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Abstract: This paper describes a new method of measuring the position of everyday objects

and a robot on the floor using distance and reflectance acquired by laser range finder (LRF).

The information obtained by this method is important for a service robot working in a human

daily life environment. Our method uses only one LRF together with a mirror installed on

the wall. Moreover, since the area of sensing is limited to a LRF scanning plane parallel

to the floor and just a few centimeters above the floor, the scanning covers the whole room

with minimal invasion of privacy of a resident, and occlusion problem is mitigated by using

mirror. We use the reflection intensity and position information obtained from the target

surface. Although it is not possible to identify all objects by additionally using reflection

values, it would be easier to identify unknown objects if we can eliminate easily identifiable

objects by reflectance. In addition, we propose a method for measuring the robot’s pose

using the tag which has the encoded reflection pattern optically identified by the LRF. Our

experimental results validate the effectiveness of the proposed method.
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1. Introduction

Daily life assistance is one of the most important applications of service robots in the near future.

A service robot must have a function for recognizing its surroundings. However, it is very difficult to

recognize an environment of human daily life since a real space keeps changing dynamically. There exist

human walking and working around while the space is cluttered with furniture and everyday objects. For

a robot, it is quite difficult to recognize its surroundings by only using sensors mounted on its body.

Instead of relying only on the on-board sensors and computers to recognize its surrounding situation,

an informationally structured environment using distributed sensors embedded in the environment is a

promising approach to the issue [1–5].

It is still very difficult to directly measure displacement of objects and human by using distributed

and embedded sensors due to the various constraints in the daily life environment. For example, vision

sensors suffer from illumination change and occlusion. In addition, deployment of multiple cameras

is needed to complement the incompatibility of range of view and the resolution of sensing. However,

embedding so many cameras so that everything is visible would need enormous manpower and cost

due to initial setups and later maintenance of wiring, fixture, calibration, lighting control and so on.

Furthermore it is not acceptable for residents in individual space like home, a patient room of hospital,

nursing care facilities for elderly because of the possible invasion of their privacy: all their appearance

including their body action, facial expression, clothes, and being naked in some cases are recorded day

and night. The data may be stolen or peeped by malicious person.

In this paper, we propose a method to measuring position of everyday objects and a robot in a room,

a private indoor space, while protecting privacy of residents. The method uses only one LRF fixed on

the floor close to the wall, therefore the sensor implementation is very simple. Since the range of view

is limited to a scanning plane parallel to the floor and just a few centimeters above the floor, the system

causes minimal invasion of privacy while enabling acquisition of position data of human feet together

with objects on the floor including small everyday objects. However, it is difficult to directly recognize

the situation of surroundings since the available sensor data is limited. To overcome the difficulties,

we introduce the following ideas.

First, we reduce the occlusion area by using a LRF and a mirror. The scanning plane of the LRF is

carefully selected to be parallel and just a few centimeters above the floor so that there exist relatively

few objects that cross the plane in our environment which contains a bed, chairs, tables and so on. This

means that the sensing plane is less influenced by obstacles. In addition, a strip of mirror is attached

to the side wall of the room so that the reflected laser scans the floor. The floor is scanned by the laser

projected from two different positions. Therefore the furniture having legs with small cross sections will

not cause severe occlusion. In the case of the furniture having large support on the floor, we can lift it

using short and small pillars to create space below for the scanned laser to pass through thus reducing

occlusion. This may be constraint but can be acceptable because of much bigger advantage of the floor

sensing system: simple setting, low cost, low risk of privacy invasion, robust against illumination change.

Second, we identify the objects by using the reflection intensity and position information obtained

from the target surface. The LRF provides both distance value and reflectance value when the laser beam

is projected on the object surface. The reflectance value is a function of distance, angle of incidence of
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the laser to the surface, and optical property of the surface of the object. Therefore the reflectance value

can be normalized in terms of the distance and the angle of incidence by using position data obtained by

the LRF. Objects can be distinguished by this normalized reflectance value if the difference is sufficiently

large above the noise level.

