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Abstract: The lensing capabilities of a single subwavelength slit surrounded by a finite 

array of grooves milled into a brass plate is presented. The modulation of the beam 

intensity of this ultrasonic lens can be adjusted by varying the groove depth. Numerical 

simulations as well as experimental validations at 290 kHz are shown. The experimental 

results are in good agreement with the numerical simulations. This system is believed to 

have potential applications for medical ultrasound fields such as tomography and therapy. 

Keywords: subwavelength slit; ultrasonic lens; grooves array 

 

1. Introduction 

Since Ebbesen et al. [1] discovered the phenomenon of extraordinary optical transmission in metal 

films perforated with two-dimensional subwavelength hole arrays, linked with the excitation of surface 

plasmons, there has been a growing interest in exploring the optical properties of subwavelength holes 

and slits [2–7]. The ability of a single subwavelength slit perforated on metallic film surrounded by 

grooves to enhance light transmission as well as its beaming effect has attracted great attention [8–11].  

Motivated by the wave nature of light and sound, the focus of research on electromagnetic waves 

has been transferred to acoustic waves, taking into account that the electromagnetic wave is a 

transverse vector while the acoustic wave is a scalar longitudinal wave. In recent years, the study of 

acoustic transmission through subwavelength apertures has received a lot of attention. The sound 
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transmission through one and two dimensional aperture arrays has been studied theoretically [12,13] 

and confirmed experimentally for slit [14] and holes arrays [15–18]. On the other hand, the feasibility 

of sound collimation through a plate with a subwavelength slit surrounded by a finite array of grooves 

was demonstrated theoretically [19] and confirmed experimentally using a bull’s eye structure [20]. In 

this sense, several theoretical studies have demonstrated the beaming capability of a subwavelength slit 

surrounded by a finite array of grooves [21,22]. Moreover, the fact that the evanescent waves of 

subwavelength apertures coupled with Fabry-Perot resonances inside an aperture causes an efficient 

transmission of the evanescent waves has openned a new avenue in acoustic metamaterials. The 

capability of acoustic imaging of these metamaterials based on subwavelength apertures is the reason 

for this amount of attention during these last years [23–26].  

The purpose of this work is to show, through both simulations and experiments, that a brass plate 

with a single subwavelength slit surrounded by a finite array of grooves acts as an ultrasonic lens and 

the beam intensity modulation can be shifted by varying only the groove depth, maintaining the other 

parameters such as groove width and groove period fixed. 

2. Experimental Section  

The basic structure considered is a brass plate with a subwavelength center-slit surrounded by a 

symmetric array of 4 grooves on each side of the slit at the output surface, as depicted in Figure 1. 

Preliminary numerical calculations showed that more than four grooves did not enhance the results. The 

thickness of the plate is t = 5 mm and the period of the grooves is p = 5 mm. The width of the central slit 

and the grooves is w = 2.5 mm. Three different depths of the grooves are considered, d = 1, 2 and 3 mm. 

Figure 1. Schematic diagram of the corrugated plate. The inset shows a picture of the plate. 

 

The experimental set-up is based on the ultrasonic immersion transmission technique. The sample 

was placed in a water tank and the alignment and positioning were provided by an automated 

positioning system built around a water tank, which is capable of sweeping the hydrophone through a 

3D grid of measurement points located at any trajectory inside the tank. Two different kinds of 

transducers were used: a piston transducer (Imasonic, Les Savourots, France) centered at a frequency 

of 250 kHz with an active diameter of 32 mm was employed as an emitter and a Polyvinylidene 

fluoride (PVDF) needle hydrophone (model HPM1/1, Precision Acoustics Ltd., Dorchester, UK) with 

a diameter of 1.5 mm and with ±4 dB bandwidth spans from 200 kHz to 15 MHz as a receiver. The 
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pulse launched by the emitter piston transducer through the inspected plate was detected by the 

hydrophone and acquired by the pulser/receiver, post-amplified and digitalized by a digital PC 

oscilloscope (Picoscope model 3224, Pico Technology, St Neots, UK). Time domain data were finally 

analyzed after averaging 100 different measurements. The time window was set to be wide enough to 

collect only direct transmission through the plate and to avoid indirect transmission due to lateral 

reflections. Scanning was done using the automated positioning system along a plane normal to the plate, 

with a spatial resolution of 0.5 × 0.5 mm
2
. Figure 2 shows an image of the experimental set-up. 

Figure 2. Picture of the experimental set-up. 

