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Abstract: Chair rise performance is incorporated in clinical assessments to indicate  

fall risk status in older persons. This study investigated the test-retest reliability of a 

pendant-sensor-based assessment of chair rise performance. Forty-one older persons  

(28 females, 13 males, age: 72–94) were assessed in two sessions with 3 to 8 days in 

between. Repeated chair rise transfers were measured after different instructions. Relative 

and absolute test-retest reliability of chair rise measurements in individual tests and 

average over all tests were evaluated by means of intra-class correlation coefficients (ICCs) 

and standard error of measurement (SEM) as a percentage of the measurement mean. 

Systematic bias between the measurements in test and retest was examined with paired  

t-tests. Heteroscedasticity of the measurements was visually checked with Bland-Altman 

plots. In the different test conditions, the ICCs ranged between 0.63 and 0.93, and the 

SEM% ranged between 5.7% and 21.2%. The relative and absolute reliability of the 

average over all tests were ICC = 0.86 and SEM% = 9.5% for transfer duration, ICC = 0.93 
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and SEM% = 9.2% for maximum vertical acceleration, and ICC = 0.89 and SEM% = 10.0% 

for peak power. The results over all tests indicated that a fall risk assessment application 

based on pendant-worn-sensor measured chair rise performance in daily life might be feasible. 

Keywords: chair rise; reliability; fall risk; accelerometer 

 

1. Introduction 

One in three persons aged 65 or older falls at least once each year [1]. Falls resulting in significant 

injuries may have huge impact on the lives of the individuals and their families [2]. An early detection 

of increased fall risk may allow timely interventions and reduce falls or injuries resulting from falls 

significantly [3]. The clinical assessments of fall risk are usually done using questionnaire or simple 

field tests [4,5]. Chair rise performance is influenced by the leg strength and power [6,7] and measured 

as an indicator of fall risk status in old people [8,9]. Field tests with chair rise transfers, such as Timed 

Up and Go (TUG) and Five Times Sit to Stand (FTSS) are incorporated in fall risk assessments [9]. 

Single chair rise movement was also used in fall risk assessment tools [5,9]. However, the performance 

was only evaluated with the time of completing the transfer or subjective evaluation of the difficulty 

when completing the transfer. The development of on-body sensors in recent years, especially those 

consisting of inertial sensors like accelerometers and gyroscopes, facilitates new studies and applications 

in fall risk assessments beyond traditional clinical setup and measurements. Zijlstra et al. [10] reported 

fair to excellent agreements of sit-to-stand (STS) transfer peak power measured with a standard 

laboratory-based method using force-plate and body-fixed sensors. Other STS transfer measurements 

using on-body sensors reported in previous studies include duration, velocity, maximum jerk, maximum 

acceleration and frequency features of accelerations [11–13]. In these studies, measurements were 

derived from various on-body positions. Measurements from joint estimation of acceleration from 

chest and thigh fixed sensors were examined in [13]. A sensor fixed at one side of the hip or at the 

center of mass (COM) was studied in [11,13,14]. In article [10], peak power measured with sensors 

fixed at the sternum, waist, side of the hip and their combinations were investigated. To better 

understand the progression of fall risk and provide accurate assessment, prospective longitudinal 

studies in community settings are needed [2]. In the aforementioned studies, sensor-based analysis was 

applied in well controlled experiment setups. Sensor fixation and standardized tests with repetition of 

STS movements restricted the deployment in long-term daily living situations. Hence, the results from 

previous studies cannot be generalized to daily life situations. A low-cost easy-to-use fall risk 

assessment tool is desirable from this research perspective.  

In our study, we investigate a single sensor-based chair rise transfer analysis solution for continuous 

fall risk assessment, which is important for monitoring the progress of intervention for fall prevention. 