Third, we use the retroreflective materials to improve detection and position measurement. Some

objects have similar reflectance value. To expand the normalized reflectance value, a retroreflective

tape is attached to the surface of the object of interest. The retroreflective material has a transparent

surface in which micro glass balls are embedded so that the incident light is reflected back to the same

direction, giving a very high reflection. Attaching the retroreflective tape on the supporting part of

stable furniture and mobile objects like wheeled robots makes them distinguishable by its reflection

value. Only a small tape is enough for the object, since the LRF scanning height from the bottom is

always kept. Furthermore, we have developed a method for identifying the pose of objects by attaching

a tag coded by reflection value. This method has been successfully applied to pose measurement of a

cylindrical robot which has no geometrical features useful for pose identification.

The rest of the paper is organized as follows: after presenting related work in Section 2, we introduce

the floor sensing system using a LRF and a mirror in Section 3. In Section 4 we describe the method

of identification using laser reflectivity. Section 5 describes method for improvement of detection

and position measurement by attaching retroreflective materials. Section 6 shows an experimental

environment and experimental results. Section 7 concludes the paper.

2. Related Work

LRF has been extensively used on robot for various tasks, such as object detection/recognition,

tracking moving targets. Moving object detection and tracking [6–15] are an important feature required

by a robot, in particular for operations in dynamic environments. Detection of moving objects prior

to any collision is necessary for safe navigation of a robot. The CMU-RI Navlab group [10,11] has

developed such a detection and tracking of moving objects (DATMO) system that uses 2D and 3D laser

scanner. The system is able to track on the order of 100 objects simultaneously. The applications that

used DATMO included a collision warning system, pedestrian detection and classification, autonomous

driving, human track learning and prediction. But, the target and environment of these application are

significantly different from our case in this paper. Moreover, the general laser-based detection using only

geometric information are not enough to identify objects in cluttered environments.

LRF has been used to measure human motion [16–19]. In most of the previous works, the laser

scanning plane is set to be horizontal at the height of the waist of an adult. However, this configuration

has some disadvantages: the position measurement is influenced by the motion of arms and hands; small

children cannot be measured; and tall tables and chairs located at the central area of the room may cause

occlusion. Therefore, instantaneous measurement may be less accurate and less reliable, even though

the long term trend of motion is available. Pedestrian tracking is reported in [20] by setting the scanning

plane at the height of human leg. Though it has successfully tracked pedestrians at the railway station in

Tokyo, it cannot distinguish other objects existing within the measurement area.
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Using cameras to track everyday objects in a room is reported in [21–24]. Also, objects detection

methods using both laser and vision data was proposed [25–27]. Measurements using camera are

influenced by change of illumination and occlusion. Furthermore it may not be desirable due to possible

invasion of privacy in individual space. Everyday objects can be tracked once RFID or ultrasonic tags are

attached to them [28,29]. However active scanning of large directional antennas is required for tracking

RFID tags. This is time consuming and the resolution is rather low. In addition, the ultrasonic tag is too

large and expensive to be used on numerous everyday objects.

Oishi et al. [30,31] proposed a colorization of 3D geometric model and smoothing of range image

method using LRF reflectivity. Rusu et al. [32] proposed a perception to identify and annotate doors

and handles using LRF reflectivity. On the one hand, we use the laser reflectivity for localizing everyday

objects and robot. The laser reflectivity depends not only on the optical property of objects but also on

the distance and the angle of incidence of the laser beam. For this reason, we consider the distance and

the angle of incidence of the laser beam to identify people, robots, furniture and everyday objects.

In our daily life, we often leave or drop everyday objects on the floor. Also, various objects, such as

people, other robots, or furniture may be on the floor. Therefore, detection and position measurement of

these objects on the floor is an important issue in the informationally structured environment.

3. Floor Sensing Using Laser Range Finder and Mirror

We propose a method of position measurement using a LRF and a mirror. Many position measurement

methods using a LRF have been proposed so far [16–18,20,33]. Multiple laser scanners have been

exploited so that a relatively large area can be covered. The target of these methods are people or objects

larger than a human in a rather large space. In contrast to this, our targets for position measurement are

small everyday objects and robots in an indoor environment where multiple LRFs may not be installed

due to space constraint and cost limitation. Therefore we use only one LRF and a strip of mirror attached

to the side wall. We will show how this configuration is effective in measuring position of objects of

various different optical properties while reducing occlusion.