 

3. Results and Discussion 

The sound pressure maps of the transmission field were simulated by using the commercial 

software COMSOL Multiphysics 3.5.a (Comsol AB., Stockholm, Sweden). In the simulations, the 

brass plate was modelled as an elastic solid and the Helmholtz equation for the fluid medium was used 

together with the usual boundary conditions in the solid/fluid interface. More details about the model 

equations and boundary conditions can be found in reference [27]. The free field conditions for the 

outgoing waves were modelled using perfect matched layers [28]. In the simulations, the density, the 

Young’s modulus and the Poisson ratio of the brass plate were set at 8490 kg/m
3
, 120 × 10

9
 N/m

2
 and 

0.31, respectively. The water density, the bulk and dynamic viscosities values were set at 1000 kg/m
3
, 

2.47 × 10
−3

 Pa·s and 0.89 × 10
−3

 Pa·s, respectively. By way of example, the numerical simulation and 

experimental pressure field maps at 290 kHz are presented in Figure 3a–f. These pressure maps 

involve dynamic scattering processes of two types of waves [21]: the acoustic surface evanescent 

waves due to the interface of a periodically grooved subwavelength structure and the cylindrical waves 

which are due to the imaginary point source at the end of the slit related to the well-known Huygens’ 

Principle. The in-plane propagation of the acoustic surface evanescent waves depends on the groove 

width (w), groove depth (d) and the period of the grooves (p) by [29]: 

2/1

2

2

2

tan1













 kd

p

w
kkx  (1)  



Sensors 2014, 14 8824 

 

 

 kd
p

w
jkkz tan  (2) 

where j = (−1)
1/2

, k is the wavenumber and kx and kz are the respective X and Z wavenumber components. 

The cylindrical wave is governed by the thickness of the structure (t) and is related to the Fabry-Perot 

resonances. The overlapping of both the cylindrical waves and the acoustic surface evanescent waves 

produces the modulation intensity of the beam. In such a way, the mere presence of groove-grating does 

not allow the modulation of the beam because the structure only radiates evanescent waves, so the 

pressure amplitude decays quickly away from the structure surface [30]. To verify this, absolute pressure 

simulated field maps of groove-grating with central slit (Figure 4a–c) and groove-grating without central 

slit (Figure 4d–f) plates are plotted. Three different groove depths are considered: 1 mm (Figure 4a,d),  

2 mm (Figure 4b,e) and 3 mm (Figure 4c,f). 

To quantify the pressure at a certain distance for different groove depths, it is necessary to cut the 

pressure field maps at x = 0. Figure 5 shows these results both numerically and experimentally. As the 

interest is in the far-field region, where the edge effects can be neglected, only the results from 20 mm 

to the slit are taken into account. In this region, maintaining the transducer power constant, and 

depending on the grooves depth at a certain distance from the slit, different pressure values are obtained 

as observed in Figure 5. The experimental results are in close agreement with the simulated ones.  

Figure 3. The normalized absolute pressure field maps in the XZ plane of the corrugated 

plates considered are shown. Simulated results for a groove depth of (a) 1 mm, (b) 2 mm and 

(c) 3 mm. Experimental results for a groove depth of (d) 1 mm, (e) 2 mm and (f) 3 mm. 
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Figure 4. The normalized absolute pressure simulated field maps in the XZ plane of  

groove-grating with central slit plate for a groove depth of (a) 1 mm, (b) 2 mm and (c) 3 mm and 

groove-grating without central slit plate for a groove depth of (d) 1 mm, (e) 2 mm and (f) 3 mm. 

 

Figure 5. Pressure field at the line x = 0 of the corrugated plates considered. (a) Simulated 

results and (b) Experimental results. 
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4. Conclusions 

In conclusion, both the simulated and experimental ultrasonic beaming effects of a single 

subwavelength slit surrounded by a finite array of grooves have been shown. The experimental results 

are in close agreement with the simulated ones. This modulation phenomenon can be explained as an 

interference phenomenon. At the output side, the slit diffracts a beam into free space and through 

acoustic surface evanescent waves to grooves. A single groove has cavity modes that depend on the 

groove depth and width. 

Each groove couples acoustic surface evanescent waves into other grooves and radiative waves into 

free space when the phases are matched. The constructive interference of the acoustic waves emerging 

from the slit and grooves will increase the pressure at a point where the phase difference between the 

waves is a multiple of 2π. The phase difference depends on the depth of the grooves, and thus the  

far-field pressure distribution can be modified. This device is believed to have potential applications 

for medical ultrasound fields such as tomography and therapy. 
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