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Abstract: We present a composite vector selection method for an effective electronic nose
system that performs well even in noisy environments. Each composite vector generated
from a electronic nose data sample is evaluated by computing the discriminant distance.
By quantitatively measuring the amount of discriminative information in each composite
vector, composite vectors containing informative variables can be distinguished and the
final composite features for odor classification are extracted using the selected composite
vectors. Using the only informative composite vectors can be also helpful to extract better
composite features instead of using all the generated composite vectors. Experimental results
with different volatile organic compound data show that the proposed system has good
classification performance even in a noisy environment compared to other methods.

Keywords: distance discriminant; composite vector; odor classification; sensor array;
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1. Introduction

An electronic nose is an instrument intended to identify the specific components of an odor. While
human olfactory sensing is prone to be easily fatigued, an electronic nose has the merit of consistently
detecting odors, including those harmful to the human body [1–4]. Electronic nose systems are used
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for various purposes, such as quality control applications in the food and cosmetics industries, the
detection of odors regarding specific diseases for medical diagnosis, and the detection of gas leaks for
environmental protection [3,5–9].

An electronic nose consists of a sensor array for chemical detection, which is made of polymer
carbon composite materials, and a classifier based on various pattern recognition techniques. Hence,
the sensitivity of a sensor array and the design of a classifier are crucial factors for the improvement of
electronic noses. There are several types of sensor arrays for electronic noses [10–15]. Among them,
conducting polymer composites, intrinsically conducting polymer and metal oxides are most commonly
used for sensing materials in conductivity sensors. Once volatile organic compounds (VOC) are adsorbed
on the sensor surface, a specific response is obtained as a numerical variable by an electronic interface.

In classification problems, the processes can be decomposed into a few steps: feature selection, feature
extraction and choosing a classifier. Various static or dynamic information for odor classification can be
obtained from the sensor response curve [16–18]. In [17,18], five features, which are the relative change
in resistance, the curve integral both over the gas adsorption and desorption process and the phase space
integral, again over adsorption and desorption, are extracted from the response curves of six metal oxide
sensors. The analysis of the dynamic features of metal oxide sensors was presented to classify four
types of volatile compounds, namely acetone, acetic acid, acetaldehyde and butyric acid [16] and active
analyses were proposed to deal with gas mixture problems [19,20]. In [21–23], various compensation
methods were proposed to solve the drift problem causing a random temporal variation of the sensor
response under identical conditions.

The features extracted from the sensor array are fed into a classifier such as the NN (Nearest Neighbor
rule) [2] or SVM (Support Vector Machine) [9] for prediction of the class label. In order to improve the
performance of a classifier, various feature extraction methods can be used for discriminant analysis and
dimensionality reduction [24–27]. Since each method has its pros and cons, an appropriate method must
be selected considering the properties of the data and the problem that needs to be solved. For instance,
the PCA (Principal Component Analysis) method [28] does not utilize class information of data samples,
and finds the projection vectors that correspond to a set of large eigenvalues of the total scatter matrix of
data samples. Thus, it is more appropriate to use the PCA method for data representation, rather than data
classification. On the other hand, the LDA (Linear Discriminant Analysis) method [29] seeks the linear
transformation that maximizes the ratio of the between-class scatter matrix (SB) and the within-class
scatter matrix (SW ). While it gives good performance for classification problem, it suffers from the SSS
(Small Sample Size) problem [29] in case of high-dimensional data.

The above methods extract features based on covariance matrices which differ depending on
their objective functions. Unlike this, some methods such as MatFLDA (Matrixized Fisher Linear
Discriminant Analysis) [30], 2DFLD (Two-Dimensional Fisher Linear Discriminant) [31], or CLDA
(Composit LDA) [32,33], use a different type of covariance matrix, which is called an image-covariance
matrix. The elements of an image covariance matrix are defined as the expectation of the inner products
of predefined vectors. These methods are often effective for data that has a large correlation between
primitive variables or high-dimensional data such as the electronic nose data [34] because they utilize
information about the statistical dependency among multiple primitive variables and result in a saving in
computational effort.
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The composite features are extracted by using the covariance of composite vectors composed of a
number of primitive variables in various shapes of windows. However, it is likely that there is redundancy
between composite vectors when generating composite vectors. Moreover, If there are problems in
the data collection process, or when attributes among the collected primitive variables that have no
association with solving the classification problem are included, the feature extraction results do not
result in optimal solutions and degrade the classification performance [24]. Therefore, distinguishing
good composite vectors containing informative primitive variables before the feature extraction process
is important to extract better composite features for classification.

