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Abstract: Traditional object tracking technology usually regards the target as a point 

source object. However, this approximation is no longer appropriate for tracking extended 

objects such as large targets and closely spaced group objects. Bayesian extended object 

tracking (EOT) using a random symmetrical positive definite (SPD) matrix is a very 

effective method to jointly estimate the kinematic state and physical extension of the target. 

The key issue in the application of this random matrix-based EOT approach is to model the 

physical extension and measurement noise accurately. Model parameter adaptive 

approaches for both extension dynamic and measurement noise are proposed in this study 

based on the properties of the SPD matrix to improve the performance of extension 

estimation. An interacting multi-model algorithm based on model parameter adaptive filter 

using random matrix is also presented. Simulation results demonstrate the effectiveness of 

the proposed adaptive approaches and multi-model algorithm. The estimation performance 

of physical extension is better than the other algorithms, especially when the target 

maneuvers. The kinematic state estimation error is lower than the others as well. 

Keywords: extended object tracking; Bayesian approach; random matrix; interacting 

multi-model algorithm; model parameter adaption 
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1. Introduction 

During the past several decades, the resolution of radar and other sensors continues to increase, 

thereby generating complex requirements for object tracking (OT) technology [1]. Traditional OT 

technology characterizes the target as a point source object whose physical extension is ignored [2]. 

The centroid is usually utilized to represent the target, and its kinematic state such as position, velocity, 

and acceleration is estimated in OT. This simplification is meaningful only when physical extension 

can be neglected compared with the sensors’ measurement error. However, considering the increasing 

sensor resolution, physical extension state should be estimated jointly in OT approaches, especially 

when tracking relatively large targets such as aircraft carriers and large transport planes. This method 

is referred to as extended object tracking (EOT) [1,3–5]. When targets form a closely spaced formation 

(e.g., an aircraft formation), the individual target becomes indistinguishable from the formation 

because of limited sensor capabilities and sensor-to-target geometry. Thus, closely spaced group 

objects can also be considered extended objects [1,3]. Data association in EOT is difficult because 

extended objects produce a highly varying number of measurements corresponding to a single extended 

object [3]. 

A number of techniques and approaches have been proposed to solve the EOT problem, which 

requires estimating physical extension and the centroid’s kinematic state jointly. Baum et al. [6] 

proposed a novel modeling approach to describe physical extension. The proposed model was called 

random hypersurface model. A recursive Bayesian estimator was derived based on this model.  

Mahler [7,8] applied probability hypothesis density (PHD) filter and cardinalized PHD (CPHD) filter 

to EOT, including both extended and unresolved targets. Vo et al. [9] presented a mathematically strict 

Bayesian filter for EOT, which could be reduced to a CPHD filter under some assumptions when 

tracking a single target. Carmi et al. [10] utilized the Gaussian mixture model to describe the  

time-varying dynamics of group objects. A Markov chain Monte Carlo particle filter for multi-target 

tracking was then obtained. Multiple hypotheses tracking was also a feasible option for EOT [11]. 

Zhang and Bar-Shalom [12] proposed a new framework based on multiple kernel centers for visual 

object tracking. 

Koch [1] proposed the random matrix-based approach for extended object tracking. A recursive 

form filter is derived within the Bayesian framework, and the final form of this random matrix-based 

filter (RMF) is more or less similar to that of the standard Kalman filter. RMF describes the physical 

extension of the target with an ellipse or ellipsoid. Thus, RMF is reasonable and can be applied in 

many practical applications as shown in Figure 1. Given that symmetrical positive definite (SPD) 

matrices can represent all the ellipses/ellipsoids centering at the origin, RMF utilizes the random SPD 

matrix to characterize the physical extension of the target. The random SPD matrix is assumed to obey 

Wishart-related distributions. Then the Bayesian formula can be applied to obtain a very simple filter 

according to the properties of the Kronecker product and Gaussian and Wishart-related distributions. 

Feldmann [3] introduced a more accurate distribution of measurement noise with respect to the target’s 

physical extension and derived a new RMF approach. This new approach can be integrated into an 

interacting multi-model (IMM) framework to improve estimation performance if the object state 

switches between maneuvering and non-maneuvering. However, the derivation process cannot be 

maintained within the Bayesian framework, and several approximations are applied to obtain a 
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recursive form filter. Lan and Li [4,5] further improved extension dynamic model and measurement 

noise model by describing extension evolution and observation distortion with real matrices Ak and Bk. 