To build a power-efficient monitoring and assessment tool, we propose a signal processing method 

based on one 3D accelerometer instead of methods using power-hungry sensors like gyroscopes. The 

sensor device can be worn on a necklace in front of the chest. The pendant sensor has the advantage 

over other body-fixed sensors in terms of convenience and comfort, which can improve user compliance 

in a long-term measurement and facilitate continuous fall risk assessment in daily living situation.  
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In this article, we report test-retest reliability of a pendant-sensor-based assessment of multiple chair 

rise measurements in a sample of older persons. Various standardized chair rise tests are performed 

under the supervision of researchers. Analysis is conducted based on individual tests under different 

chair rise conditions to demonstrate the reliability of pendant-worn-sensor measurements in a controlled 

setup. Additionally, analysis based on average measurements over all tests is conducted to understand 

the reliability when measuring performance of chair rises with larger variance. The latter analysis may 

give an indication of the measurement reliability in daily living situations, in which various chair rise 

conditions apply. Hence, the results will give an insight on the feasibility of a fall risk assessment 

application with chair rise measured in daily life. 

2. Method 

2.1. Participants 

Subjects were recruited in residential care homes, sheltered houses and health care centers in the 

Groningen area, The Netherlands. Inclusion criteria were age 70 years or older, ability to stand up from 

a chair and walk for 10 m at minimum either with or without a walking aid (wheeled walker or cane). 

Subjects with cardiovascular/respiratory disorders, neurological disorders, severe comorbidity, cognitive 

disorders that affect comprehension or execution of the physical tests, simultaneous participation in an 

intervention or exercise program, orthopedic surgery in the previous six months, visual problems to a 

degree that makes it impossible to walk or stand up safely from a chair, a stroke within the last six 

months were excluded for recruitment for the study. All subjects signed an informed consent before 

the start of the study. The study was approved by the Medical Ethical Committee of the University 

Medical Center Groningen (UMCG), Groningen, The Netherlands. 

Forty-one older persons participated in the study. The participants were 28 females and 13 males, 

age between 72 and 94 years (mean ± SD: 81.9 ± 5.5), body mass ranged between 48 and 104 kg 

(mean ± SD: 78.5 ± 14), and body height between 1.46 and 1.89 m (mean ± SD: 1.65 ± 0.09).  

Self-reported number of falls in the year before the study was between 0 and 4. Four participants 

reported more than one fall in the year before the study. Twelve participants reported one fall in the 

year before the study.  

2.2. Study Procedure 

The subjects participated in two assessment sessions: test and retest sessions with three to eight 

days in between. During both assessment sessions, the subjects performed five Sit-to-Stand (STS) tests 

with comfortable speed from a chair of approximately 0.5 m height. If they experienced no difficulty 

performing the first five STSs, they were asked to perform another five STSs as fast as possible from 

the same chair. Each STS test required the subject to start at the sitting position against the back of the 

chair. After rising up, the subjects stood still for at least five seconds before sitting down to the initial 

position. After sitting down, they remained in sitting position for at least 10 s before the next transfer 

started. After completing the STS tests, the subjects performed Sit-to-Walk (STW) tests. They were 

first asked to perform three rounds of STW with comfortable speed. If they experienced no difficulty 

performing the first three STWs, they were asked to perform another three rounds of STW tests with 
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fast speed. In each round, the subject was instructed to rise up from the same chair as used for the STS 

test, walk to a cone, turn around, walk back to the chair and sit down again. At least 10 s resting time 

was required before the start of the next STW. The subjects practiced STS and STW once before the 

start of the assessment at each of the two sessions. They were allowed to use their wheeled walker or 

cane during the assessment if they did so in daily life. In addition, the subjects also performed the 

standard clinical assessments TUG [15] and FTSS [16]. Three rounds were performed for each test. A 

researcher recorded the time for completion of each test round.  

2.3. Data Acquisition  

A matchbox-sized hybrid motion sensor device was used for data acquisition. It has a 3D 

accelerometer with sampling frequency of 50 Hz. The subjects wore the device on a necklace, which 

was left hanging unrestricted in front of the chest during the assessments. Raw sensor data were 

recorded and processed offline on a PC.  