In this paper, we propose a method to select the composite vectors which contain informative variables
in an electronic nose data sample measured by a sensor array. We measure the amount of discriminative
information that each composite vector has, based on the discriminant distance [35] for each composite
vector and rank ncf composite vectors in descending order according to its discriminant score. The
informative composite vectors are distinguished before the process of feature extraction, and then the
composite features to be used for the classifier are extracted from the only selected composite vectors.
There are potential benefits in employing this selection process such as reduction in computation, storage
and processing time in addition to prediction performance improvement. In the process of extracting
composite features, the computational effort increases in the order of v2 as the number of composite
vectors (v) increases. This implies that the computational complexity can be significantly reduced by
the proposed method. By using a classifier in an electronic nose with the extracted composite features,
we design the robust electronic nose system to noisy environments (Figure 1). The experimental results
show that the proposed method gives very good classification results even in a noisy environment.

Figure 1. The schematic diagram of our electronic nose system.
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The rest of this paper is organized as follows. Section 2 introduces a discriminant distance and
presents how to select composite vectors based on their discriminant scores. Section 3 explains the
acquisition of electronic nose data and how composite features are extracted using the selected composite
vectors for odor classification. Section 4 describes the experimental results and the conclusions follow
in Section 5.
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2. Composite Vector Selection Based on Discriminant Distance

Composite vectors can be defined in various ways depending on the shape of a window. The data
acquired from a sensor array is stored in an n-dimensional vector, and a composite vector xi ∈ Rl

consists of l(l < n) primitive variables. Composite vectors are generated by shifting a window as
much as s, which is usually smaller than the length of a composite vector, and thus composite vectors
overlap with each other, as shown in Figure 2. The correlation between neighboring variables can be
better utilized in the use of the covariance of composite vectors. The number of composite vectors v is
⌊n−l

s
⌋+1, where ⌊·⌋ is the floor operator, which gives the largest integer value that is not greater than the

value inside the operator. Then, the k-th data sample is represented by X(k) = [x1(k), .., xv(k)]
T ∈ Rv×l,

which is a set of composite vectors. The final composite features for classification are extracted by using
the covariance of these composite vectors [36].

Figure 2. Constructing composite vectors.
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However, the overlapped composite vectors as in Figure 2, which may result in redundancy in
extracting composite features. Therefore, it needs to find out the composite vectors that promise
good class separability among different classes as well as make the samples in the same classes as
close as possible. Motivated from the method to select individual variables based on a distance
discriminant [35], we define the distance within classes (Di

W ) and the distance between classes (Di
B)

to compute the discriminant distance for the i-th composite vector xi(k) = [x1
i (k), x

2
i (k), .., x

l
i(k)]

T

as follows:

Di
W =

l∑
j=1

c∑
i=1

1

(Ni − 1)

∑
xj
i (k)∈ci

(xj
i (k)−mj

i )
2

Di
B =

l∑
j=1

c∑
i=1

Ni

N
(mj

i −mj)2.

(1)

Here, mj
i , m

j and Ni are the j-th element of the mean of the class ci, the j-th element of the mean of
whole training samples and the number of samples in the class ci, respectively. Then, the discriminant
distance for the i-th composite vector is computed by Di

B − βDi
W , which reflects the discriminative

information of each composite vector. The value of β can be determined depending on the distribution
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of data samples. For example, in case of the distribution which has good class separability but large
variance in the same class, small penalty (β) on Di

W will be better. By investigating the performance
with respect to β, we set β as 2. For composite vector selection, we define the measure vector as S ∈ Rv

whose element Si = Di
W −βDi

B. Finally, ncf composite vectors corresponding to larger Sis are selected
for extracting the final composite features.

3. Design of Electronic Nose System

3.1. Acquisition of Electronic Nose Data

The sensor array used in our system was implemented by dispensing a CB polymer composite-solvent
solution in a micromachined gas sensor array chip [15]. While the polymer composite has some
drawbacks such as sensor drift, limited sensor life, or sensitivity to temperature and humidity it offers
many advantages over other materials when used as gas sensor, e.g., the wide range of polymetric
materials, inexpensiveness, stable operation at room temperature, and less power consumption,
etc. [10] The sensor array consists of 16 separate sensors with an interdigitated electrode, microheater,
and micromachined membrane in each channel for further temperature-controlled measurement
applications (Table 1). The resistance change of each polymer composite film was monitored in response
to the incorporation of chemical vapor. The resistance change of polymer composite film was amplified
by 20 times and recorded every 0.1 s (Figure 3). Measurement consisted of three steps of stabilization
(30 s), exposure (60 s), and purge (110 s). It was performed after the sensor array was placed into the
chamber and and the signal of resistance was stabilized. Then, the flow control unit in our system allows
the vapors to flow in at desired concentration during about 60 s and afterward flushes the remainder
by air flow for about 110 s [37]. The measured data are collected in PC using data acquisition (DAQ)
board DAQ6062E and LabVIEW (National Instrumentation, USA). The voltage-divider operated in the
range from -10 V to +10 V and gains of 16 identical amplifiers were set to 10 (output/input voltage) for
maximum DAQ resolution [15].

