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Abstract: A fault diagnosis strategy based on the wayside acoustic monitoring  

technique is investigated for locomotive bearing fault diagnosis. Inspired by the  

transient modeling analysis method based on correlation filtering analysis, a so-called 

Parametric-Mother-Doppler-Wavelet (PMDW) is constructed with six parameters, 

including a center characteristic frequency and five kinematic model parameters.  

A Doppler effect eliminator containing a PMDW generator, a correlation filtering analysis 

module, and a signal resampler is invented to eliminate the Doppler effect embedded in the 

acoustic signal of the recorded bearing. Through the Doppler effect eliminator, the five 

kinematic model parameters can be identified based on the signal itself. Then, the signal 

resampler is applied to eliminate the Doppler effect using the identified parameters. With 

the ability to detect early bearing faults, the transient model analysis method is employed 

to detect localized bearing faults after the embedded Doppler effect is eliminated. The 

effectiveness of the proposed fault diagnosis strategy is verified via simulation studies and 

applications to diagnose locomotive roller bearing defects. 

Keywords: fault diagnosis; locomotive bearing; wayside monitoring; Doppler effect; 

transient model 
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1. Introduction 

Bearing defects are the dominant type of fault in railway vehicles, which leads to serious accidents 

and significant costs for the rail transport industry [1]. Approximately 50 bearing-related derailments 

occur in the United States each year [2]. Thus, accurately and automatically detecting and diagnosing 

the existence and severity of these faults in the bearings are significant [3]. Wayside acoustic defective 

bearing detection techniques are based on the assumption that diagnostically relevant information is 

stored in the acoustic signal generated by the bearings of a passing vehicle. With the signal processing 

techniques, fault characteristic information can be extracted from the acoustic signals. A successful 

example is the wayside acoustic defective bearing detector (ADBD) system developed in the 1980s [4]. 

Compared with other systems, the ADBD system entails lower costs and can detect bearing defects 

earlier in the failure process or before overheating occurs, thereby allowing scheduled bearing 

maintenance [5].  

However, the effectiveness of the wayside acoustic monitoring-based technique is decreased when 

vehicles pass by at high speeds. One of the problems caused by the high relative movement is the 

Doppler effect, as it can lead to obvious frequency shifts, frequency band expansion, and amplitude 

modulation for the recorded acoustic signal, which reduces the diagnostic performance [6].  

Aside from the wayside acoustic monitoring system, the Doppler effect also widely exists in the 

signal from a moving acoustic source. For example, in the areas of underwater acoustic communication 

and acoustical holography for moving vehicles, the Doppler effect contained in the recorded acoustic 

signal is also a barrier that could significantly diminish the effectiveness of signal processing. 

Stojanovic et al. [7] and Johnson et al. [8] proposed a Doppler compensation method jointly based  

on phase synchronization and channel equalization. Yang and Wang [9] established the time-space 

relation among the measurement field, radiating field, and acoustic holography field; they also 

proposed a method based on the nonlinear mapping function between the sound source and the 

measured signal, in which the Doppler effect was eliminated. However, Doppler reduction methods for 

the wayside acoustic defective bearing detection method are rarely reported in current papers. 

Dybała [10] proposed a disturbance-oriented dynamic signal resampling method based on the 

Hilbert Transform to eliminate the Doppler effect for wayside monitoring systems. A time-domain 

interpolation resampling (TIR) method is proposed by Liu [11] to remove the Doppler effect 

embedded in the acoustic signal. Shen [12] constructed a Doppler transient model that combines the 

Doppler transient model and parameter identification based on the Laplace wavelet and a spectrum 

correlation assessment to detect the locomotive bearing fault. However, in the above two methods,  

the source is assumed to move at a uniform velocity, and the sound speed is set at a constant value. In 

practice, the moving speed of the railway vehicle is unstable, and parameters such as the temperature 

and atmospheric pressure of the medium in which the wave propagates would definitely affect the 

value of the sound speed. These parameters could also have a significant effect on the results of the 

methods. What‟s more, all of the geometric parameters of the kinematic model are assumed to be 

known in advance in the proposed method.  

In this paper, a fault diagnosis strategy is invented for locomotive bearing fault diagnosis based on 

the wayside acoustical monitoring technique. Through the proposed strategy, the Doppler effect 

embedded in the recorded bearing acoustic signal can be eliminated by a Doppler effect eliminator.  
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In the Doppler effect eliminator, a so-called Parametric-Mother-Doppler-Wave (PMDW) is constructed 

based on the kinematic model parameters. The kinematic model parameters, including the moving 

speed and sound speed of the railway vehicle, as well as geometric parameters of the model are then 

identified via correlation filtering analysis. All of the parameters can be identified based on the signal 

itself. A time domain signal resampler is invented and employed to eliminate the Doppler effect  

using the identified kinematic model parameters. After the embedded Doppler effect is eliminated,  

the transient model parameters of the Doppler-free signal are identified to detect the localized  

bearing faults. 

The rest of this paper is organized as follows: Section 2 introduces the proposed locomotive bearing 

fault diagnosis strategy. The construction of the PMDW, kinematic model parameter identification 

based on correlation filtering analysis, Doppler effect elimination based on the resampling method, and 

fault feature extraction based on transient model analysis are all introduced in this section. A simulation 

case study is provided in Section 3. An experimental verification test using defective locomotive roller 

bearings with outer race defect and inner race defect is discussed in Section 4. Finally, Section 5 

presents the concluding remarks. 

2. Proposed Wayside Bearing Fault Diagnosis Strategy Based on a Data-Driven Doppler Effect 

Eliminator and Transient Model Analysis  

In the wayside acoustic bearing monitoring system, microphones are fixed by the wayside to record 

the acoustic signals emitted by the bearings of a passing vehicle. The basic kinematic model (Figure 1) 

involving a single moving acoustic source and a microphone is considered in this study. The source is 

moving along a straight line, and the microphone is placed perpendicular to the trail of the moving 

source. When the vehicle passes by, the microphone receives the spherically attenuated signals with 

the Doppler effect from the bearing source.  