2.4. Data Processing  

Raw sensor data were processed and analyzed in MatLab R2012b (The Mathworks, Inc., Natick, 

MA, United States). The norm (     ) of 3D accelerometer data was computed according to  

Equation (1): 

                 
              

  
 (1) 

A 2nd order Butterworth low-pass filter with cutoff frequency of 3Hz was applied to the norm of 

acceleration. Figure 1 illustrates the analysis of measurements of a chair rise transfer: 

Figure 1. 3D acceleration (color) and norm (black) of the acceleration of a chair rise transfer. 

 

The definitions of the measurements are described below.  
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2.4.1. Maximum Vertical Acceleration 

The measured acceleration on each of the three axes of the pendant-worn-sensor includes a 

projection of the gravity (always in vertical direction). During a chair rise transfer, the trunk exhibits 

first a slight forward and downward tilt to position the center of mass from the middle of the chair 

closer to the feet. The trunk then exhibits an upward movement to lift the body to an upright position 

till the end of the transfer. In this case, the acceleration measured due to motion is relatively small in 

magnitude compared to gravity. When computing the norm of the acceleration, the component of the 

measured acceleration in the horizontal direction (due to trunk tilt and sway) will have a very small 

contribution to that norm due to the much larger size of gravity, which contributes to the component in 

the vertical direction. On the other hand, by the same effect, the component of the measured 

acceleration in the vertical direction will have unaltered contribution to the norm. Based on this 

assumption, we estimate the vertical acceleration due to the motion of the chair rise transfer as the 

residual of the norm acceleration (     ) subtracting a constant gravity component of 9.8 m/s
2
. The 

maximum vertical acceleration due to the motion is defined as the residual of the maximum norm 

acceleration (         ) minus the gravity.  

2.4.2. Duration 

The transfer starts at the initiation of the forward and downward trunk rotation before rising up 

from the chair. It is defined as the last sample when the norm acceleration remains at the gravity level 

(based on visual selection), which is indicated by the vertical line Tstart in Figure 1. The transfer ends 

when the trunk reaches the upright position. It is defined as the first sample when the norm 

acceleration reaches the gravity level after the minimum value of the norm (         ), which is 

indicated by the vertical line Tend in Figure 1. Duration is the time in seconds between the start and the 

end of the transfer.  

2.4.3. Peak Power 

Peak power is the maximum value of the power exertion during the transfer [10]. The computation 

of power exertion (P) during a chair rise transfer is defined in Equation (2), in which       denotes 

vertical velocity and is computed using Equation (3) (      is zero at the start of the transfer t0):  

                                  (2) 

                                       

 

  

 (3) 

2.4.4. Maximum Jerk 

Jerk is computed as the 1st derivative of the norm acceleration. Maximum jerk is the maximum 

value to be found in the interval between the start of the transfer and the time the maximum norm 

acceleration is reached [12].  
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To minimize the inter-individual differences due to the differences in body dimensions, all 

measurements were scaled according to the scaling method introduced in [17]. The follow-up analysis 

was based on dimensionless pendant-worn-sensor measurements. 

2.5. Statistical Analysis 

All statistical analyses were done in MatLab R2012b (The Mathworks, Inc.). The test-retest 

reliability was evaluated with the average score of the measurement in each individual test and over all 

tests. Subjects who completed both test and retest assessment sessions were included for analysis. 

Subjects with at least two transfers from STS test (normal or fast) and at least two transfers from STW 

test (normal or fast) successfully recorded were included for analysis. Bland-Altman plots [18] were 

used to visually check the heteroscedasticity of the data. Paired t-test was applied to examine the 

existence of systematic bias between the measurements in the test and retest [19]. The p-value and the 

confidence interval (CI) at 95% boundary for the null hypothesis of no difference in means of test and 

retest data was evaluated. If the p-value is equal or lower than 0.05 or zero value is outside of the CI, a 

significant difference in means of test and retest measurements is present.  

