3.3. Curb Point Linking 

Using the consistency property of the curbs, we build a Markov Chain model for linking the curb 

points. After transforming the feature responses into node and edge probabilities in the Markov Chain, 

we can link the best curb path by high efficient dynamic programming algorithm [23,24]. This linking 

step at the same time filters out the isolated noises and achieves consistent curb paths. 

3.3.1. Markov Chain Model for Curb Point Linking 

We build a Markov Chain model for the curb in each road side, to make full use of the feature 

responses and explore the consistency property of the curbs.  

Denote the curb point position in each row of the image as a random variable xi, and each xi has N 

different states, each of which corresponds to a specific column of N columns in the image. Here we 

restrict our model in road region, which is identified by the value zW in Section 3.1. 

The node probability (i.e., the probability of xi taking a specific state from the total N states) from the 

curb feature is defined as: 

( , ) 21
( ) (1 exp( ( ) ))

i kk

i

i n

f
nodePot X

Z 
     (18) 

( , ) 2(1 exp( ( ) ))
i k

i

k n

f
Z


    (19) 

where k

iX  means that ix k , namely the curb point in the i-th row locates at k-th column in the image. 

With this definition of the node probability, we transform the feature response to the probability for the 

states (column position) of a curb point. The stronger the feature response is, the greater probability the 

point has. This transforming is controlled by the parameter n , and we set 0.003n   in all our 

experiments. Though there are still other ways to define the probability, such as learning-based methods, 

we prefer this definition for its simplicity of avoiding manually labeling the data. The node probability 

calculated as above for each side is visualized in Figure 13. 

Figure 13. (a) Node probability for left side curb; (b) Node probability for right side curb. 

 

(a) 

 

(b) 

The edge probability which describes the consistency property is defined as: 

1 1 1( , ) ( , ) ( , )j k j k j k

i i x i i f i iedgePot X X e X X e X X     (20) 
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   (21) 

2

( 1, ) ( , )

1 2

( )
( , ) exp( )

i j i kj k

f i i

f

f f
e X X








   (22) 

The major consideration in defining this edge probability is that the best path should be smooth in 

terms of both position and feature. The feature f here can be of various types, such as position, texture, 

color, etc. In this paper, we use the curb point feature response as f for efficiency, and we choose 

0.001f   and 10x   in all our experiments. 

3.3.2. Link the Curb Points via Dynamic Programming 

With the node and edge probabilities defined above, the best path (linking curb points with the largest 

total probability) can be obtained by applying dynamic programming algorithm. The linking process 

includes forward and backward searching steps. 

In the forward searching steps, the algorithm selects the path from top to bottom. We calculate the 

probability from the top row (in road region) to current point with Equation (23) and find the best link 

point (with the largest cumulative probability) with Equation (24): 

1 1 1
( )

( ) ( ) max ( ( ) ( , ))j j k k j

i i i i i
k N j

p X nodePot X p X edgePot X X  


    (23) 

1 1
( )

( ) arg max ( ( ) ( , ))j k k j

i i i i
k N jk

link X p X edgePot X X 


   (24) 

In the backward steps, we choose the point with the maximum probability in the bottom row, and track 

back to the top by using the link data. In this way, best paths can be linked to filter the isolated noises. The 

Markov Chain based curb point linking results are shown in Figure 14. We can see that the curb points 

are linked together accurately. On the right side, some non-curb points are also included because of the 

occlusion. This motivates us to propose following post-processing steps to filter out these outliers and 

build the curb models. 

Figure 14. Best path for each side. Red points indicate the left curb, blue points indicate the 

right curb. 