We installed the LRF(Hokuyo URG-30LX) at a height of about 2.7 centimeter above the floor to avoid

unintentional reflection from the floor due to the diffusion of the laser beam (Figure 1, Table 1). A strip

of mirror is attached to a side wall to reflect the laser beam from the LRF [34]. The whole area of both

direct beam scanning from the LRF and indirect beam scanning via the mirror is a measurement region.

If no object is placed on the floor, the LRF measures the distance to the opposite wall. If an object is

placed on the floor, the LRF measures the distance to the object. Even a small object is detected if it has

a height of more than 2.7 centimeters. The LRF may not obtain any distance data due to the reflection

property of the object. In this case, our system still obtains the distance value thanks to the combination

of the LRF and the mirror as follows.

(1) Position Measurement using Reflected Laser Beam: If an object reflects a sufficient laser beam,

the LRF obtains the distance not to the wall but to the object. Then the system detects the existence

of the object from this difference, and calculates the position using the distance and the angle of

the laser beam reflected by the mirror (Figure 2a). Moreover, two types of the measurements can
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be obtained. One result is obtained using the direct laser beam from the object, and the other is

obtained from the indirect laser beam via the mirror .

(2) Position Measurement using Diffused Laser Beam: If the placed object does not reflect the

sufficient laser beam, e.g., a transparent plastic bottle, the LRF is unable to obtain any distance

data. This implies that some object is placed somewhere on the line from the LRF to the wall.

Also if the LRF fails to obtain indirect measurement, then some object is placed on the line from

the LRF to the wall via the mirror. Dashed lines in Figure 2b show these two lines. By integrating

these two pieces of information, we can calculate the position of the object as the intersection of

the two lines.

The sensing performance of one LRF with a mirror may be improved by installing additional mirrors

on other wall if there is not obstacle like a piece of large furniture in front of the wall. The occluded

area by obstacles would be further reduced by a multi-reflected laser beam. In this case, limitation of the

sensing is due to the diffusion of the laser beam of the LRF. Aperture of the beam grows as the distance

is longer, then the laser is eventually reflected by the floor since the scanning plane is designed to be very

close to the floor to detect small everyday object on the floor, and this limits the detection distance of

object. If a low cost, small-sized LRF with sufficiently small laser diffusion is available, it could replace

the current one.

Figure 1. Diffuse feature of laser beam.

LRF

Front

Right sideLeft side
(90º)

(0º)(180º)

h2h2

h1

d

d

Table 1. Diffuse height of laser beam with respect to distance and scanning angle.

d[mm] 1000 2000 3000 4000

h1[mm] 3 4 5 6

h2[mm] 4 24 50 62
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Figure 2. Position measurement using reflected laser beam and diffused laser beam: (a)

position measurement using reflected laser beam, (b) position measurement using diffused

laser beam.
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4. Identification Using Laser Reflectivity

4.1. Background Subtraction and Clustering for Detection of Objects

A simple background subtraction and clustering method are applied to detect and localize unknown

objects. To obtain background data, we remove all the movable objects from the room and measures

range data of the room by the LRF. The data are expressed in 2D range-angle space, namely the polar

space. Over several scans, a set of observed distances is collected. Then the most frequently observed

distances for each scan angle are used as the background data. At the measurement of object, the

background data is subtracted from the scan data, and only foreground points are left. Next, we transform

the data into 2D Cartesian space. Then, the data obtained by the direct measurement and the indirect

measurement are handled in the same 2D coordinate frame (Figure 2a). Next, we cluster 2D points in a

2D coordinate frame using nearest neighbour(NN) algorithm. At first, the clustering is made separately

for the data by direct measurement and for the data by indirect measurement. The distance tolerance

threshold value for the NN-algorithm is set as rθ + α where r[mm] is distance from the LRF to each

point, θ[rad] is the angle resolution of the LRF and α is the accuracy of the LRF. Finally, we merge

clusters of the direct measurement and the indirect measurement if the minimal distance among them is

less than 30 mm.