This improvement is logical given the relationship between the SPD matrix and ellipse/ellipsoid. It can 

be applied within the Bayesian framework, which requires only an insignificant approximation. 

Figure 1. Description by ellipses of the target’s physical extension. A large ship (left) and 

an aircraft formation (right). 

 

RMF approach is much simpler than the other EOT approaches mentioned above, thereby making it 

more promising. The simulation results demonstrate the effectiveness of the three abovementioned 

RMF approaches. However, the physical extension estimation error obtained by these approaches 

significantly increases when the target maneuvers (e.g., turning motion). The extension dynamic model 

in [4] is improved in this study based on RMF approach to simplify the description of extension 

evolution. Model parameter adaptive approaches for both extension dynamic and measurement noise 

are proposed based on properties of SPD matrix and ellipse/ellipsoid. The proposed adaptive RMF is 

called ARMF. The preliminary results of single-model ARMF have been published in a previous 

conference paper [13]. A multi-model algorithm is proposed by integrating ARMF into the widely 

utilized IMM framework to further improve the performance of RMF when the target maneuvers. 

Simulation results show that the ARMF approach and ARMF-based multi-model (ARMF-MM) 

algorithm are effective. 

2. Bayesian EOT Using Random Matrix 

The dynamic state of an extended object at scan k is described by both the centroid’s kinematic state 

xk and physical extension Xk, where xk is an sd × 1 random vector and Xk is a d × d SPD random 

matrix. Spatial dimension d is usually set to 2 or 3 in EOT. s is the dimension of the state in one spatial 

dimension. s = 2 means that position and velocity are considered. If acceleration is also considered, 

then s = 3.  

The basic idea of random matrix-based EOT is to characterize joint density p[xk,XkZ
k
] as a product 

of a Gaussian density and an inverted Wishart density based on Bayes’ formula: 

1

1
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 (1)  

where  denotes the set of nk measurements at scan k, nk  1 is assumed to be independent 

of xk and Xk, , and c always denotes the normalization factor in this paper. 
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This section summarizes the key results and steps. More detailed assumptions and derivations can 

be found in [1,3,4,14]. 

2.1. Dynamic and Measurement Models 

The dynamic model of xk for EOT is very similar to the models utilized in many Kalman-related filters: 

1k k k k x F x ω  (2)  

where k k d F F I , “” is the right Kronecker product [15], kF  represents the state matrix in one 

spatial dimension, and Id is the d × d identity matrix. Independent process noise k follows a normal 

distribution [1]: 

( , ) ( , )k k d k  ω 0 D I 0 Q  (3)  

where N(μ,Σ) stands for normal distribution with mean μ and covariance matrix Σ, and kD  denotes the 

covariance matrix of k in one spatial dimension. kF  and kD  can be selected according to specific 

conditions of EOT. Singer’s model [1], constant velocity model, and constant acceleration model [16] 

are all feasible alternatives. 

The following assumptions are introduced for physical extension [1,4]: 

T

1 1[ | ] ( ; , / )k k k k k k k kp   X X X A X A  (4)  

1

1 1 1| 1 1| 1[ | ] ( ; , )k

k k k k k kp v

     X Z X X  (5)  

where δk > d − 1 stands for the degrees of freedom, k−1k−1 > 2d is a scalar parameter, subscript 

k−1k−1 indicates the estimated value of corresponding variable at scan k − 1, and Ak is a d × d 

nonsingular real matrix describing physical extension evolution.  

W(X; a,A), the Wishart density of SPD matrix X, is defined by: 

(1/2) (1/2)( 1) 11 1
( ; , ) etr[ ]

2

a a d
a

c

    X A A X A X  (6)  

where etr[∙] is short for exp[trace(∙)], a  d, and expectation E[X] = aA. 

IW(X; a,A), the inverted Wishart density of SPD matrix X, is defined by: 

(1/2)( 1) ( 1/2) 11 1
( ; , ) etr[ ]

2

a d a
a

c

    X A A X AX  (7)  

with a > 2d + 2 and expectation E[X] = A/(a − 2d − 2). 