Figure 1. Basic kinematic model of the wayside acoustic bearing monitoring system. 
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Given the high relative speed between the railway vehicle and the microphone, the recorded signal 

is distorted by the Doppler effect, which causes the signal frequency to shift and the frequency band to 

expand. This condition is a barrier to further analysis, especially for the methods based on frequency 

domain analysis.   
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Two steps are implemented for the proposed strategy to detect the localized faults of the bearing of 

the fast moving railway vehicle. In the first step, the embedded Doppler effect is eliminated. The 

frequential structure disturbance is eliminated, and the amplitude is demodulated. In the next step, the 

transient model parameters of the Doppler-free signal are identified to detect the localized bearing 

faults. A flowchart of the proposed strategy that includes two signal processing modules is presented in 

Figure 2. In the following subsections, the two signal processing modules are discussed in detail. 

Figure 2. Flowchart of the proposed wayside bearing fault diagnosis strategy. 
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2.1. Doppler Effect Eliminator 

As shown in Figure 1, we assume that during the source point movement from A to B, a length of 

the acoustic Doppler-shifted signal, Xdop(t), is recorded by the microphone. The kinematic model 

(Figure 1) can be defined by the following kinematic model parameter set: 

 0 0, , , ,k c r X V a      (1)  

where c denotes the sound speed in the air, r is the distance from the microphone to the trail of the 

moving source point, X0 stands for the distance between starting point A and point O', and point O' 

stands for the point where the source point is closest to the microphone during the pass-by movement. 

V0 stands for the initial velocity. [a] is a vector containing m elements that stand for the 1 to m-order 

derivative of the source moving speed V, which is equal to the following: 

 
2

2
, ,...,

m

m

dV d V d V
a

dt dt dt

 
  
 

 
(2)  

When the different structures of the passing vehicles are considered, the parameter r is  

non-constant. The speed of sound propagation c is unstable because of the various atmospheric 

environments. The parameters X0, V0 and [a] are also difficult to measure accurately. 

A data-driven Doppler effect eliminator is invented in this paper. Through this eliminator, all of the 

kinematic model parameters can be identified based on the recorded signal itself. A flowchart of the 

eliminator is shown in Figure 3. First, the kinematic model parameter set, γk, is identified by correlation 

filtering analysis between the input Doppler-shifted signal and the investigated PMDW generated by 

the PMDW generator. After the kinematic model parameters are identified, the Doppler-shifted signal 

is resampled by a signal resampler. 
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Figure 3. Flowchart of the Doppler effect eliminator. 
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In the following subsection, the correlation filtering analysis method and the two signal processing 

modules (i.e., PMDW generator and signal resampler) are discussed in detail. 

2.1.1. Parametric Mother-Doppler-Wave (PMDW) Generator 

The construction of the PMDW is introduced in this section. As illustrated in Figure 1, we assume 

that the source point keeps emitting a pure harmonic sound wave during the movement from A to B. 

Let the harmonic sound wave be written as Se = sin(2πfcte), 0 < te < T. This wave can be sampled as a 

discrete amplitude sequence as Equation (3) at a sampling frequency of fs. Thus:  

          [ 2 1 2 2 2 ]e c e c e c eS n sin f t sin f t ... sin f t N   ，
 

(3)  

that can be called “emit-amplitude-vector” and with the time sequence: 

   [ ]et n 0 1 / fs ... N -1 / fs ，
 (4)  

that can be called “emit-time-vector”. N equals the length of the signal. An amplitude weight of Se(i)  

is emitted from the source point at a certain emit time te(i) and this amplitude weight arrives at  

the microphone at time tr(i) where the tr can be called “receive-time-vector”. Thus, we can determine 

that tr is equal to the following: 

      /r et n t n R n c 
 (5)  

where c denotes sound speed, and R(n) stands for the distance between the source point to the microphone 

during the pass-by movement, which can be calculated by the following equation: 

   
2 2

0R n X X n r      
(6)  

where the X(n) denotes the displacement of the source point to the initial point A and it can be 

calculated as shown in Appendix A.1. 
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According to the Morse acoustic theory [13], the received amplitude weight can be described by  

the following equation: 

2(1- cos )
r e

r
S S

R M 
 

 

(7)  

where θ stands for the deflection angle of the source moving between the direction of source velocity 

and the microphone direction, and M = V/c stands for the mach number of the source point velocity. 

Thus, the “receive-amplitude-vector” can be calculated by the following equation: 

 
   

 2

1- / c cos (n)
r e

r
S n S n

R n V n 
 

     
(8) 

where V(n) denotes the velocity of the source point equal to Appendix A.2. The cosθ(n) can be 

calculated by the following: 

     /cos n X n R n 
 (9)  

The detailed procedure of the PMDW construction is presented in Figure 4. A corresponding 

example is shown in Figure 5a–d to illustrate the procedure more clearly. The additional parameter, fc, 

stands for the center frequency, and the PMDW model parameter set is as follows: 

 0 0, , , , ,cf c r X V a      
(10)  

These parameters belong to the subsets Sfc, Sc , Sr, SX0 , SV0, and Sa, which are shown as follows: 

0 0, , , ,fc r X Vc

a

S RS S S

S R

S 



，

 
(11)  

Given an initialized model parameter set of γΨ = [fc, c, r, X0, V0, [a]], a PMDW can be constructed 

through the following steps: 

(1) Discrete sine wave generation. The center frequency of the sine wave is fc. The discrete wave is 

an amplitude vector, Se, (Equation (3)) with a time vector, te, (Equation (4)). An example is 

illustrated in Figure 5a.  

(2) Amplitude modulation. Through the “Doppler-amplitude-modulator” implemented by Equation (8), 

a receive-amplitude-vector, Sr, is obtained. The procedure is illustrated in Figure 5b. 

(3) Amplitude vector rearrangement and curve fitting. Sr obtained in Step 2 is rearranged by matching 

with the non-linear receive-time-vector, tr, which is calculated through the receive-time-calculator 

implemented by Equation (5). A new fitting curve, χ
p
, can then be obtained with tr and Sr.  

The procedure is illustrated in Figure 5c. 