Table 1. The list of 16 CB polymer composites used in the sensor array.

Number Polymer I.D.
Ch 1 Poly(methyl methacrylate)
Ch 2 Polyvinylpyrrolidone
Ch 3 Poly(vinyl acetate)
Ch 4 Poly(ethylene oxide)
Ch 5 Polycaprolactone
Ch 6 Poly(4-methylstyrene)
Ch 7 Poly(styrene-co-methyl methacrylate)
Ch 8 Poly(ethylene-co-vinylacetate)
Ch 9 Poly(bisphenol A carbonate)
Ch 10 Poly(4-vinyl pyridine)
Ch 11 Poly(vinyl butyral)-co-vinyl alcphol-co-vinyl acetate
Ch 12 Poly(vinyl stearate)
Ch 13 Ethyl cellulose
Ch 14 Polystyrene-black-polyisoprene-black-polystyrene
Ch 15 Hydroxypropyl cellulose
Ch 16 Cellulose acetate
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Figure 3. Typical time-responses of 16 channel sensor array with respect to inflow of acetone
vapor at 5,000 ppm [2].
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3.2. Extraction of Composite Features from Selected Composite Vectors

It is very effective for classifying patterns if the within-class variance is small while the between-class
variance is large. Similar to LDA, a discriminant analysis using the covariance of composite
vectors is derived from the between-class covariance matrix (CB) and the within-class covariance
matrix (CW ) [29]. Assume that each training sample belongs to one of c classes, and that there are
Ni samples in the class ci. Let X ′(k) ∈ Rncf×l denote the set of the selected composite vectors of the
k-th sample. Then, CW ∈ Rncf×ncf is defined as

CW =
c∑

i=1

pi{
1

Ni

∑
k∈ci

(X ′(k)−Mi)(X
′(k)−Mi)

T} (2)

where Mi = 1
Ni

∑
X′(k)∈ci X

′(k). Here, pi is a prior probability that a sample belongs to class ci.
CB ∈ Rncf×ncf is also defined as

CB =
c∑

i=1

pi(Mi −M)(Mi −M)T . (3)

The image covariance can be also interpreted from another point of view, not from the view of the
composite vectors. If letting χ(k) and m be column vectors of X ′(k) and M , respectively, CW and CB

can be rewritten as

CW =
l∑

j=1

[
c∑

i=1

pi{
1

Ni

∑
k∈ci

(χj(k)−mi
j)(χj(k)−mi

j)
T}]

CB =
l∑

j=1

[
c∑

i=1

pi(m
i
j −mj)(m

i
j −mj)

T ].

(4)

χj(k) consists of the j-th elements in each of the selected composite vectors, which is sampled from
X ′(k) with regularly varying intervals. This is the similar effect that generates l times more data samples
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of smaller size. The increase of the number of data samples will provide a robust performance to the
variation caused by the noise.

Composite features are obtained by linear combinations of the composite vectors and each feature
is a vector whose dimension is equal to the dimension of the composite vector. For composite feature
extraction, the projection matrix W is found by maximizing the following objective function:

W = argmax
W

|W TCBW |
|W TCWW |

. (5)

The set of composite features for Y (k) is obtained by projecting X ′(k) into the projection matrix W as

Y (k) = W TX ′(k), k = 1, 2, . . . , N, (6)

where Y (k) ∈ Rm×l has m composite features [y1(k) . . . ym(k)]
T .

The length of the window (l), the number of composite features (m) and the step size of the shift (s)
are important parameters that influence the classification performance. We investigated the classification
rates with respect to l, m and s. Table 2 shows the classification rates with respect to l and m. In this
case, we set s = l/2 as in [32]. As can be seen in Table 2, the classification rates are not sensitive to l if m
is properly decided. We set l and m to 400 and 25, respectively. Then, we investigated the classification
rates with respect to s. As can be seen in Table 3, the classification rates are not sensitive to s and the
classification rate of s = 200 was slightly better than those of other s values. Therefore, we set s to 200.
Also, in order to find the optimal number of the selected composite vectors, we checked the classification
rates for the electronic nose data by increasing the number of selected composite vectors ncf . As a result,
we set the number of selected composite vector ncf to 150.

Table 2. Classification rates with respect to l and m.