The assumption in Equation (4) is different from that in Equation (10) in [4]. It is simpler and more 

plausible, which will be explained in Section 3.1. 

Measurement z
r 

k is modeled as follows: 

r r

k k k k z H x υ  (8)  

where k k d H H I  and [1,0, ,0]k H  denotes the meas–urement matrix in one spatial dimension [1]. 

Gaussian measurement noise 
r 

k is independent of 
j 

k(j = 1,2,…,nk, j  r). Its distribution is assumed 

to be [4]: 
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T( , )r

k k k kυ 0 B X B  (9)  

where Bk is a d × d nonsingular real matrix describing the measurement distortion of extension. 

Equation (9) indicates that the measurements are affected by physical extension Xk. 

2.2. Prediction 

The prediction density of xk and Xk can be factorized as: 

1 1 1[ , | ] [ | , ] [ | ]k k k

k k k k kp p p   x X Z x X Z X Z  (10)  

The first factor on the right of the previous equation is assumed to have the following structure [1]: 

1 1 1

1 1 1

1 1 1| 1 1| 1 1

| 1 | 1
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 (11)  

where subscript kk−1 indicates the predicted value of corresponding variable at scan k . 

We then obtain the prediction equations of kinematic state: 

| 1 1| 1

T

| 1 1| 1

k k k k k

k k k k k k k
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 (12)  

p[XkZ
k−1

] can be calculated based on Equations (4) and (5): 
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 (13)  

where GB
II

 d(∙) is the probability density function (pdf) of “generalized beta type II” distribution. An 

inverted Wishart distribution is utilized to obtain a recursive-form estimator and approximate GB
II

 d(∙) 

via first and second moment matching [1,4]: 

1

| 1 | 1[ | ] ( ; , )k

k k k k k kp v

 X Z X X  (14)  

where: 

1 1 1
| 1 2

1 1

( 1)( 1)( 2)
2 4

( )

k k k k
k k

k k k

v d
   

  
  



 

  
  


 (15)  

and: 

T

| 1 | 1 1| 1 1( 2 ) /2k k k k k k k k kv d       X A X A  (16)  

with λk−1 = k−1k−1 − 2d − 2. 

The substitution of Equations (11) and (14) into Equation (10) yields: 

1

| 1 | 1 | 1 | 1[ , | ] ( (; ) ; , ),k

k k k k k k k k k k k kp v

    x X Z x x P X X  (17)  

  



Sensors 2014, 14 7510 

 

 

2.3. Update 

In consideration of Equation (1) and based on Equations (8) and (9), likelihood function p[Zkxk,Xk] 

is obtained as follows [4]: 

T

1

T
T

[ | , ] [ | , , ] ( ; , )

( ; , ) ( ; 1, )

kn
r

k k k k k k k k k k k k k

r

k k k
k k k k k k k k

k

p p n

n
n



 

 

Z x X Z x X z H x B X B

B X B
z H x Z B X B

 (18)  

where: 

T

1 1

1
,   ( )( )

k kn n
r r r

k k k k k k k
r r

kn  

     z z Z z z z z  (19)  

The substitution of Equations (17) and (18) into Equation (1) yields [1,4]: 

T
T

| 1 | 1 | 1 | 1
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( ; , ) ;  ( , )

k k k k
k k k k k k k k k k

k

k k k k k k k k k k

p n
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B X B

x X Z z H x Z B X B

x x P X X

 (20)  

The product of the two Gaussian probability density functions in the previous equation can be 

converted to [1,4]: 

T

| 1 | 1 | 1 | |( ; , ) ( ; , ) ( ; , ) ( ; , )k k k
k k k k k k k k k k k k k k k k k k

kn
    

B X B
x x P z H x z H x S x x P  (21)  

with: 

| | 1 | 1

T

| | 1 | 1

( )k k k k k k k k k
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 (22)  

and: 
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where Xkk−1 is used to approximate Xk. 