(4) Signal resampling. The amplitude vector of a PMDW is then obtained by resampling the curve, 

χ
p
, obtained in Step 3 with the delayed-time-vector, td, which is equal to te + R0/c. R0 represents 

the distance between the starting point A and the microphone.  
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Figure 4. Procedure of the construction of the PMDW. 
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Figure 5. Illustration of the procedure of the construction of a PMDW and procedure of the resampler. 
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Two PMDWs are generated through the preceding steps. The PMDW shown in Figure 6a with its STFT 

spectrum in Figure 6b is generated with the following model parameter set: [1500, 340, 1, 4, 30, [0]]. 

The PMDW shown in Figure 6c with its STFT spectrum in Figure 6d is generated with the following 

parameter set: [1500, 340, 1, 4, 30, [100]]. 

Figure 6. Two PMDWs generated by the invented PMDW generator. (a) The waveform  

of the PMDW generated with the model parameters set of [1,500, 340, 1, 4, 30, [0]] and  

(b) its STFT spectrum; (c) The waveform of the PMDW generated with the model 

parameters set of [1500, 340, 1, 4, 30, [100]] and (d) its STFT spectrum. 

(a) (b)

(d)(c)

 

2.1.2. Improved Correlation Filtering Analysis 

Correlation filtering analysis aims to measure the strength and direction of the linear relationship 

between two signals by calculating the Pearson‟s correlation coefficient between them [14].  

S.B. Wang et al. [15] and D. Wang, et al. [16] employed the correlation filtering analysis method to 

identify the transient model parameters that were then used as rotating machine fault detection features. 

In the current paper, the kinematic model parameter set described by Equation (1) is identified  

by an improved correlation filtering analysis between the constructed PMDWs and the recorded  

Doppler-shifted signal. The PMDW is first transformed into a discrete analytic wavelet through  

the method investigated by Marple [17]. The Pearson‟s correlation coefficient between the recorded 

Doppler-shifted signal and the real part, as well as the imaginary part of the analytic wavelet, are then 

calculated. Finally, the square root of the two obtained coefficients is employed as a criterion of  

the inherent linear relationship between the two signals. Through this improved correlation filtering 
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analysis method, the consideration of the initial phase of the two signals could be ignored, as  

the imaginary part of the analytic wavelet is a 90-degree phase shift signal of the PMDW. 

Given an input Doppler-shifted signal, Xdop(n), and a parametric wavelet, Ψ(n), we can implement 

the improved correlation filtering analysis through the following procedure: 

(1) The discrete-time analytic signal of the parametric wavelet is obtained: 

     *A Ψ n Ψ n H Ψ n  
         

(12)  

(2) The Pearson‟s correlation coefficients are calculated as follows: 

   

     

     

1

2 2

1 1

dop

N

dop dop

i

X n ,R n N N

dop dop

i i

X i X R i R

X i X R i R

 

 

 



 



 

 (13)  

   

     

     

1

2 2

1 1

dop

N

dop dop

i

X n ,I n N N

dop dop

i i

X i X I i I

X i X I i I

 

 

 



 



 

 (14)  

where R(n) is the real part of  *A Ψ n
   , and I(n) is the imaginary part of  *A Ψ n

   , dopX  stands 

for the mean of 
dopX , R  and I  stand for the mean of R and I respectively. 

(3) The criterion of the inherent linear relationship between x(n) and Ψ(n) is as follows: 

           
2 2

, , ,dop γ dop dopX Ψ n X R n In nXn n
   

 
(15)  

2.1.3. Signal Re-Sampler 

After the kinematic model parameters are identified, the Doppler-shifted signal and the identified 

kinematic model parameters are inputted into the signal resampler, through which the embedded 

Doppler effect can be clearly eliminated. 

If the identified kinematics model parameters are as follows: 

0 0, , , ,opt opt opt opt opt opt

k c r X V a        
(16)  

and if the input Doppler-shifted signal is  dop

rS n  with a length of N
dop

 points, then the variables 

similar to those mentioned in Section 2.1.1 can be calculated as follows: 

Emit-time-vector: 

   [ ]dop dop

et n 0 1 / fs ... N -1 / fs ，
 

(17)  

where N
dop

 equals to the length of the input Doppler-shifted signal. 

Receive-time-vector: 

      /dop dop dop

r et n t n R n c 
 (18)  
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where R
dop

 (n) equals: 

   
22

0

dop opt dop optR n X X n r      
(19)  

where X
dop

(n) equals to Appendix A.3. 

According to Equation (7), the “emit-amplitude-vector” can be calculated by the following equation: 

   
   

1

2

1- / cos ( )

opt
dop dop

e r
dop dop opt dop

r
S n S n

R n V n c n



 
  
       

(20)  

where V
dop

(n) equals to Appendix A.4. 

and cosθ
dop

 (n) equals: 

     /dop dop dopcos n X n R n 
 (21)  

The detailed procedure of the signal resampler is shown in Figure 7. A corresponding example is 

shown in Figure 5e–h to illustrate the procedure more clearly. 

Figure 7. Procedure of the signal resampler. 
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Given a certain identified kinematic model parameter set of γk = [c
opt

, r
opt

, X0
opt

, V0
opt

, [a
opt

]],  

the procedure of the resampler can be described as follows: 

(1) Curve fitting. The amplitude vector of the input Doppler-shifted signal is matched with the 

delayed-time-vector, td
dop

, which equals [R0
dop

/c
opt

, R0
dop

/c
opt

 + 1/fs ,…, R0 
dop

/c
opt

 + (N
dop

-1)/fs]. 

A fitting curve, χ
d
, can then be obtained by fitting the amplitude of the Doppler-shifted signal 

with td
dop

. An example is illustrated in Figure 5e.  

(2) Signal resampling. The receive-amplitude-vector, Sr
dop

(n), is then obtained by resampling  

the curve, χ
d
, obtained in Step 1 with the receive-time-vector, tr

dop
, shown in Equation (18). 

This procedure is illustrated in Figure 5f. 
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(3) Amplitude vector rearrangement. The receive-amplitude-vector, Sr(n), obtained in Step 2 is 

rearranged by matching with the linear emit-time-vector, te
dop

, shown in Equation (17). This 

procedure is illustrated in Figure 5g. 