Relative test-retest reliability is the degree to which the individuals maintain their position in a 

sample over repeated measurements [19]. Relative reliability was evaluated with Intra-Class Coefficient 

(ICC) model (3, k) defined in [20]. The applied ICC model takes both systematic and random errors in 

the data into account and uses the mean scores of repeated tests as evaluation score. ICC scores equal 

or larger than 0.75 are considered to be excellent relative reliability. Fair to good relative reliability is 

with ICC score in range of 0.4 and 0.75. ICC score lower than 0.4 is considered as poor relative 

reliability [19].  

Absolute test-retest reliability is the degree to which repeated measurements vary for individuals [19]. 

Absolute test-retest reliability was analyzed with standard error of measurement (SEM) [19] defined in 

Equation (4), in which SD is the standard deviation of the samples in test and retest. SEM measures the 

precision of the individual scores on a test. A SEM score in percentage of the mean (SEM%) of test 

and retest scores is a unit-less value, which is computed with Equation (5) and used in the analysis to 

compare the absolute test-retest reliabilities of different measurements. A SEM% value equal or 

smaller than 10% indicates excellent absolute reliability of the measurement:  

               (4) 

                         (5) 

Besides the sensor-based chair rise measurements, the test-retest reliabilities of the clinical 

assessments were also evaluated. The average scores of the three rounds of TUG tests and average 

scores of the three rounds FTSS tests were computed. Paired t-test was applied for examination of 

systematic bias in average scores of test and retest sessions. ICC and SEM% of the average scores 

were computed. 
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3. Results 

For the clinical assessments, data from 38 subjects in TUG tests and from 35 subjects in FTSS tests 

were analyzed. Four subjects in TUG tests and 6 subjects in FTSS tests did not perform the test 

successfully in at least one of the assessment sessions, thus they were excluded for the analysis. Table 1 

summarizes the test-retest reliability evaluation of the clinical assessments. For each assessment, the 

mean and standard deviation of the average score over all tests in test (Mean ± SD Test) and retest 

(Mean ± SD Retest) sessions, and the mean and standard deviation of difference (Mean ± SD Diff) 

between test and retest scores are listed. The p-values computed in paired t-test and its 95% CI, ICC 

scores to evaluate the relative reliability, and SEM% to evaluate the absolute reliability are shown.  

Table 1. Test-retest reliability of the clinical assessments. 

Clinical 

Assessment 

Mean ± SD 

Test 

Mean ± SD 

Retest 

Mean ± SD  

Diff 
p-Value 

95% CI  

of Diff 
ICC 

SEM%  

(%) 

TUG (sec) 15.77 ± 9.36 15.27 ± 9.19 −0.50 ± 1.68 0.08 −1.05–0.05 0.99 5.4 

FTSS (sec) 17.36 ± 4.87 16.29±4.68 −1.07 ± 2.92 0.04 −2.07–0.07 0.90 9.0 

Both TUG and FTSS demonstrated excellent relative and absolute reliabilities. A p-value of the 

paired t-test below 0.05 and zero value outside of the 95% CI in average FTSS indicated a significant 

difference between the mean scores in test and retest sessions. TUG test demonstrated excellent 

relative and absolute test-retest reliability with ICC of 0.99 and SEM% of 5.4%, respectively. FTSS 

also had excellent relative and absolute reliability, though the ICC and SEM% values were lower 

compared to TUG test. The mean completion time of a TUG test and a FTSS test suggested that a large 

proportion of subjects in our study are at risk of falls [16].  

For the pendant-sensor-based chair rise measurements, 36 subjects’ data were analyzed. Five 

subjects’ data were excluded from the analysis. Two persons were excluded due to absence at the retest 

session. One person was excluded due to a technical problem during assessment. Two persons were 

excluded because less than two transfers in STW test could be recorded.  

The heteroscedasticity of measurements in each individual and average over all tests was visually 

examined with Bland-Altman plots. Figure 2 shows the plots of the average scores of the measurements 

over all tests. The size of the difference between the test and the retest scores did not change with the 

size of the mean of the test and the retest scores. So, the statistical analysis continued in the original 

format without logarithmic conversion [18].  