Based on Equations (21) and (20) can be rewritten as [1,4]: 

T

| 1 | 1

| 1 | 1 | |

[ , | ] ( ; 1, ) ; ,

                           ( ;

(

, ) ( , )
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k

k k k k k k k k k k k k
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p n v  

 

 



x X Z Z B X B X X

z H x S x x P
 (24)  

Subsequently, the first three pdfs on the right side of the previous equation can be combined as 

IW(Xk; νkk,Xkk) with: 
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X S z H x z H x S X

1k 

 (25)  

where 1/2

| 1k kX  and 1/2

| 1k k



S  are square roots of SPD matrices Xkk−1 and 1

| 1k k



S , which can be obtained by 

Cholesky factorization. They are utilized to keep Nkk−1 and Xkk in positive definite or positive  

semi-definite structure [3]. The derivation of Equation (25) is similar to the corresponding process in [1]. 

Then, p[xk,XkZ
k
] is converted to the product of a Gaussian density and an inverted Wishart density 

as follows: 

| | | |[ , | ] ( ; , ) ; ,( )k

k k k k k k k k k k k kp vx X Z x x P X X  (26)  

The expectation of physical extension Xk is employed as the final extension estimation: 

| |E[ | ] /k

k k k k k k X X Z X  (27)  

where kk = kk − 2d – 2 > 0. 

The Bayesian recursive estimator for EOT with random matrix (i.e., RMF) is composed of 

Equations (12), (15), (16), (22), (23), (25) and (27). A notable similarity exists between the standard 

Kalman filter and the centroid’s kinematic part of RMF. 

3. Model Parameter Adaptive Approaches 

For a certain model used in multi-model (MM) algorithm, the model parameters include kD  in 

Equation (3), δk and Ak in Equation (4), Bk in Equation (9), etc. The model parameter adaptive 

approaches act on extension dynamic model parameter Ak and measurement noise model parameter Bk 

based on the relationship between the SPD matrix and ellipse/ellipsoid. The basic principle of 

parameter adaptive approach when d = 2 and d = 3 is the same. d = 2 is regarded as an example to 

introduce the parameter adaptive approaches. 

The following assignments are adopted in the sequel for the purpose of convenience: d = 2, s = 3, 

and [1,0,0]k H , which means that the kinematic state in one spatial dimension is [position, velocity, 

acceleration]
T
 and only the position coordinates of the target’s centroid are measured. Therefore, the 

ellipse describing physical extension can be represented by [4]: 

T 1( ) ( ) 1k k k k k

  x H x X x H x  (28)  

with x  denoting the coordinates of the points on the ellipse. 

The following factors must be identified when determining an ellipse on the 2D plane. 

(1) Location: the coordinates of the ellipse’s center point, which are determined by 

kinematic state xk; 

(2) Size: the lengths of the semi-axes, which are equal to the positive square roots of Xk’s 

eigenvalues; 
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(3) Orientation: the direction of the semi-axes, which is determined by the angle between 

either of the semi-axes and either of the coordinate axes when d = 2. Several 

definitions of orientation angles are available. For example, the angle between the 

major semi-axis and x axis is suitable when the counterclockwise direction is 

considered the positive direction. 

Size and orientation are determined entirely by physical extension Xk. As long as the size or 

orientation of an ellipse changes, the SPD matrix representing the ellipse would change. This 

occurrence means that the SPD matrices represent only the ellipses centering at the origin. However, 

all the ellipses centering at any position on the 2D plane will be covered if Xk is combined with 

kinematic state xk. 

The following lemma is necessary to decompose SPD matrix Xk into a form wherein the 

relationship between Xk and the ellipse can be easily analyzed. 

Lemma 1. If X is a d × d SPD matrix, then X can be transformed to a diagonal matrix by up to 

( 1)

2

d d 
 “Givens rotations” [17]. When d = 2, X can be transformed as follows: 

T G G * *

1 2( ) ( ) diag( , )   R XR  (29)  

where 
G G

G

G G

cos sin
( )

sin cos

 


 

 
  
 

R  is the rotation matrix, *

1  and *

2  are the eigenvalues of X , 

G [ , )
2 2

 
   , and 

 G 2arctan 1       (30)  

with 
(1,1) (2,2)

2 (1,2)





X X

X
.  