 

3.4. Curb Refinement 

In this subsection, we introduce the details of employed post-processing in this work for further 

refining the curb detection results. 
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3.4.1. Noises Filtering 

By analyzing the positions and the curb point features along the best path, we detect suitable break 

points to cut the best path into several segments, and choose the best segment as our final output to filter 

out the non-curb parts. After an average smoothing, we calculate the curvature and feature variation 

along the best path. Throughout the experiments, the break points are defined as points with the curvature 

greater than 10 or the feature variation greater than 0.003. We sum up the probabilities along each 

segment, and choose the segment with the largest probability as the output best segment. 

3.4.2. Curb Modeling 

We use a polynomial model (up to second order) in the curb modeling, which is given in Equation (25). 

There are also other choices for curb modeling [8–10]. We choose this polynomial one based on its 

simplicity and its reliability in the experiments: 

2u a v b v c      (25) 

We use weighted least square for estimating parameters (a,b,c)  by using the nodePot as the weight for 

each point. For optimizing the parameters, we minimize the objective function in Equation (26): 

2 2

, ,
min ( )i i i i
a b c

i

w u a v b v c       
(26) 

Here (ui, vi) is a curb point in the best segment, and wi is the ( )i

i

u

vnodePot X . With a weighted least 

square method, the best parameters can be estimated by solving Equation (27). The Equation (27) 

actually has closed form solution and can be solved fast: 

2 4 3 2

1 3 2 1

2 11 1

i i i i i i i i i

i i i i

i i i i i i i i i

i i i i

i i i i i i i

i i i i

w u v w v w v w v
a

w u v w v w v w v b

c
w u w v w v w

   
         

     
           

             
      

   

   

   

 (27) 

3.4.3. Confidence Scoring 

We give our confidence scores for the detected curbs based on both the node probability and the 

accuracy of the model: 

2 2

2

( )
exp( )i i i

i

i sc

u a v b v c
score w



    
    (28) 

That is to say, more points lying in the path with stronger curb feature and less model error can lead to 

a higher score for the detection result. The refined results are shown in Figure 15, where we set 3sc  . 
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Figure 15. Final results. The confidence score for left curb is 36.6604, and the right is 12.7776. 

 

4. Experiment Results and Discussion 

In this section, we present the experimental evaluations of our proposed method for curb detection. 

Here we use the widely used KITTI dataset [25] as the test bed for our curb detection method in urban 

environments. Based on the results in typical scenes, both qualitative and quantitative analyses of the 

performance of our method are given. 

4.1. Dataset  

We use the KITTI dataset in this section to evaluate our method. The KITTI dataset is one of the most 

comprehensive datasets for ALV applications, which is commonly used as the test bed for various tasks [25].  

In the KITTI dataset, synchronous data from an Inertial Measurement Unit (IMU), a 3D-Lidar (Velodyne 

Lidar), two stereo cameras are provided at 10 Hz. The camera images are rectified, and the cameras are 

triggered by the 3D-Lidar to guarantee them to be well aligned. Moreover, the accurate calibration 

parameters for all sensors are provided. 

4.2. Curb Detection Results under Various Conditions  

We conduct comprehensive evaluations of our method on KITTI dataset, and our proposed  

method achieves outperforming results. In this section, we present some evaluation results under  

different conditions. 

From Figures 16–21, the first row shows the visual image, the second row shows the normal image 

together with the best curb paths, the third row shows road image together with final curb detection 

results, and the last row shows the result from the top view. In the top view map, red points represent the 

obstacles, blue points represent the curb results, and the cover range is 60 40  m.  

The statistics results of each experiment are summarized in Table 1. For each experiment, we provide 

the curb detection range in world coordinates and the confidence score for each side. 
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4.2.1. Illumination Change and Strong Shadow 

Figure 16 gives the results in the scenes with illumination change and strong shadow. As can be 

observed from the results, our method provides results resistant to the shadow influence as it uses the 

geometric properties for curb detection. In Figure 16a, some curbs without corresponding edges in the 

image are also reliably detected.  

Figure 16. (a) Curbs in illumination change; (b) Curbs in strong shadow and with  

obstacle occlusion. 