(4) Amplitude demodulation. The Doppler-free signal can be obtained by demodulating the rearranged 

amplitude vector in Step 2 through the “Doppler-amplitude-demodulator” implemented by 

Equation (20). This procedure is illustrated in Figure 5h. 

2.2. Transient Model Analysis 

The Doppler effect is eliminated through the aforementioned data-driven Doppler effect eliminator. 

Conventional fault feature extraction methods can be employed to analyze the Doppler-free signal, 

extract features, and then make a maintenance decision. In the past decades, numerous methods  

have been proposed to extract features for bearing signals, such as time-domain analysis [18], 

frequency-domain analysis [19], time-frequency-domain analysis [20–23], envelope spectrum [24,25], 

wavelet transform [26–29], empirical mode decomposition [30–32], and manifold learning [33]. 

A method of transient modeling by wavelet and parameter identification based on correlation 

filtering is first introduced and applied on bearing fault diagnosis by Wang et al. [15]. Whenever  

a bearing suffers a localized fault, the transients with a potential cyclic characteristic are generated  

by the rollers striking the localized fault. This phenomenon is an early bearing fault feature. The 

extraction of the transients is therefore beneficial to identify an early bearing fault [16]. The method is 

employed in this section to detect the localized defect of the locomotive bearing. A flowchart of this 

method is presented in Figure 8. It follows the steps of transient model construction, parameter 

identification through the correlation filtering analysis method, and bearing fault type identification 

through the recognized impact periods. Each step is discussed in detail in the following subsections. 

Figure 8. Procedure of the transient model analysis method. 
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The Laplace wavelet, a single-sided damped exponential function formulated as the impulse 

response of a single mode system, is highly similar to the waveform feature commonly encountered  

in bearing fault signal detection tasks.  

The results reported in reference [15] show that the real part of the complex Laplace wavelet was 

the most sensitive wavelet to the transients generated by the localized bearing faults. The formula of 

the real part of the Laplace wavelet is as follows: 

2/ 1 2 ( )

Laplace

cos(2 ( )),
( , , , )

0 ,

f t
e f t t W

f t
else

       
  

        
 
  

(22)  

where W is the temporal range, f is the discrete frequency,   is the discrete damping coefficient,  

and   is the delay time. These parameters belong to subsets F, Z, and Td, which are shown as follows: 

( [0,1))

F R

Z R

T R









 



 (23)  

The speed variation has been removed during the procedure of Doppler effect elimination, however, 

the train of transients is not a strict periodic phenomenon when considering the “jitter” [34] during the 

operation. When considering this „jitter‟, a different model should be used [35] and the traditional 

methods need to be modified [34]. The studies in this paper are based on the hypothesis that the train 

of transients is periodic after the speed variation has been removed. Then a periodic multi-transient 

model based on the Laplace wavelet is therefore constructed to simulate the waveform characteristics 

by introducing parameter T, as follows: 

  Laplace( , , , )
m

t f t mT    
 

(24)  

Figure 9 illustrates the single and periodic Laplace wavelet transient models, respectively. 

Figure 9. (a) Single Laplace wavelet transient model (b) periodic Laplace wavelet transient model. 

 
  

(a)

(b)
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2.2.2. Locomotive Bearing Fault Detection by Transient Model Parameters Identification 

If the surface of the outer race of the bearing suffers a single defect based on the bearing geometries 

and rotation speed, fr, the ball passing frequency over the outer race defect (BPFO) can be calculated 

as follows:  

1
(1 cos )

2
n

m

d
BPFO f Z

D
 

 
(25)  

where d and Dm represent the diameter of the rolling elements and the pitch diameter, respectively.  

α denotes the contact angle, fn denotes the rotational frequency, and Z is the number of rolling elements.  

Similarly, if a single defect occurs on the surface of the inner race of the bearing, the ball pass 

frequency over the inner race defect (BPFI) can be obtained by the following: 

1
(1 cos )

2
n

m

d
BPFI f Z

D
 

 
(26)  

Every time the rolling element passes through the defect, periodic impulses are created with time 

interval, t, as follows: 

1
t

BPFO
 

 
(27)  

or: 

1
t

BPFI
 

 
(28)  

After the Doppler effect embedded in the acoustic signal of the bearing is eliminated. The time 

interval can be identified through the improved correlation filtering analysis introduced in  

Section 2.1.2 between the periodic multi-transient model shown in Equation (24) and the Doppler-free 

signal of the bearing. The identified impact period in the transient model is the related bearing fault 

impact interval. The fault type can be determined by referring to the calculated theoretical fault-related 

impact intervals. 

3. Simulation Case Study 

In this section, a simulated Doppler-shifted bearing signal is analyzed to verify the effectiveness of 

the investigated diagnosis strategy. The source signal of the bearing without the Doppler effect can be 

described as follows:  

   
2

0 0 0/ 1 2 mod( ,1/40)

0cos(2 )+ 0 :1/ 50000 : 9999 / 50000
f t

X t e f t n t t
  


 

 ，  (29)  

where the damping ratio, ζ0, and frequency, f0, are set at 0.05 and 1000 Hz, respectively.  

The impact interval embedded in the simulated signal is 0.025 s. The number of data points is 10,000, 

and the sampling frequency is 50 kHz.  

A randomly distributed noise, n(t), is added to the simulated signal. The waveform of the simulated 

signal without noise is illustrated in Figure 10a. The polluted signal is shown in Figure 10b with its 

FFT spectrum in Figure 10c.  
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Figure 10. (a) Waveform of the simulated bearing signal without noise; (b) Waveform of 

the simulated bearing signal with noise and (c) its FFT spectrum; (d) Waveform of  

the simulated Doppler-shifted bearing signal with noise and (e) its FFT spectrum. 