Therefore, 

G * * T G

1 2( )diag( , ) ( )   X R R  (31)  

Proof of Lemma 1. Expand the left portion of Equation (29), then the following equation is 

obtained by setting the non-diagonal elements to 0: 

2 G G(1,2) tan ( ) ( (1,1) (2,2)) tan( ) (1,2) 0    X X X X  (32)  

Let   denote 
(1,1) (2,2)

2 (1,2)

X X

X
; thus: 

G 2tan( ( )) 1     X  (33)  

Q.E.D. 

Decomposing SPD matrix X into the product of orthogonal matrices and a diagonal matrix is 

relatively easy in mathematics. Except for “Givens rotations,” singular value and eigenvalue 

decomposition are also possible. However, the orthogonal matrix contains not only rotation 

transformation but also symmetry transformation (rotation matrix is the orthogonal matrix whose 
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determinant is +1). The form and sequence of symmetry transformation are uncertain. Thus, neither of 

the two decomposition methods is applicable for model parameter adaption. 

According to Lemma 1, SPD matrix Xk representing a 2D ellipse could be factorized as follows: 

 
(34)  

where ,1k  and ,2k  are Xk’s eigenvalues describing the ellipse’s size, and ,
2 2

k

 


 
  
 

 is the 

orientation angle describing the ellipse’s orientation.  

3.1. Extension Dynamic Model Parameter Adaption 

From the extension dynamic model in Equation (4), we obtain: 

T

1 1E[ | ]k k k k k X X A X A  (35)  

No δk exists on the right side of Equation (35), which is different from Equation (11) in [4]. 

However, employing Equation (35) allows Ak to cover all the possible changes in the size and 

orientation of the ellipses represented by SPD matrices Xk and Xk-1. According to Equation (15), δk is 

still incorporated in the Bayesian RMF estimator, describing the uncertainty of physical extension 

evolution [1]. Therefore, the improvement of Equation (4) is reasonable and meaningful. 

For parameter adaption when d = 2, we propose to calculate Ak by the following equation: 

,1 ,2( )diag( , )k k k k   A A A
A R  (36)  

where ,
2 2

k

 


 
  
 

A
describes the change in ellipse’s orientation and ,1 ,2 0k k  A A  are scalars 

describing the change in size. 

Although the range of Ak is reduced, Ak defined by Equation (36) is still able to approximately 

describe all changes in the ellipses’ size and orientation. 

According to Equations (35) and (36), k
A

 describes the change amount of orientation angles of the 

two ellipses represented by Xk and Xk−1 respectively. Then k
A  could be set to ∆φk = φk − φk−1, where 

φk and φk−1 are orientation angles described in Equation (34). Let φ
G
(Xk) and φ

G
(Xk−1) denote the 

angles calculated by Lemma 1. If the difference between φ
G
(∙) and k  is a constant  

(i.e., φ
G
(Xk) − φ

G
(Xk−1) = ∆φk), then k

A  could be set to φ
G
(Xk) − φ

G
(Xk−1). However, no matter  

“+” or “−” in Equation (30) is selected, the difference between φ
G
(∙) and φk is not a constant, i.e., 

φ
G
(Xk) − φ

G
(Xk−1)  ∆φk. Thus, the following two restrictions are introduced. 

First of all, at the very beginning of EOT, the initial value of extension state should be selected by: 

T

0 0 0,1 0,2 0( )diag( , ) ( )   X R R  (37)  

According to the previous discussion and Equation (34), 0X  should be able to cover all the possible 

SPD matrices representing the ellipses centering at the origin.  

Secondly, we select “+” or “−” in Equation (30) to satisfy the following condition: 

1 2 0,1 0,2sign( ) sign( )       (38)  
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where 1 and 2 are the same as those in Equation (29), and sign(∙) is the sign function. 

If these two restrictions are met, then φ
G
(∙) differs from φk by a constant during the whole EOT 

process, i.e., φ
G
(Xk) − φ

G
(Xk−1) = ∆φk). This property is verified by the simulation results. 

However, Xk and Xk−1 are unknown and kX  is also unavailable at the beginning of period k, thus 

we use 1kX  and 2kX  to approximate Xk and Xk−1. k
A

 is then calculated according to the change of 

orientation angles of the ellipse represented by 1kX  and 2kX . 