Table 2 summarizes the evaluations of test-retest reliability of chair rise measurements in the 

individual tests. Among the four chair rise tests, the peak power and the maximum jerk had moderate 

relative reliability in the fast STS test. For the other tests, all measurements demonstrated an excellent 

relative reliability. An excellent absolute reliability was seen in the transfer duration of the fast STS 

test and in the transfer duration, the maximum vertical acceleration and the peak power of the fast 

STW test. Duration, maximum vertical acceleration and peak power demonstrated excellent reliability 

in most of the chair rise tests and moderate (SEM% less than 15%) to excellent absolute reliability in 

all the tests. Maximum jerk demonstrated excellent relative reliability with ICC above 0.75 in most 

tests but worse SEM% scores in all the tests compared to other measurements. 
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Figure 2. Bland-Altman plots of average measurements over all tests. The mean of 

differences between the test and the test scores is indicated by the dotted line in the middle 

of the plot. The upper and the lower boundaries of the 95% CI are indicated by the dotted 

lines above and below the mean. All measurement scores are dimensionless numbers. 

 

Table 2. Summary of evaluations of the relative and the absolute reliability in chair rise 

measurements in individual tests. 

Nr Subjects 

Normal STS Fast STS Normal STW Fast STW 

36 24 36 16 

ICC SEM% ICC SEM% ICC SEM% ICC SEM% 

Duration 0.77 10.8 0.86 7.5 0.80 12.4 0.90 5.7 

Max Vert Acc 0.86 13.0 0.82 11.5 0.91 10.1 0.93 7.2 

Peak power 0.85 11.0 0.63 13.8 0.88 10.6 0.88 8.5 

Max Jerk 0.78 20.7 0.66 21.2 0.85 15.2 0.86 12.6 

Table 3 summarizes the outcome of the analysis based on average scores of measurements over all 

tests. The total number of chair rise transfers (in all four tests) recorded in the test session ranged  

from 7 to 17 (12.83 ± 3.82) and in the retest session from 6 to 17 (12.81 ± 3.82). The average 

difference in the number of transfers between the test and the retest was −0.03 with a standard 

deviation of 1.25. The p-value of the t-test was 0.89, which indicated that no significant difference in 

means of the number of transfers between the test and the retest assessments. The p-values of the 

duration, the maximum vertical acceleration and the maximum jerk were all greater than 0.05, which 

indicated no significant difference in means of the test and the retest scores. The peak power had a  

p-value smaller than 0.05 and the lower boundary of the 95% CI was at zero, which indicated a 

significant difference between the test and the retest scores. All the average scores of measurements 

over all tests had ICC larger than 0.85. Maximum vertical acceleration had the highest ICC of 0.93 and 

maximum jerk had the lowest ICC of 0.86. The SEM% indicated excellent absolute reliability in the 
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duration, the maximum vertical acceleration and the peak power but not in the maximum jerk. The 

maximum vertical acceleration had the lowest SEM% score, hence the highest absolute reliability. The 

duration, the maximum vertical acceleration and the peak power demonstrated both excellent relative 

and absolute reliability. The maximum jerk had only excellent relative reliability. Among all the 

average measurements over all tests, the maximum vertical acceleration had the highest relative and 

absolute reliability.  

Table 3. Test-retest reliability analysis based on average scores of measurements over all 

tests. All measurement scores are dimensionless numbers. 

Measurement 
Mean ± SD 

Test 

Mean ± SD 

Retest 

Mean ± SD  

Diff 
p-Value 

95% CI of 

Diff 
ICC 

SEM% 

(%) 

Duration 4.88 ± 1.16 4.67 ± 1.27 −0.21 ± 0.85 0.15 −0.50–0.08 0.86 9.5 

Max Vert Acc 0.37 ± 0.13 0.38 ± 0.13 0.01 ± 0.07 0.30 −0.01–0.03 0.93 9.2 

Peak Power 0.32 ± 0.10 0.35 ± 0.10 0.02 ± 0.06 0.03 0.00–0.05 0.89 10.0 

Maximum Jerk 0.05 ± 0.02 0.05 ± 0.02 0.00 ± 0.01 0.43 −0.00–0.01 0.86 14.8 

4. Discussion 

In this study, we proposed a chair rise performance analysis solution using a single 3D accelerometer. 