(a)

(b)

(c)

(d)

(e)

 

Through the PMDW generator introduced in Section 2.1.1, a sine wave can be embedded with the 

Doppler effect. If the sine wave is replaced with the aforementioned simulated signal, a Doppler-shifted 

bearing signal can be obtained with the same procedure and with the following kinematic parameters:  

c = 340 m/s, r = 1 m, X0 = 4 m, V0 = 30 m/s, [a] = [a1] = 40 m/s
2
. The wave form and FFT spectrum 

of the simulated Doppler-shifted bearing signal are illustrated in Figure 10d,e, respectively. 

The proposed diagnosis strategy is then applied to the Doppler-shifted bearing signal. The  

Doppler-shifted bearing signal is first inputted to the Doppler effect eliminator introduced in Section 2.1 

to eliminate the embedded Doppler effect. Through the eliminator, the kinematic parameters are first 

identified through the correlation filtering analysis introduced in Section 2.1.2 between the input 

Doppler-shifted signal and the PMDWs constructed with parameter subsets described by Equation (11).  

The selection of the parameter subsets is crucial. On the one hand, the larger interval range and  

the smaller step of the parameter subset obtain a more accurate result. On the other hand, the larger 

interval range and the smaller step of the parameter subset cost excessive computation and decrease the 

efficiency of the method. When both accuracy and efficiency are considered, the subset, Sfc, is 

determined as [800:10:1200] by inspecting the FFT spectrum of the Doppler-shifted signal. The sound 

speed is set as Sc = [320:1:360]. The parameter sets Sr, SX0, and SV0 are set as [0.5:0.1:1.5], [2:0.1:6] 

and [20:0.1:40], respectively. Only the first-order derivative of the moving speed, a1, is considered, 

and Sa is set as [35:0.5:45]. 

A searching grid of the model parameters is constructed based on the aforementioned six parameter 

subsets. Once a group of parameters is determined, the parameters are inputted to the PMDW 

generator introduced in Section 2.1.1 to generate a PMDW. The correlation filtering analysis 

introduced in Section 2.1.2 is then performed between the PMDW and the simulated Doppler-shifted 

signal. Figure 11 shows the maximal correlation coefficients for the different elements from a specified 
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model parameter subset. When the parameter set of the PMDW is determined as Table 1, the maximal 

correlation coefficient between the PMDW and the simulated Doppler-shifted signal can be obtained.  

Figure 11. Maximal correlation coefficients for the different elements from a specified 

PMDW model parameter subset for the simulated signal.  

0

(a) (b) (c)

(d) (e) (f)

 

Table 1. Kinematic model parameters subset and the optimal kinematic model parameters 

of the simulated signal.  

Items fc [Hz] c [m/s] r [m] x0 [m] v0 [m/s] a0 [m/s
2
] 

Range [800,1200] [320,360] [0.5,1.5] [2,6] [20,40] [35,45] 

Step 10 1 0.1 0.1 0.1 0.5 

Optimal value 1000 340 1 4 30 40 

True value 1000 340 1 4 30 40 

Error 0% 0% 0% 0% 0% 0% 

The identified kinematic model parameters and the Doppler-shifted bearing signal are then inputted 

to the signal resampler introduced in Section 2.1.3 to eliminate the embedded Doppler effect. First,  

the amplitude vector of the input Doppler-shifted signal is matched with the delayed-time-vector,  

td
dop

 = [R0
dop

/c
opt

, R0
dop

/c
opt

 + 1/fs ,…, R0
dop

/c
opt

 + (N
dop

−1)/fs], where 
2 2 2 2

0 0 = 1 4 4.1231opt optR r X    , 

and a fitting curve, χ
d
, can be obtained by fitting the amplitude vector of the input Doppler-shifted 

signal with td 
dop

. Through the receive-time-calculator described by Equation (18), the receive-time-vector, 

tr
dop

, can be calculated with the emit-time-vector, te
dop

 = [0,1/fs,…, (10000−1)/fs]. The two time  

vectors are shown in Figure 12a. After resampling the fitting curve, χ
d
, by tr

dop
, we obtain the  

receive-amplitude-vector, Sr
dop

(n). Finally, the obtained Sr
dop

(n) is rearranged by matching with te
dop

 and 

then demodulated by Equation (20). The curve of the demodulation weights is indicated in Figure 12b.  

The wave form of the obtained Doppler-free signal is plotted as an overlay on the original bearing 

signal, shown in Figure 13a, with their FFT spectrums in Figure 13b. The correlation coefficient 

between the obtained Doppler-free signal and the original bearing signal is 0.9695, which indicates 

that the Doppler effect is effectively eliminated.  



Sensors 2014, 14 8111 

 

 

Figure 12. (a) Receive-time-vector (red curve) and the emit-time-vector (blue curve) in the 

simulation case; (b) Curve of the demodulation weights in the simulation case. 

(a) (b)

tr
dop

te
dop

 

Figure 13. Comparison between the obtained Doppler-free signal and the original 

simulated bearing signal (a) wave form of the Doppler-free signal (red) and the original 

simulated bearing signal (blue); (b) FFT spectrum of the Doppler-free signal (red) and FFT 

spectrum of the original simulated bearing signal (blue). 

(a)

(b)

 

After the Doppler effect is eliminated, the transient model analysis method introduced in Section 2.2 

is applied to the Doppler-free signal to detect the defect. The transient model is constructed according 

to Equation (24). Its parameters require optimization from the sets T, F, and Z. The range of T, F,  

and Z are set as [500/50,000:1/50,000:2000/50,000], [800:10:1200], and {[0.005:0.001:0.03] ∪  

[0.04:0.01:0.1] ∪ [0.2:0.1:0.9]}, respectively. The subset of Z is non-uniform to provide higher 

resolution at lower damping ratio values so that the efficiency of the method can be retained. The grid 

of the model parameters is constructed according to F and Z for each element from set T. When  

a group of parameters is determined, the transient model is constructed according to the procedures 

introduced in Section 2.2.1. The correlation filtering analysis introduced in Section 2.1.2 is then 

performed between the transient model and the input Doppler-free bearing signal. Figure 14a shows 

the maximal correlation coefficients for the different elements from set T. The optimal parameters  

fc = 1000 and ζ = 0.05 when T is set at 0.025 s. 
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Figure 14. Results for simulated Doppler-shifted bearing signal using the transient model 

analysis method. (a) maximal correlation coefficients for different elements from set T after 

Doppler effect elimination; (b) wave form of the Doppler-free signal; (c) the optimal periodical 

transient model for the Doppler-free signal; (d) maximal correlation coefficients for different 

elements from set T before Doppler effect elimination; (e) wave form of the Doppler-shifted 

signal; (f) the optimal periodical transient model for the Doppler-shifted signal.  