From the above conditions, k
A  can be calculated by: 

G G

1 2( ) ( ),  2k k k k     A
X X  (39)  

The next task is to determine .  can be determined by the ratios of the corresponding 

eigenvalues of 1kX  and 2kX . When the size of the object does not change rapidly and sharply, the 

following  calculation method is suggested. 

,1 ,2

1 2tr( ) / tr( ),   2k k k k k     A A X X  (40)  

where tr(∙) is short for trace(∙). 

Therefore, Ak can be adaptively determined according to Equations (36), (39) and (40). 

3.2. Measurement Noise Model Parameter Adaption 

Let 
v 

k  denote the real covariance matrix of measurement noise ν
r 

k . According to Equation (9), 

BkXkB
T 

k
 is used to approximate 

v 

k . Thus, the basic idea of Bk adaption is adjusting Bk to meet  

BkXkB
T 

k  = 
v 

k as accurately as possible. Given that Xk and 
v 

k are unknown and kX  is also unavailable at 

the beginning of period k, Bk is calculated according to the difference between 1kX  (k > 1) and 
* 

k , 

where 
* 

k  is an approximation of 
v 

k. Let Ψk denote the noise covariance matrix of measurement sensor, 

which is usually known as prior information. Then 
* 

k  is calculated by [3]: 

*

| 1k k k k  Σ X Ψ  (41)  

where η is a scaling coefficient, | 1k kX is utilized to approximate Xk, and 
| 1

| 1

| 1( 2 2)

k k

k k

k k dv








 

X
X  

according to Equation (14). 

Similar to Equation (36), Bk is calculated by: 

,1 ,2( )diag( , )k k k k   B B B
B R  (42)  

k
B  and  in Equation (42) can be approximately calculated in a manner similar to k

A  and  

calculation in Equations (39) and (40): 

G * G

1( ) ( ),   1k k k k     B
Σ X  (43)  

,1 ,2 *

1tr( ) / tr( ),   1k k k k k    B B
Σ X  (44)  
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3.3. Model Parameter Adaption When d = 3 

For 3D EOT (d = 3), Xk can be transformed to a diagonal matrix by up to three “Givens rotations”, 

which means that at most three angles are required to determine a 3 × 3 SPD matrix [17]. Thus, the 

following equation is introduced to calculate Ak: 

,3 ,2 ,1 ,1 ,2 ,3

3 2 1( ) ( ) ( )diag( , , )k k k k k k k      A A A A A A
A R R R  (45)  

where  is the 3 × 3 rotation matrix. 

The calculation of  and  in Equation (45) is similar to that in 2D EOT. However, it should 

be noted that the three rotation matrices in Equation (45) must be maintained in the same order during 

the whole EOT process. In addition, when utilizing Lemma 1 to decompose Xk, the order of rotation 

matrices should be the same as that of Equation (45). The adaptive approach of Bk when d = 3 is 

similar to that of Ak. 

4. Multi-Model Algorithm 

The proposed ARMF approach is integrated into a multi-model algorithm framework [18] (e.g., the 

widely used interacting multi-model (IMM) algorithm [19]) to further improve the estimation performance. 

4.1. Moment Matching 

Moment matching is applied in step initialization and fusion of IMM. Unlike the standard IMM 

algorithm [18], moment matching in ARMF-MM algorithm involves both kinematic state xk and 

physical extension Xk; this condition makes the moment matching method more complex.  

Step fusion is regarded as an example in this section to introduce moment matching method. In the 

first place, the substitution of Equation (27) into Equation (26) yields: 

| | | |( )[ , | ] ( ; , ) ; ,k

k k k k k k k k k k k k kp v x X Z x x P X X  (46)  

Moment matching in step fusion requires that the following approximation be solved: 

| | | |1

| | | |1

| | | |

| | | |

( ; , ) ; ,

( ; , ) ; ,

( ; , ) ; ,

(

( )

( )

( )

( ); , ) ; ,

n j j j j j j

k k k k k k k k k k kj

n j j j j j j j

k k k k k k k k k k k kj

k k k k k k k k k k

k k k k k k k k k k k

v

v

v

v



 











 







x x P X X

x x P X X

x x P X X

x x P X X

 (47)  

where j = 1,2….,n denotes model j and n is the number of models. 