  

  

  

  

(a) (b) 

4.2.2. Different Road Widths 

Figure 17 shows the curb results with different road widths. Our method suits for both narrow and 

wide roads and provides satisfactory results. In Figure 17a, it is shown that our method can detect the left 

curb which is quite far away. The detection range in horizontal is from −8 to 8 m, and in vertical is from 

6 to 30 m, as summarized in Table 1. This detection range is quite sufficient in practice. 

4.2.3. Straight and Curved Curbs of Different Lengths 

For detecting both curved and straight curbs of different lengths, our method provides reliable 

detection results, as shown in Figure 18. In Figure 18b, the right curb, which only occupies a small part 

of the road, is also successfully detected, through our proposed linking and post-processing steps. 
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Figure 17. (a) Curbs in wide road; (b) Curbs in narrow road. 

  

  

  

  

(a) (b) 

Figure 18. (a) Straight and curved curbs; (b) Long and short curbs. 

  

  

  



Sensors 2014, 14 9066 

 

 

Figure 18. Cont. 

  

(a) (b) 

4.2.4. Obstacle Occlusion 

Figure 19a and Figure 16b give the curb detection results with obstacle occlusion. In Figure 19a, 

though there are objects aside and ahead, our method can still provide reasonable results. Because our 

method uses the height property of curbs and only detects curbs in the identified road region, the obstacle 

region can be filtered out. This makes our method robust to the obstacle occlusion. 

4.2.5. Vehicle Direction Change 

Figure 19b gives the curb detection result in the scene where the vehicle direction changes. In this 

experiment, the direction of the vehicle relative to the road is changed to 30–45 degrees. It clearly shows 

that our method still outputs reliable detection results. 

Figure 19. (a) Curbs with obstacle occlusion; (b) Vehicle direction change situation. 
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Figure 19. Cont. 

  

(a) (b) 

4.2.6. Broken Curbs 

For broken curbs, our method can provide reasonable results, as shown in Figure 20. Because we use 

break points to filter the noises, our method generally cannot link the broken curbs and will output the 

strongest segment, as the right curb in Figure 20a. However, if the broken part has consistent feature 

(even very weak), our method can completely detect and link the broken curbs, as the left curb in Figure 20b. 

Figure 20. (a) Partly detected broken curbs; (b) Completely detected broken curbs. 

  

  

  

 

  

(a) (b) 
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4.2.7. Missed Curbs 

With confidence scores, our method can judge whether there is a curb in each side. In our 

experiments, if the confidence score is lower than 10, we disable the result. Figure 21 gives the missed 

curb results in sequential frames. In Figure 21a, the right curb is weak and cannot be reliably detected. In 

the next frame, when the curb features become stronger, we can detect the right curb, as shown  

in Figure 21b. 

Figure 21. (a) Missed curbs; (b) Detected curbs. 

  

  

  

  

(a) (b) 

4.3. Quantitative and Qualitative Analyses on Our Method 

In this subsection, we provide some further discussions and illustrations on our proposed method. 

4.3.1. Edge Probability Design 

In the edge probability design, we use both the position and the feature. In this subsection, we give a 

comparison with different probability strategies. One is our method and the other one only uses the 

position information. 

Figure 22 shows a demonstration result: (a) is the visual image of the scene; (b) is the output with only 

position information; (c) shows our best curb linking results. Because our method includes the curb 

feature, it successfully tracks the consistent curb points, and filters out isolated noises. Thus our method 

finally provides better results than the baseline method. 
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Table 1. Detection range and confidence scores of each experiment. 