0.025 0.028(a)

(b)

(c)

(d)

(e)

(f)

 

Table 2. Comparison of the transmit model analysis results between the signals before and 

after Doppler effect elimination.  

Items Coef fres ζ T 

Before Doppler effect elimination 0.195 1060 0.019 0.028 

After Doppler effect elimination 0.780 1000 0.050 0.025 

As a comparison, the simulated signal before the Doppler effect elimination is also analyzed via the 

transient model analysis method with the same model parameter subsets. The maximal correlation 

coefficients for the different elements from set T are shown in Figure 14b. The maximal correlation 

coefficient is obtained when the impact period is 0.028 s, which is an incorrect value. Comparison of the 

transmit model analysis results between the signals before and after Doppler effect elimination is shown 

in Table 2. Thus, performing the introduced Doppler effect elimination method before the conventional 

transient model analysis is necessary.  
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4. Application in Locomotive Bearings Fault Diagnosis 

4.1. Experimental Setup and Data Acquisition 

Two separate experiments were implemented to achieve the Doppler-shifted acoustic signals from 

defective locomotive roller bearings and verify the effectiveness of the proposed method. The obtained 

Doppler-shifted bearing acoustic signals are then analyzed by the proposed diagnosis strategy.  

In the first experiment, the acoustic signal of a locomotive roller bearing with a single localized 

defect was acquired by the test bench in Figure 15a. The test bench consists of a drive motor, two 

supporting pillow blocks (mounted with normal bearings), a testing bearing loaded on the outer race, 

and a mechanical radial loader. A 4944-A type of microphone (B&K Company, Nærum, Denmark) 

was mounted adjacent to the outer race of the tested bearing for acoustic signal measurement. The 

advanced data acquisition system (DAS) provided by National Instruments (Austin, TX, US) was used 

to record the data. The specifications of the testing bearing are listed in Table 3. The bearings were 

tested under the radial load of 3 t, the rotation speed of the motor was set at 1430 r/min, and the 

sampling frequency was set at 50 kHz.  

Figure 15. Experimental setup for signal acquisition with Doppler effect (a) test bench of 

the first experiment and (b) scene of the second experiment. 

(a) (b)

 

Table 3. Specifications of the testing bearing. 

Type NJ(P)3226XI 

Diameter of the outer race 250 mm 

Diameter of the inner race 130 mm 

Pitch diameter (D) 190 mm 

Diameter of the roller (d) 32 mm 

Number of the roller (z) 14 

The second experiment can be referred to the model illustrated in Figure 1. As shown in Figure 15b, 

the experiment consists of a moving vehicle (mounted with the acoustic source), a same microphone, and 

a same DAS as those in the first experiment. When the car passes by the microphone, a Doppler-shifted 

signal of the testing bearing can be received and recorded. In this experiment, the car was passing by at 

an accelerated speed. The sampling frequency was also set at 50 kHz. 
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A single artificial crack with 0.18 mm width was set by the wire-electrode cutting machine on the 

outer and inner race, as shown in Figure 16. The Doppler-shifted bearing signals were then acquired by 

the aforementioned experimental steps. In the subsequent sections, the Doppler-shifted signals with  

the out-race defect (size: 0.18 mm) and inner-race defect (size: 0.18 mm) are analyzed. 

Figure 16. Artificial defects on the components of the bearing (a) defect on the outer race 

and (b) defect on the inner race. 

(a) (b)

 

4.2. Results 

The wave form of the Doppler-shifted bearing signal with the out-race defect is shown in Figure 17a 

with a length of 12,000 points. As the original recorded signal is highly distorted by the low-frequency 

component and our study shows that the low-frequency component will reduce the effectiveness of the 

following correlation analysis. So a fourth-order Butterworth band-pass filter is employed to reduce 

this distortion. And our study also shows that if the band of the filter is too narrow, for example just 

around the structural resonance band, the effectiveness of the following correlation analysis will be 

reduced as the waveform of the signal will be damaged by the filter. So, the filter band is set as 50 Hz 

to 5 kHz. The wave form of the filtered signal is presented in Figure 17b with its FFT spectrum in 

Figure 17c. 

The proposed diagnosis strategy is then applied to the filtered Doppler-shifted bearing signal.  

The signal is first inputted to the Doppler effect eliminator introduced in Section 2.1 to identify  

the kinematic model parameters and eliminate the embedded Doppler effect. During the kinematic 

parameter identification procedure, the subset Sfc is determined as [800:10:1600] by inspecting the FFT 

spectrum in Figure 17c. The sound speed is set as Sc = [320:1:360], determined by the value of 343.2 m/s 

that stands for the sound speed in standard air atmosphere.  

The value of sound speed c is determined by the properties of the medium of air. In the Earth‟s 

atmosphere, the chief factor affecting the sound speed is the temperature. In practice, it can be 

estimated through the value calculated by the following practical formula:  

331.3 0.606airc T   (30)  
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Figure 17. (a) Waveform of the Doppler-shifted signal with the out-race defect; (b) waveform 

of the filtered Doppler-shifted signal with the out-race defect and (c) its FFT spectrum;  

(d) waveform of the obtained Doppler-free signal with the out-race defect and (e) its  

FFT spectrum. 

(a)

(b)

(c)

(d)

(e)

 

The parameter sets Sr and SX0 are set as [1.5:0.1:2.5] and [2:0.1:6], respectively, based on a previous 

coarse manual measurement. As the momentum of the car is large and the time duration of the pass-by 

movement is extremely short, only the first-order derivative of the moving speed, a1, is considered.  