4.2. Normalization of Reflection Intensity and Identification of Object

The LRF measures not only distance values but also intensity values of laser reflections. We use

reflection intensity and position information to identify people, robots, furniture, and everyday objects



Sensors 2014, 14 7530

made of wood, paper, plastic and rubber in a daily environment (Figure 3). Figure 4 shows the reflection

feature for each object made of different material. The reflection intensity varies depending not only on

the optical property of objects but also on the distance and angle of incidence of the laser beam against

the object surface. Due to the hardware constraint of the LRF, the reflection intensity is not reliable when

the object surface is located closer than 800mm as shown in Figure 4.

Figure 3. Objects in daily environment.

Figure 4. Experiment results of reflection intensity vs. distance and angle of incidence.
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Kd : diffuse reflection coefficient

Iq : the power of the light source

α : angle of incidence on the surface

r : distance from the light source

Therefore, we used the reflection intensity only when the object surface is found far over the critical

distance of 800 mm. Then, we obtained Equation (1) by curve fitting using the experiment data that

satisfies the above mentioned condition. Finally, the approximate intrinsic intensity Equation (2) was

obtained using Equation (1) with measured intensity, r and α from LRF.

Next, we evaluate the effect of the normalization using Equations (1) and (2). A piece of wood,

a red bucket, a green plastic bucket and a cardboard box were placed at 2–3 m in front of the LRF

(Figure 5). The reflection intensity data from the surface of each object is shown in Figure 6. Moreover

the normalized reflection intensity of each object is obtained in Figure 7. If there is a difference in the

reflection intensity among the objects, then they can be identified immediately.

Identification by the normalized reflection could be improved if we use a high performance LRF

having higher resolution of reflection intensity measurement with lower noise level. Actually, we have

used a commercially available LRF since it is low cost and small-sized, and therefore suitable in the

everyday environment.

Figure 5. Experiment setups.

Figure 6. Reflection intensity value of each object.
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Figure 7. Normalized reflection intensity value of each object.
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5. Improvement of Detection and Position Measurement by Attaching Retroreflective Materials

5.1. Expanding Reflection by Attaching the Retroreflective Material

The measurable data corresponds only to a partial profile of object from the LRF. Moreover some

objects may be invisible due to the occlusion by other objects. In addition, it may often be difficult to

separate the multiple clusters when they are closely located. This happens for example when a person

approaches a table or sits down on a chair. Therefore, it is not easy to accurately identify and track

objects in real time.

To solve these problems, we use the reflection intensity and position information obtained from

the target surface. Although it is not possible to identify all objects by additionally using reflection

values, it would be easier to identify unknown clusters if we could eliminate easily identifiable objects

by reflectance.

If there is not enough difference in the reflection value of each object, we cannot identify the object

using only reflection intensity. To solve this problem, we attached a tape made of retroreflective material

to the object. Thus, the difference of the reflection features becomes larger (Figure 8). Using this simple

method, we will be able to identify objects based on the distance and the reflection intensity.

Figure 8. Reflection intensity value of retroreflective material.
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5.2. Improvement of Reflectance Detection by Attaching Retroreflective Materials

Our daily life environment (Figure 3) contains some furniture that can be easily moved by a single

person, for example, a chair and a dining wagon (Figure 9a). We attach the retroreflective material on

the surface of legs of the chair and wheels of the dining wagon where the laser scans. Furthermore, we

attach semi-transparent sheet over the retroreflective material to control the reflection intensity. As a

result, they will be easily identified only by the reflection intensity as shown in Figure 9b.

Figure 9. Attaching retroreflective materials and position measurement using reflected laser

beam and diffused laser beam: (a) position of retroreflective material, (b) distinctly different

intensity compared to the other objects.
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Figure 9a shows how the retroreflective material is attached to the legs of movable furniture. Since

the tags are small, they will not affect general appearance of these objects. This is good for keeping our

daily environment as it used to be, even if service robots are working around.

5.3. Measurement of Robot Pose by Coded Reflection

It is not possible to determine the orientation of object based on the distance value obtained by LRF

if the horizontal cross-section of the object is rotationally symmetric with respect to the vertical axis of

rotation. There are certain objects that have circular cross-section shapes. A cylindrical mobile robot is

a typical example. We developed a method to measure the orientation in such cases.

The idea is to attach distinguishable optical features around the robot base. An optical feature in

our case is a transition between reflective and not reflective material. These transitions are indicated in

Figure 10a as boundary points BPs. Geometric distance between optical features is designed so that they

are distinguished from each other around the robot base as shown in Figure 10a–c.