We anticipated that the convenience and comfort of the pendant-worn-sensor will increase compliance 

in a long-term fall risk assessment and intervention application in daily life, which is an important 

factor for maximization of the intervention effects. The chair rise performance analysis based on a 

single 3D accelerometer developed in our study is an energy-efficient solution compared to methods 

requiring multiple sensor modalities with gyroscope and magnetometer, which would be another 

advantage for long-term monitoring applications.  

Test-retest reliabilities of the clinical assessments were first evaluated and compared to results in 

other studies. For the TUG test, excellent relative and absolute reliability was found in 38 older persons. 

The excellent reliability of TUG test was confirmed by the study [21] with 77 community-dwelling 

older persons. Excellent relative reliability with ICC = 0.9 and absolute reliability with SEM% = 9% 

were seen in the FTSS test in our study, which was close to the results reported in the study described 

in [22] with 29 older females. A significant difference was present between the test and retest FTSS 

scores in our study, which was not seen in the study presented in [22]. The difference in the test-retest 

reliability of clinical assessments found in our study and other studies may be due to differences in the 

total number of subjects and the profiles of the subjects. 

To understand the measurement quality of the pendant-worn sensor, relative and absolute test-retest 

reliability of the measurements of chair rise transfers performed by older persons in various standardized 

tests were evaluated. Additionally, we analyzed the test-retest reliability of average measurements over 

all tests for an indication of the measurement quality in daily life.  

In the individual tests, excellent relative reliability was demonstrated by most of the measurements 

except the transfer peak power and the maximum jerk measured in the fast STS test. These results 

indicated good measurement consistency in repeated chair rise measurements using the pendant-worn 

sensor in standardized tests. Among all the measurements, maximum vertical acceleration had the 

highest ICC scores in normal STS, normal and fast STW tests. The maximum vertical acceleration was 
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less influenced by the detection of the start and the end of the transfer. Therefore, less random error 

was present in this measurement. All the other measurements were estimated based on the detected 

transfer timing as illustrated in Figure 1. Hence, random error in the timing detection was inherited by 

the subsequent parameter estimation. The transfer duration, the maximum vertical acceleration and the 

peak power demonstrated moderate to excellent absolute reliability measured in the fast STS test. The 

maximum jerk had poorer absolute reliability compared to the other measurements in the individual 

tests. In study [12], the chair rise transfer peak power measured by a sensor fixed at the right side of 

the hip showed excellent relative and absolute reliability in both normal and fast STS tests. The study 

estimated power exertion using hybrid sensor modalities of an accelerometer, a gyroscope and a 

magnetometer. In our study, the moderate relative and absolute reliability of the peak power in the  

fast STS test might due to the error in power estimation based on single 3D acceleration signal.  

Our assumption that a small contribution from the acceleration of horizontal movement to the norm 

could be neglected might not be true in the fast STS transfers. The horizontal acceleration, especially 

during the bending forward downward at the beginning, may be influenced by the speed of the transfer. 

In this case, the accuracy of the vertical acceleration estimation with the norm of the 3D acceleration 

might be compromised.  

All the average measurements over all tests demonstrated excellent relative reliability. The 

maximum vertical acceleration, the peak power and the maximum jerk had higher ICC scores than 

those in the individual tests. The transfer duration, the maximum vertical acceleration and the peak 

power also showed excellent absolute reliability. The maximum jerk had moderate absolute reliability. 

The absolute reliability in the average measurements over all tests was lower than those measured in 

the fast STW test, which can be explained by the computation of SEM%. According to Equation (5), 

SEM% was in a positive association to the ratio of the standard deviation (SD) to the mean of the 

measurements. The difference in profiles of the subjects in the analysis was reflected in the ratio of SD 

to mean. Only 16 out of 36 subjects were able to perform the fast STW test during the assessments. 