SV0 and Sa is set as [20:0.1:40] and [0:1:10], respectively, by considering the acceleration performance 

of the testing car. In parctice, the range of initial speed can also be estimated by the length of  

the recorded signal and the dimension of the vehicle.  

PMDWs are then generated with different parameters from the previously determined parameter 

subsets by the PMDW generator introduced in Section 2.1.1 to generate a PMDW. The correlation 

filtering analysis introduced in Section 2.1.2 is then performed between the generated PMDW and the 

Doppler-shifted signal. Figure 18 shows the maximal correlation coefficients for the different elements 

from a specified parameter subset. When the parameter set of the PMDW is determined as those in 

Table 4, the maximal correlation coefficient between the PMDW and the Doppler-shifted signal can  

be obtained.  

Table 4. Kinematic model parameter subsets and the optimal kinematic model parameters 

of the bearing signal with the out-race defect. 

Items fc [Hz] c [m/s] r [m] x0 [m] v0 [Hz] a0 [Hz
2
] 

Range [800:1600] [320:360] [1.5:2.5] [2:6] [20:40] [0:10] 

Step 10 1 0.1 0.1 0.1 1 

Optimal value 1250 339 2 3.9 30.5 3 
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Figure 18. Maximal correlation coefficients for the different elements from a specified 

PMDW model parameter subset for the Doppler-shifted signal with the out-race defect.  

0

(a) (b) (c)

(d) (e) (f)

 

The signal resampler introduced in Section 2.1.3 is then employed to eliminate the embedded 

Doppler effect with the identified kinematic parameters in Table 4. The amplitude vector of the input 

Doppler-shifted signal is matched with the delayed-time-vector, td 
dop

, which equals [R0
dop

/c
opt

,  

R0
dop

/c
opt

 + 1/fs ,…, R0
dop

/c
opt

 + (N
dop

−1)/fs], where R0
dop

 equals 
2 2 2 2

0 = 2 3.9 4.3829opt optr X   , 

and a fitting curve, χ
d
, can be obtained by fitting the amplitude vector of the input Doppler-shifted 

signal with td 
dop

. The receive-time-vector, tr
dop

, can be calculated from the emit-time-vector,  

te
dop

 = [0,1/fs,…, (12000−1)/fs], through the receive-time-calculator described by Equation (18). The 

two time vectors are shown in Figure 19a. The next step is resampling the fitting curve, χ
d
, by tr

dop
 to 

obtain the receive-amplitude-vector, Sr
dop

(n). After the amplitude vector rearrangement by matching 

with te
dop

 and the amplitude demodulation procedure implemented by Equation (20), the curve of the 

demodulation weights can be obtained (Figure 19b).  

Figure 19. (a) Receive-time-vector (red curve) and the time vector of the source signal 

(blue curve) and (b) Curve of the demodulation weights, in the experimental case study of 

the bearing signal with the out-race defect. 

(a) (b)

tr
dop

te
dop
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The wave form of the obtained Doppler-free signal is shown in Figure 17d, with its FFT spectrum 

in Figure 17e. Compared with the shape of the FFT spectrum in Figure 17c, the problems of frequency 

shift and frequency band expansion are clearly solved. When Figure 17d is compared with Figure 17b, 

the amplitude is also clearly demodulated. 

The transient model analysis method introduced in Section 2.2 is then applied to detect the characteristic 

interval of the Doppler-free fault signal. A periodical transient model with parameters adjustable using 

Equation (24) is constructed from the sets T = [50/50000:1/50000:600/50000], F = [800:5:2400], and  

Z = {[0.005:0.001:0.03] ∪ [0.04:0.01:0.1] ∪ [0.2:0.1:0.9]}. When a group of parameters is determined, 

the transient model is constructed according to the procedures introduced in Section 2.2.1. The 

correlation filtering analysis introduced in Section 2.1.2 is then performed between the transient model 

and the input Doppler-free bearing signal.  

The outer race characteristic frequency is 138.74 Hz as calculated by Equation (25), and the 

periodical impact interval is 0.0072 s as calculated by Equation (27). Figure 20a reports the maximal 

correlation coefficients for the different elements from set T. The optimal impact period is 0.0072 s, 

which is equal to the real bearing fault-related impact interval. The optimal transient model is shown in 

Figure 20c.  

Figure 20. Results for Doppler-shifted bearing signal with the out-race defect using the 

transient model analysis method (a) maximal correlation coefficients for different elements 

from set T after Doppler effect elimination; (b) wave form of the Doppler-free signal;  

(c) the optimal periodical transient model for the Doppler-free signal; (d) maximal 

correlation coefficients for different elements from set T before Doppler effect elimination; 

(e) wave form of the Doppler-shifted signal; (f) the optimal periodical transient model for 

the Doppler-shifted signal. 

0.0072

0.0083
(a)

(b)

(c)

(d)

(e)

(f)

Time [s] Time [s]

Time [s] Time [s]  
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The signal before the Doppler effect elimination is also analyzed via transient model analysis 

method with the same model parameter subsets. The maximal correlation coefficients for the different 

elements from set T are shown in Figure 20d. The maximal correlation coefficient is obtained when  

the impact period is 0.0083 s, which is incorrect.  

The obtained Doppler-shifted bearing signal (Figure 21a) with an inner-race defect is also analyzed 

to further confirm the effectiveness of the proposed fault diagnosis strategy. Thus, the signal was also 

first pre-processed with a four-order Butterworth band-pass filter (band: 50 Hz to 5 kHz). The wave 

form of the filtered signal is shown in Figure 21b, with its FFT spectrum in Figure 21c. 

Figure 21. (a) Waveform of the Doppler-shifted signal with the inner-race defect;  

(b) waveform of the filtered Doppler-shifted signal with the inner-race defect and (c) its 

FFT spectrum; (d) waveform of the Doppler-free signal with the inner-race defect and  

(e) its FFT spectrum. 