The moment matching method for kinematic state xk is similar to standard IMM: 

| |1

T

| | | | | |1
( ( )( ) )

n j j

k k k k kj

n j j j j

k k k k k k k k k k k k kj











   





x x

P P x x x x
 (48)  

where  and j

km  indicates that model j is in effect at scan k. 
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The problem of moment matching method for physical extension is that the method considers Xkk 

and νkk in Equation (25) simultaneously. The mean square error ˆ
ke  of extension estimation is first 

defined as follows [3]: 

 

(49)  

Expand Equation (49), and the following equation is derived [3,20]: 

2

|

ˆ ˆ ˆ ˆ4
2 2

ˆ2

k k k k

k k

k

p p q e
v d

e

 
    (50)  

where: 

    

 

2
2

2

ˆ ˆ tr tr

ˆ ˆ2 tr

k k k k

k k k

p e

q e

  

  
 

X X

X

 (51)  

Detailed derivation and explanation can be found in [3,20]. Then the moment matching method for 

physical extension is as follows: 

1

2

1
ˆ ˆ( tr(( ) ))

n j j

k k kj

n j j j

k k k k kj
e e











  





X X

X X
 (52)  

After kX  and ˆ
ke  are determined, νkk is calculated based on Equations (50) and (51). Thus, Xkk is 

obtained as follows: 

| | |( 2 2)k k k k k k k kv d   X X X  (53)  

4.2. ARMF-Based Multi-Model Algorithm 

The four steps of ARMF-IMM algorithm are summarized below: 

(1) Reinitialization 

Let π
i,j

 denote the probability of transiting from model i to model j. |

1

i j

k   is the probability that 

model i is in effect at scan k − 1 given m
j 

k and Z
k−1

: 

| 1

1 1

1 1

1 1

1

,

1

[ | , ]

[ | , ] [ | ]

[ | ]

1

i j i j k

k k k

j i k i k

k k k

j k

k

i j i

k

p m m

p m m p m

p m

c



 



 

 

 











Z

Z Z

Z
 

(54)  

Reinitialization of each model is achieved by replacing corresponding probability variables in 

Equations (48)–(53): 
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(55)  

(2) Model Parameter Adaption and Filtering 

For model j, j = 1,2….,n, calculate A
j 

k according to Equations (36), (39) and (40). Then the RMF 

approach as summarized in Section 2 is performed and B
j 

k is calculated according to Equations (42)–(44) 

for model j. 

(3) Probability Update 

According to Equation (54), probability μ
j 

k is calculated by: 

 

(56)  

Likelihood Λ
j 

k is derived as: 

 

(57)  

where p[xk,Xkm
j 

k,Z
k−1

] is calculated by Equation (17) and p[Z
k
m

j 

k,xk,Xk] by Equation (18).  

The substitution of Equations (17) and (18) into Equation (57) approximately yields: 

| 1 | 1

| 1

| 1 | 1

| 1

1 ( 2)

T T2 2
| 1 | 1

( 2) / 2
( ; , )

( 1) / 2

  ( ) ( )

j j
kk k k k

j

d k k kj j j

k k k k k k k j

d k k

v d n v d

j j j j j j

k k k k k k k k k

n v d

v d

 



 



     

 

       
    

  

z H x S

B X B B X B Z

 (58)  

where | 1

j

k kX  is used to approximate X
j 

k in | 1

j

k kS , and Γd[∙] is the multivariate gamma function. The 

derivation of Λ
j 

k  is quite similar to that of Equations (11) and (13). When nk = 1, 

| 1 | 1( ; , )j j j

k k k k k k k   z H x S . 

(4) Fusion 

The moment matching formulas of fusion are provided by Equations (48)–(53). The final result of 

extension estimation is kX  defined in Equation (27). 
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5. Simulation Results and Discussions 

Two typical EOT scenarios are simulated in this section to compare the proposed ARMF approach 

and other RMF approaches. 