Once the robot base is scanned by the LRF, visible optical features are detected and identified

(Figure 10d), and then matched with the robot base model (Figure 10e). The complete pose of the

robot is computed based on the position of identified features.
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Figure 10. Example for measuring the robot’s pose: (a) reflection feature, (b) features

between points, (c) target location, (d) laser scan data, (e) result of matching.
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6. Experiments

6.1. Reduction of Occlusion by Mirror

The strip of mirror attached to the wall effectively reduces the occlusion area caused by objects. We

performed simulation to quantitatively evaluate the reduction of this occlusion. Figure 11a shows an

example of a simulated floor map of a room (4 m × 4 m). Obstacles are modeled by rectangles of

different size: a human foot (0.25 m × 0.08 m), a leg of chair (0.05 m × 0.05 m), and an everyday object

(0.1 m × 0.1 m). Figure 11b shows the occlusion area (black) and the measurable area (white) by direct

laser beam of the LRF. By using reflected laser beam, the occlusion area is reduced and the measurable

area is expanded as shown in Figure 11c.

Various different indoor situations have been investigated: the number of people, pieces of furniture

and objects on the floor is changed; thousands of different layouts are randomly generated for each set

of objects.

Table 2 summarizes the result of the simulation. The first row of the Table 2 describes the case where

a person and a chair are both on the floor. The total of cross section by a person and a chair is 0.05 m2.

The layout of the human and the chair is changed randomly 1000 times. Then the average measurable

area by the direct laser beam covers 94.5% of whole floor. Addition of the measurement by the reflected
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laser beam increases the area up to 99.2%. This means that 86.3% of occluded area is recovered to be

measurable area.

As the number of people, pieces of furniture and objects on the floor increases, the measurable area

by the direct laser beam decreases as shown in column 5 of Table 2. However, the decrease is slowed

down when the reflected mirror is used as shown in column 6. The occluded area is effectively recovered

by the mirror as shown in column 7. Thus we have confirmed the good performance of measurement

with only one mirror.

Figure 11. Simulation results of measurable area and occlusion areas: (a) position of

human, chairs and objects, (b) measurable area and occlusion areas by direct laser beam,

(c) measurable area and occlusion areas by direct laser beam and indirect laser beam.
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Table 2. Simulation results of measurable range and recovery ratio.

Total
Human Chair Object

Direct Combined Recovery

Size [m2] Method [%] Method [%] Ratio[%]

0.05 1 1 0 94.5 99.2 86.3

0.10 2 2 0 89.6 96.9 69.8

0.15 3 3 0 84.9 93.9 59.5

0.20 3 4 4 79.4 88.4 43.8

Average value 86.7 94.7 60.1
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6.2. Accuracy Evaluation for Position Measurement of Robot

We evaluate accuracy for position measurement of robots by a coded reflection method. We have

wrapped a strip of reflection encoded tape(Figure 12a,b) around the body of a robot (Roomba, iRobot)

and evaluated accuracy of the pose measurement. The robot was located at 9 different positions as shown

in Figure 12c. At each position, the robot is replaced in 8 different orientations (Figure 12d). In the

experiments, we used a regular grid marked on the floor. Then the robot was set by hand at the marked

position on the grid. Setting error could be around 1mm since the shape of the robot is cylinder. We

have measured 100 times for each pose and obtained mean errors of 5.6 mm along x-axis, 3.5 mm along

y-axis, and 3.4 degrees about vertical axis. Their standard deviations are 4.3, 4.1, and 3.0, respectively.

Figure 12. Evaluation of pose error: (a) reflection encoded tape, (b) target location, (c)

evaluation of position error (x, y axis), (d) evaluation of direction error (θ).
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We have performed other experiments for the measurement of robot trajectory by coded reflection

method. In this experiments, we used a humanoid robot (SmartPal, Yaskawa Electric). Figure 13 shows

the measurement result of the trajectory of the robot for 5 min. Since the occlusions occur between

objects, position measurement failure occur 12 times in a total of 136 times.