(a)

(b)

(c)

(d)

(e)

 

The proposed Doppler effect eliminator is first applied to identify the kinematic model parameters 

and eliminate the embedded Doppler effect. The subset Sfc is determined as [1400:10:2000] by 

inspecting the FFT spectrum in Figure 21c. The parameter sets Sc, Sr, SX0, SV0, and Sa, are set as 

[320:1:360], [1.5:0.1:2.5], [2:0.1:6], [20:0.1:40], and [0:1:10], respectively. PMDWs are then generated 

with different parameters from the determined parameter subsets by the PMDW generator introduced 

in Section 2.1.1 to generate a PMDW. The correlation filtering analysis introduced in Section 2.1.2 is 

then performed between the generated PMDWs and the simulated Doppler-shifted signal. Figure 22 

shows the maximal correlation coefficients for the different elements from a specified parameter 

subset. When the parameter set of the PMDW is determined as those in Table 5, the maximal 

correlation coefficient between the PMDW and the simulated Doppler-shifted signal can be obtained.  
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Figure 22. Maximal correlation coefficients for the different elements from a specified 

PMDW model parameter subset for the Doppler-shifted signal with the inner-race defect.  

(a) (b) (c)

(d) (e) (f)

 

Table 5. Kinematics model parameters subset and the optimal kinematics model 

parameters of the bearing signal with the inner-race defect. 

Items fc [Hz] c [m/s] r [m] x0 [m] v0 [m/s] a0 [m/s
2
] 

Range [1400:2000] [320:360] [1.5:2.5] [2:6] [20,40] [0,10] 

Step 10 1 0.1 0.1 0.1 1 

Optimal value 1750 342 1.9 4.1 32 5 

The embedded Doppler effect is then eliminated through the signal resampler introduced in  

Section 2.1.3. First, by matching the amplitude vector of the input Doppler-shifted signal with  

the delayed-time-vector, td
dop

, which equals [R0
dop

/c
opt

, R0
dop

/c
opt

 + 1/fs ,…, R0
dop

/c
opt

 + (N
dop

−1)/fs], 

where R0
dop

 equals 
2 2 2 2

0 = 1.9 +4.1 =4.5188opt optr X , a fitting curve, χ
d
, can be obtained. Second, the  

receive-time-vector, tr
dop

, is calculated from the emit-time-vector, te
dop

 = [0,1/fs,…, (12000−1)/fs], 

through the receive-time-calculator described by Equation (18). The two time vectors are shown in 

Figure 23a. After resampling the fitting curve, χ
d
, by tr

dop
, the receive-amplitude-vector, Sr

dop
(n),  

is obtained. Finally, the amplitude vector is rearranged by matching with te
dop

 and performing  

the amplitude demodulation procedure through Equation (20). The curve of the demodulation weights 

is shown in Figure 23b.  

The wave form of the obtained Doppler-free signal is illustrated in Figure 21d with its FFT 

spectrum in Figure 21e. Compared with the shape of the FFT spectrum in Figure 21c and the wave 

form in Figure 21b, the problems of frequency shift, frequency band expansion, and amplitude 

modulation are clearly solved. 

The transient model analysis method introduced in Section 2.2 is then applied to detect  

the characteristic interval embedded in the Doppler-free fault signal. A periodical transient  

model with parameters adjustable using Equation (24) is constructed from the sets  

T = [50/50000:1/50000:600/50000], F = [1200:5:2200], and Z = {[0.005:0.001:0.03] ∪ [0.04:0.01:0.1] 
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∪ [0.2:0.1:0.9]}. Figure 22a shows the maximal correlation coefficients for the different elements  

from set T.  

Figure 23. (a) Receive-time-vector (red curve) and the time vector of the source signal 

(blue curve) and (b) Curve of the demodulation weights, in the experimental case study of 

the bearing signal with the inner-race defect. 

(a) (b)
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dop
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Figure 24. Results for Doppler-shifted bearing signal with the inner-race defect using the 

transient model analysis method (a) maximal correlation coefficients for different elements 

from set T after Doppler effect elimination; (b) wave form of the Doppler-free signal;  

(c) the optimal periodical transient model for the Doppler-free signal; (d) maximal 

correlation coefficients for different elements from set T before Doppler effect elimination; 

(e) wave form of the Doppler-shifted signal; (f) the optimal periodical transient model for 

the Doppler-shifted signal. 
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The periodical impact interval is 0.0052 s, calculated by Equations (29) and (31). Figure 24a shows 

that the optimal impact period equals the real bearing fault-related impact interval. The optimal 

transient model is shown in Figure 24c.  

The Doppler-shifted signal is then directly analyzed by the transient model analysis method with 

the same model parameter subsets. The maximal correlation coefficients for the different elements 

from set T are shown in Figure 24d. The maximal correlation coefficient is obtained when the impact 

period is 0.0068 s, which is an incorrect value.  

5. Conclusions 

In this paper, a fault diagnosis strategy based on the wayside acoustic monitoring technique is 

invented for locomotive bearing fault diagnosis. A parametric wavelet called PMDW is introduced and 

employed to identify the kinematic model parameters based on correlation analysis. A time domain 

signal resampler is introduced and employed to eliminate the embedded Doppler effect in the recorded 

bearing acoustic signal. The transient model analysis method is also employed to detect the localized 

bearing faults after the Doppler effect is eliminated. One of the best benefits of the proposed strategy is 

that all the kinematic model parameters, including the sound speed and the moving speed of the 

vehicle, as well as the geometric parameters of the model, can be identified based on the recorded 

signal itself. Thus, the proposed strategy overcomes the difficulties of kinematic model parameter 

measurement and is adjustable to different types of passing vehicles. Besides, the embedded Doppler 

effect can be eliminated through the proposed strategy, paving the way for the conventional invented 

signal processing methods and feature extraction methods. The performance of the proposed strategy 

has been evaluated by both simulated and practical Doppler-shifted bearing signals carrying fault 

information. Given the merits revealed in this study, the proposed fault diagnosis strategy can be 

widely used in wayside health monitoring systems, particularly in situations when vehicles pass by  

at high moving speeds and kinematic model parameters are difficult to estimate. The proposed data-driven 

Doppler effect eliminator is also hopeful to be used in other areas such as acoustic communication 

techniques and sound field holography for moving vehicles. 
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Appendix A 

A.1. Displacement of the Source Point to the Initial Point A 
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