Experiments Sides 
Detection Range (meters) 

Scores 
Min(XW) Max(XW) Min(YW) Max(YW) 

Figure 16a 
Left −6.19 −4.99 6.08 27.58 24.93 

Right 0.99 1.34 6.26 30.63 30.30 

Figure 16b 
Left −5.47 −5.28 8.05 15.63 19.58 

Right 0.47 0.79 7.43 30.19 62.14 

Figure 17a 
Left −8.41 −7.89 10.88 25.04 12.89 

Right 3.65 4.72 6.52 32.93 42.16 

Figure 17b 
Left −2.33 −2.01 5.86 28.14 38.60 

Right 1.42 2.47 6.06 16.16 18.08 

Figure18a 
Left −6.55 −5.17 6.88 30.78 46.43 

Right 3.43 5.06 6.31 30.30 46.24 

Figure 18b 
Left −5.84 −5.39 6.50 19.28 26.17 

Right 0.97 1.11 6.38 10.71 36.69 

Figure 19a 
Left −4.90 −4.67 6.51 11.53 33.47 

Right 2.51 4.07 5.72 28.63 24.47 

Figure 19b 
Left −4.11 5.56 6.48 22.98 28.39 

Right 3.76 13.21 6.60 22.62 63.25 

Figure 20a 
Left −5.92 −4.77 6.19 20.48 43.45 

Right 0.99 1.13 5.94 8.79 17.93 

Figure 20b 
Left −4.00 −3.45 6.23 20.06 32.06 

Right - - - - 0 

Figure 21a 
Left −5.98 −4.27 6.55 12.68 25.76 

Right - - - - 0 

Figure 21b 
Left −5.63 −4.29 6.31 12.48 29.11 

Right 0.24 1.43 8.70 14.14 21.30 

Figure 22. (a) Visual image. (b) The linking results with only position information.  

(c) Our linking results. 

 

(a) 

  

(b) (c) 
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4.3.2. Used Computation Resource 

In each step of our method, we take the implementation efficiency into account. The depth recovery 

and normal estimation take the major part of the computation resource in our method. For depth 

recovery, we use the Graphic Processing Unit (GPU) implementation from [4], and the processing time 

for each frame in KITTI is about 30 ms. For normal estimation with depth images, we derive a filter-based 

method, which only needs some small-size convolutions and pixel-level operations, and the processing 

time with Central Processing Unit (CPU) is about 15 ms in our experiments. Finally, we achieve 15 Hz 

(15 frames per second) by using an i7 processor together with a desktop graphics card (NVIDIA 

GTX260). The total implementation time for each frame in KITTI dataset is about 60 ms, which achieves 

real-time performance. 

4.3.3. The Detection Range 

One of the most important advantages of our method is its robustness. By using the dense depth 

image, our method achieves reliable results even for quite noisy scenes. Our method also achieves larger 

detection range. In KITTI dataset, in no occlusion condition, the detection range is about +30 m in 

vertical and +8 m in horizontal for common curbs with about 10 cm height. The typical results are shown 

in Figures 16a, 17a, 18a, and the statistics results are listed in Table 1. 

5. Conclusions and Future Work 

In this paper, we have proposed a curb detection method based on fusing the 3D-Lidar and camera 

data. Using the dense depth image from range-visual fusion, we derived a filter-based method for 

efficient surface normal estimation. By using the specifically designed pattern of curbs, curb point 

features were detected in the normal image row by row. We then formulated the curb point linking 

process as a best path searching on a corresponding Markov Chain, which was solved via dynamic 

programming. We also designed several post-processing steps to filter the noises, parameterize the curb 

models and compute their confidence scores. Comprehensive evaluations on KITTI dataset showed that 

our method achieved good results in both static and dynamic scenes, and processed the data at the speed 

of 15 Hz. For the obstacle occlusion and strong shadow, our method showed strong robustness. In typical 

scenes without occlusion, our detection rang reached 30 m for front and 8 m for each side. 

In the future, we are going to apply this curb detection method for other ALV applications, such as 

map building, vehicle localization and so on. To date, there is no widely accepted benchmark for curb 

detection. A comprehensive benchmark with different sensors for curb detection is needed for fair 

comparison, and this could be our future work. 
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