Figure 13. Trajectory of robot (5min).
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6.3. Experiments for Measuring the Robot’s Pose and Movable Furniture in Everyday Life Environment

We have performed experiments for measuring the position of robots, furniture, and people as shown

in Figure 3. A bed is set in the corner of a room. A desk and a bookshelf are located along a wall.

A table and a chair are positioned at the center area. Since the robots and the chair are equipped with

retroreflective tape, they are immediately identified based on the reflectance intensity value by the LRF

sensing system. Distance data of unmovable furniture are treated as background data. The original data

obtained by the LRF is cluttered with many data points as shown in Figure 14a. The clusters belonging

to the robots and the chair are recognized based on the reflection values as shown in Figure 14b, and the

clusters of human feet are obtained in the remaining clusters.

Figure 14. Original data by LRF and identification of objects: (a) original data points, (b)

identification of objects.
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7. Conclusions

In this paper we have presented a new measurement system of the pose of objects on the floor in the

individual space for a service robot working in daily life environment. We have presented three ideas.

(1) A floor sensing system using a LRF and a mirror; (2) Identification using laser reflectivity; (3) The

improvement of detection and position measurement by attaching retroreflective materials.

We use a combination of both reflection intensity and position information obtained from the target

surface by LRF. The proposed floor sensing system design enables the acquisition of the above mentioned

information by using only one LRF and mirror. Since the area of sensing is limited to a scanning plane

parallel to the floor surface and just a few centimeters above it, there may be less or smaller obstacles that

intersects the sensing area in our target environment. This setting of the scanning plane together with

the usage of the mirror effectively enables the LRF scanning to cover the whole room while mitigating

occlusion by obstacles. Also, This system is very suitable for usage in daily life environment because

of many advantages: it is very robust against illumination change; it has very low risk of invasion of

privacy of residents since it does not capture full body image day and night whereas it is the case if the

conventional camera is used.

The LRF may suffer from severe occlusion due to accidental positioning of an object close to the

laser. However, such a situation can be minimized by carefully selecting the setting position of the LRF.
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Actually the LRF is set to the wall near the entrance door, since the resident usually does not place

objects on the nearby surface of the entrance. In the case of accidental positioning of an object close to

the laser, it is automatically detected. Thus we can design the system so that it calls a nurse or a robot to

remove it. This may be constraint but can be acceptable because of much bigger advantage of the floor

sensing system.

Method of measurement of objects and robot pose using the reflectance and distance data of the LRF

have been implemented and the experiments validate effectiveness of our approach.

Acknowledgments

The present study was supported in part by a Grant-in-Aid for Scientific Research (B) (23360115).

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Kogure, K.; Hagita, N.; Sumi, Y.; Kuwahara, N.; Ishiguro, H. Toward Ubiquitous Intelligent

Robotics. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and

Systems, Las Vegas, NV, USA, 27–31 October 2003; pp. 1826–1831.

2. Brscic, D.; Hashimoto, H. Map building and object tracking inside Intelligent Spaces using static

and mobile sensors. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots

and Systems, San Diego, CA, USA, 29 October–2 November 2007; pp. 3751–3756.

3. Hasegawa, T.; Murakami, K.; Kurazume, R.; Senta, Y.; Kimuro, Y.; Ienaga, T. Robot Town Project:

Sensory Data Management and Interaction with Robot of Intelligent Environment for Daily Life.

In Proceedings of the International Conference on Ubiquitous Robots and Ambient Intelligence,

Pohang, Korea, 22–24 November 2007; pp. 369–373.

4. Morioka, K.; Lee, J.H.; Hashimoto, H. Intelligent Space for Human Centered Robotics. In

Advances in Service Robotics; Ahn, H.S., Ed.; InTech: Shanghai, China, 2008; pp. 181–192.

5. Nishio S.; Hagita N.; Miyashita T.; Kanda T.; Mitsunaga N.; Shiomi M.; Yamazaki T. Sensor

Network for Structuring People and Environmental Information. In Cutting Edge Robotics 2010;

Kordic, V., Ed.; InTech: Shanghai, China, 2010; pp. 367–378.

6. Vu, T.D.; Aycard, O. Laser-based detection and tracking moving objects using data-driven Markov

chain Monte Carlo. In Proceedings of the IEEE International Conference on Robotics and

Automation, Kobe, Japan, 12–17 May 2009; pp. 3800–3806.