5.1. Scenario 1 

The route of an aircraft carrier, which is approximately 300 m long and 80 m wide, is shown in 

Figure 2. The route starts from origin (0, 0)
T
, moves along the trajectory, and then maintains a uniform 

circular motion on the 2D plane. Constant velocity is set to 27 knots (approximately 50 km/h). The 

aircraft carrier’s extension is characterized by an ellipse with radiuses 170 m and 40 m in RMF 

approach. Scan period T is set to 10 s. The measurement scattering centers are assumed to be 

distributed uniformly over the physical extension (i.e., the ellipse) [3], and the number of 

measurements in every scan obeys Poisson distribution with mean 20. The sensor measurement noise 

follows a zero-mean Gaussian distribution with covariance matrix 
2 2diag([50 ,20 ])k Ψ  m

2
. 

Figure 2. Target trajectory of simulation scenario 1. 

 

The single-model ARMF is compared with Koch’s approach [1] and Feldmann’s approach [3] 

through NM = 500 Monte Carlo runs. 

(1) Koch’s approach: the temporal decay constant τ is set to 8T; 

(2) Feldmann’s approach: 0.25Xk + Ψk is utilized as the measurement noise covariance matrix; and 

(3) ARMF: η in Equation (42) is set to 0.25 via moment matching [3]. 

Average k
A , which describes the change in the ellipse’s orientation angle, is shown in Figure 3. 

The curve shows that the model parameter adaptive approach is effective and that ARMF is able to 

adjust k
A  according to the extension’s changes. 

The root mean square error (RMSE) of physical extension Xk is defined by [3]: 

 M
2

1
M

1
RMSE tr

N l

k klN 

  
  X X X , (59)  

where
l

kX  stands for the expectation of physical extension in lth Monte Carlo run. 
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Figure 3. Average k
A  in simulation scenario 1. 

 

The RMSE of physical extension of the three RMF approaches is shown in Figure 4. When the 

object makes a turn (uniform circular motion after scan 10), the extension RMSE of ARMF becomes 

lower than that of the other two approaches. 

Figure 4. RMSE of physical extension in simulation scenario 1. 

 

5.2. Scenario 2 

The extended object scenario in [3] is simulated below. The aircraft carrier whose size is the same 

as the one in scenario 1 starts from the origin and moves along the trajectory on the 2D plane as shown 

in Figure 5. Three turns are implemented. 

The following three approaches are compared through NM = 500 Monte Carlo runs. 

(1) Koch’s approach: parameters are the same as those in scenario 1; 
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(2) Feldmann’s MM approach: parameters are designed similar to those in [3]; and 

(3) ARMF-MM: three models are used. Model 1 with low kinematic process noise and low 

extension agility (small kQ , large k ), model 2 with high kinematic process noise and high 

extension agility (large kQ , small k ), and model 3 with moderate kinematic process noise and 

high extension agility (moderate kQ , small k ) are utilized. 0.25   for all three models. 

Figure 5. Target trajectory of simulation scenario 2. 

 

The simulation results reconfirmed the validity of the model parameter adaptive approach. ARMF-MM 

identified the angle changes correctly when the object maneuvers as shown in Figure 6. 

Figure 6. Average k
A  of model 3 in simulation scenario 2. 

 

The position RMSEs of three RMFs are close to one another. The error curve is shown in Figure 7. 

The position RMSE of ARMF-MM is lower than that of the others. The RMSEs of velocity and 

physical extension are shown in Figures 8 and 9. ARMF-MM is able to maintain a low level of 

velocity RMSE in the entire process and performs better than the others in physical extension estimation. 

The physical extension RMSE of ARMF-MM is significantly reduced when the target maneuvers. 
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Figure 7. RMSE of position in simulation scenario 2. 

 

Figure 8. RMSE of velocity in simulation scenario 2. 

 

Figure 9. RMSE of physical extension in simulation scenario 2. 
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6. Conclusions 

Bayesian EOT using a random matrix is a very effective and simple approach to incorporate 

physical extension in the OT framework. The Bayesian RMF approach was reviewed first in this 

paper, and certain improvements were made. Afterward, model parameter adaptive approaches were 

derived for both extension dynamic evolution and measurement noise based on the analysis of SPD 

matrix decomposition. The proposed adaptive RMF can be integrated into an IMM framework to 

further improve estimation performance. The validity of ARMF and ARMF-MM was verified by the 

simulation results. ARMF is able to change model parameters adaptively when the extended object 

maneuvers, thereby resulting in low physical extension estimation error. 
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