Compared to the whole group of subjects, those individuals included in the fast STW test were prone 

to be physically healthier and with better mobility-related functions. For example, the ratio of SD to 

mean of maximum vertical acceleration of the subjects in fast STW test was 0.26 (Mean = 0.53,  

SD = 0.14), while the ratio of SD to mean of all subjects in average over all tests was 0.34  

(Mean = 0.38, SD = 0.13). As the relative reliabilities (ICCs) of the measurements in the fast STW test 

and the average over all tests were similar, larger SEM% was observed in the average over all tests 

whose SD to mean ratio was larger.  

The chair rise transfer duration, the maximum acceleration and the peak power measured with the 

pendant-worn sensor showed similar reliability compared to the FTSS test, but a less good reliability 

compared to the TUG test. TUG test involves a small fraction of chair rise and a large fraction of 

walking, which might explain the relatively bigger discrepancy in reliability analysis when it was 

compared to only chair rise movements. In terms of the effort of test setup, TUG test requires space in 

the test environment for straight walking with an accurate measure of 3-meter distance, which may not 

be realizable in daily living situations, whereas the pendant-worn sensor could be applied with little 

restriction in test setup. As the standardized clinical assessment implied, that a large population in our 

study was at risk of falling, the results of pendant-worn-sensor based measurements were therefore 

representative for the target group. In an earlier study, STS peak power and related measures with the 
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hip-fixed sensor were found to have a higher sensitivity to detect effects of training leg strength, leg 

power and balance than standard clinical fall risk assessments, such as TUG test [12]. In addition, STS 

analyses based on sternum and hip fixed sensors have demonstrated fair to excellent linear relationship 

with the STS peak power measured with the clinical assessment using force plates [10]. Hence, we 

expect the chair rise measurements with the pendant-worn sensor having similar clinically meaningful 

outcomes. However, this needs to be confirmed in the future study.  

There are some limitations in the current study. A difference in means between the test and the 

retest was present in the transfer peak power but not in the duration, the maximum vertical acceleration 

or the maximum jerk. In Figure 2, a small increase of the transfer duration showed in the retest 

(explained by the position of the dotted line in the middle of the plot). Meanwhile, a small decline in 

the maximum vertical acceleration showed in the retest. For a chair rise transfer, the power exertion is 

in a negative association with the duration, whereas in a positive association with the vertical 

acceleration. The small non-significant bias in the duration and the vertical acceleration may lead to a 

larger and significant bias after integration to derive power exertion. The importance of the maximum 

jerk for chair rise performance needs to be defined, which may lead to a better understanding of the 

moderate absolute reliability in this measurement. In the daily life situation, variance in chair rise 

transfers may be larger than in the four test conditions covered in our study. For example, rising up 

from different chairs, which might be an additional variance resource, was not analyzed in this study. 

In daily life, the pendant sensor might be expected to be worn under the clothes and tilt. The chair rise 

measurements were estimated based on the norm of acceleration, which is independent from the sensor 

orientation. Hence, we expect similar reliability in the measurements when the pendant sensor is worn 

under the clothes. In future studies, the reliability of pendant-sensor-based measurements needs to be 

confirmed by analysis in chair rise transfers in real daily life conditions.  

5. Conclusions 

In conclusion, the pendant-sensor-based chair rise measurements demonstrated good to excellent 

relative reliability and moderate to excellent absolute reliability. Among the measurements evaluated, 

the transfer duration, the maximum vertical acceleration and the peak power were with excellent 

relative and absolute reliability in average measurements over all tests. Comparable reliability to FTSS 

test demonstrated the feasibility of using pendant-worn-sensor as an alternative in standard clinical 

assessment for fall risk. It will ease the assessment setup and analysis. The average measurements over 

all tests had higher relative and absolute reliability compared to the measurements in most individual 

tests. This observation indicated that the average performance of chair rise transfers in daily life which 

are usually in various manners might be reliably measured. Hence, it seems feasible to use the 

pendant-worn sensor in daily life for assessment of fall risk in older persons and continuously 

monitoring their progress on the intervention exercise for fall prevention.  
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