7. Amarasinghe, D.; Mann, G.K.; Gosine, R.G. Moving Object Detection in Indoor Environments

Using Laser Range Data. In Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems, Beijing, China, 9–15 October 2006; pp. 802–807.

8. Zhao, H.; Zhang, Q.; Chiba, M.; Shibasaki, R.; Cui, J.; Zha, H. Moving object classification using

horizontal laser scan data. In Proceedings of the IEEE International Conference on Robotics and

Automation, Kobe, Japan, 12–17 May 2009; pp. 2424–2430.



Sensors 2014, 14 7539

9. Kondaxakis, P.; Baltzakis, H.; Trahanias, P. Learning moving objects in a multi-target tracking

scenario for mobile robots that use laser range measurements. In Proceedings of the IEEE/RSJ

International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 11–15 October

2009; pp. 1667–1672.

10. Mertz, C.; Navarro-Serment, L.E.; MacLachlan, R.; Rybski, P.; Steinfeld, A.; Supp, A.; Urmson, C.;

Vandapel, N.; Hebert, M.; Thorpe, C.; et al. Moving object detection with laser scanners.

J. Field Robot. 2013, 30, 17–43.

11. Rodrguez-Canosa, G.; del Cerro Giner, J.; Barrientos, A. Detection and Tracking of Dynamic

Objects by Using a Multirobot System: Application to Critical Infrastructures Surveillance.

Sensors 2014, 14, 2911–2943.

12. Moosmann, F.; Stiller, C. Joint self-localization and tracking of generic objects in 3D range data.

In Proceedings of the IEEE International Conference on Robotics and Automation, Karlsruhe,

Germany, 6–10 May 2013; pp. 1146–1152.

13. Pinto, A.M.; Rocha, L.F.; Moreira, A.P. Object recognition using laser range finder and machine

learning techniques. Robot. Comput.-Integr. Manuf. 2013, 29, 12–22.

14. Jiang, Y.; Wang H.G.; Ning, X. Target Object Identification and Location Based on Multi-sensor

Fusion. Int. J. Autom. Smart Technol. 2013, 3, 57–65.

15. Yu, K.; Li, T.; Chen, J.; Wu, F.; Sun, C. Classification Method for Object Feature Extraction Based

on Laser Scanning Data. In GRMSE; Bian, F., Ed.; Springer-Verlag Berlin Heidelberg: Berlin,

Germany, 2013; Volume 398, pp. 181–192.

16. Fod, A.; Howard A.; Matric, M.J. A Laser-Based People Tracker. In Proceedings of the IEEE

International Conference on Robotics and Automation, Washington, DC, USA, 11–15 May 2002;

pp. 3024–3029.

17. Kanda, T.; Glas, D.F.; Shiomi, M.; Hagita, N. Abstracting People’s Trajectories for Social Robots

to Proactively Approach Customers. IEEE Trans. Robot. 2009, 25, 1382–1396.

18. Kurazume, R.; Yamada, H.; Murakami, K.; Iwashita, Y.; Hasegawa, T. Target tracking using

SIR and MCMC particle filters by multiple cameras and laser range finders. In Proceedings of

the IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, 22–26

September 2008; pp. 3838–3844.

19. Luber, M.; Tipaldi, G.D.; Arras, K.O. Place-Dependent People Tracking. Int. J. Robot. Res. 2011,

30, 280–293.

20. Shao, X.; Zhao, H.; Nakamura, K.; Katabira, K.; Shibasaki, R.; Nakagawa, Y. Detection

and Tracking of Multiple Pedestrians by Using Laser Range Scanners. In Proceedings of the

IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA,

29 October–2 November 2007; pp. 2174–2179.

21. Peursum, P.; West, G.; Venkatesh, S. Combining Image Regions and Human Activity for Indirect

Object Recognition in Indoor Wide-Angle Views. In Proceedings of the IEEE International

Conference on Computer Vision, Beijing, China, 17–20 October 2005; pp. 82–89.

22. Odashima, S.; Sato, T.; Mori, T. Household Object Management via Integration of Object

Movement Detection from Multiple Cameras. In Proceedings of the IEEE/RSJ International

Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October 2010; pp. 3187–3194.



Sensors 2014, 14 7540

23. Kundu, A.; Jawahar, C.V.; Krishna, K.M. Realtime moving object detection from a freely

moving monocular camera. In Proceedings of the IEEE International Conference on Robotics and

Biomimetics, Tianjin, China, 14–18 December 2010; pp. 1635–1640.

24. Lai, K.; Bo, L.; Ren, X.; Fox, D. A large-scale hierarchical multi-view rgb-d object dataset.

In Proceedings of the IEEE International Conference on Robotics and Automation, Shanghai,

China, 9–13 May 2011; pp. 1817–1824.

25. Oliveira, L.; Nunes, U.; Peixoto, P.; Silva, M.; Moita, F. Semantic fusion of laser and vision in

pedestrian detection. Pattern Recognit. 2010, 43, 3648–3659.

26. Wang J.; Jin X. Moving Object Detection and Tracking in Mobile Robot System Based

on Omni-Vision and Laser Rangefinder. In Recent Advances in CSIE2011; Qian, Z., Ed.;

Springer-Verlag Berlin Heidelberg: Berlin, Germany, 2012; Volume 125, pp. 133–139.

27. Fotiadis, E.P.; Garzn, M.; Barrientos, A. Human Detection from a Mobile Robot Using Fusion of

Laser and Vision Information. Sensors 2013, 13, 11603–11635.

28. Deyle, T.; Nguyen, H.; Reynolds M.; Kemp, C.C. RF Vision: RFID Receive Signal Strength

Indicator (RSSI) Images for Sensor Fusion and Mobile Manipulation. In Proceedings of the

IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA,

11–15 October 2009; pp. 5553–5560.

29. Nishida, Y.; Aizawa, H.; Hori, T.; Hoffman, N.H.; Kanade T.; Kakikura, M. 3D Ultrasonic Tagging

System for Observing Human Activity. In Proceedings of the IEEE/RSJ International Conference

on Intelligent Robots and Systems, Las Vegas, NV, USA, 27–31 October 2003; pp. 785–791.

30. Oishi, S.; Kurazume, R.; Iwashita, Y; Hasegawa, T. Colorization of 3D Geometric Model

utilizing Laser Reflectivity. In Proceedings of the IEEE International Conference on Robotics and

Automation, Karlsruhe, Germany, 6–10 May 2013; pp. 2311–2318.

31. Oishi, S.; Kurazume, R.; Iwashita, Y.; Hasegawa, T. Range Image Smoothing and Completion

utilizing Laser Intensity. Adv. Robot. 2013, 27, 947–958.

32. Rusu, R.B.; Meeussen, W.; Chitta, S.; Beetz, M. Laser-based perception for door and handle

identification. In Proceedings of the International Conference on Advanced Robotics, Munich,

Germany, 22–26 June 2009; pp. 1–8.

33. Inoue, F.; Sasaki, T.; Huang, X.; Hashimoto, H. Development of Position Measurement System for

Construction Pile Using Laser Range Finder. In Proceedings of the International Symposium on

Automation and Robot in Construction, Seoul, Korea, 29 June–2 July 2011; pp. 794–800.

34. Nohara, Y.; Hasegawa, T.; Murakami, K. Floor Sensing System Using Laser Range Finder and

Mirror for Localizing Daily Life Commodities. In Proceedings of the IEEE/RSJ International

Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October 2010; pp. 1030–1035.

c© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/3.0/).


	Introduction
	Related Work
	Floor Sensing Using Laser Range Finder and Mirror
	Identification Using Laser Reflectivity
	Background Subtraction and Clustering for Detection of Objects
	Normalization of Reflection Intensity and Identification of Object

	Improvement of Detection and Position Measurement by Attaching Retroreflective Materials
	Expanding Reflection by Attaching the Retroreflective Material
	Improvement of Reflectance Detection by Attaching Retroreflective Materials
	Measurement of Robot Pose by Coded Reflection

	Experiments
	Reduction of Occlusion by Mirror
	Accuracy Evaluation for Position Measurement of Robot
	Experiments for Measuring the Robot's Pose and Movable Furniture in Everyday Life Environment

	Conclusions
	Acknowledgments
	Conflicts of Interest