HHHHl
m

1 3 5 11 16 21 26 31 36

100 67.5 91.9 98.1 98.1 98.1 98.1 98.1 98.1 98.1
200 72.5 91.9 98.1 98.1 98.1 98.1 98.1 98.1 98.1
400 78.8 94.4 98.8 98.1 98.8 98.1 98.8 98.8 98.8
800 71.3 95.6 98.8 98.8 98.1 98.1 98.1 98.1 98.1

1600 64.4 75.0 98.8 97.5 98.1 98.1 98.1 98.1 98.1

Table 3. Classification rates with respect to s.

s 50 75 100 125 150 175 200 225 250
Classi. rate 98.1 98.1 98.1 98.1 98.1 98.1 98.1 98.8 98.1

The overall procedure of our system can be summarized as follows (Figure 4):

(1) Generate v composite vectors xi(k), i = 1, .., v ∈ Rl from an e-nose data sample by shifting the
l length of window as much as the step size of shift (s).

(2) For each composite vector xi(k), compute the distances within- (Di
W ) and between-classes (Di

B).
(3) Compute the discriminant distance for the i-th composite vector by Si = Di

B − βDi
W .

(4) Construct the measure vector S ∈ Rv whose element Si.
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(5) Select ncf composite vectors corresponding to larger Sis.
(6) Extract the final composite features with the only

selected composite vectors.

Figure 4. Overall procedure of the proposed electronic nose system.
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4. Experimental Results

The VOC measurement data consists of 8 classes, which are acetone, benzene, cyclo-hexane, ethanol,
heptane, methanol, propanol, and toluene [15]. For each class, we obtained 20 samples, and thus
the total data set contains 160 samples. Figure 5 shows the distribution of the data samples in the
subspace consisted of two principal component axes. The e-nose sensor used in this experiment
measures vapors with a speed of 10 Hz, which corresponds to a sampling rate of 2,000 points per
200 s. Each data sample was measured through 16 channel over 2,000 time points and was represented
as a 16 × 2,000 matrix. Then, the raw data was transformed into the 32,000-dimensional vector by using
the lexicographic ordering operator for feature extraction (Figure 2).

When setting l and s as 400 and 200, respectively, the total 159 composite vectors can be generated
from a 32,000-dimensional data sample. We measured the discriminant scores of each composite vector
by using the proposed method. Out of the total 159 composite vectors, we represented the composite
vectors with top 60 and 120 scores as ‘1’ and the rest as ‘0’ (Figure 6). In Figure 6, we can see that the
‘stabilization’ and ‘purge’ periods contain the discriminative information for odor classification as well
together with the ‘exposure’ period.
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Figure 5. Distribution of the data samples in the Principal Component Analysis (PCA)
feature space.
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Figure 6. Distribution of the selected composite vectors. (a) 60 composite vectors.
(b) 120 composite vectors.
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We compared the classification performance of the proposed method (CVS) with that of the LDA
method [26], the FF (Feature Feedback) method [38], the CC-PCA (Component Correction by PCA)
method [39], and CC-CPCA (Component Correction by Common PCA) method [22]. We applied
PCA after CC-PCA and CC-CPCA, which slightly increased their classification rates. Each method
was evaluated using an 8-fold cross validation strategy [40]. In this scheme, the data is first randomly
partitioned into 8 equally sized folds. Then, 8 iterations of training and testing are performed, within
each of which a different fold of the data (20 data samples) is used for testing, while the remaining
7 folds (140 data samples) are used for training. The nearest neighbor rule was used as a classifier and
the l2 nor was used to measure the distance between two samples. We repeated this test 8 times and
computed the average classification rate. All the data samples are normalized using the mean and the
variance of the training set.

Since noise is likely to occur in sensing data, we added Gaussian noise with a standard deviation
3 to each data sample, and evaluated the robustness of each method to the noise (Figure 7).
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Figures 8 show examples of the data with or without Gaussian noise and the classification rates of each
case, respectively.

Figure 7. Electronic nose data w/o and with Gaussian noise. (a) Electronic nose data without
noise. (b) Data with Gaussian noise (std 3).
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Figure 8. Classification rates for the electronic nose data. (a) Classification rates for
the original electronic nose data. (b) Classification rates for the electronic nose data with
Gaussian noise (std 3).
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For the original data, all the methods classified each vapor well with high classification rates as can
be seen in Figure 8a. When Gaussian noise is added, the classification rates of the other methods
decreased rapidly (Figure 8b). In contrast, the proposed method gave consistently high classification
rates of 97.3% ∼ 98.4%, which showed that our system performs reliably in a noisy environment.
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5. Conclusions

We have presented a method to select useful composite vectors for odor classification. Composite
vectors, which are generated from an electronic nose data sample by shifting the window, are likely to
contain redundant information for extracting discriminant features and some noise occurred in measuring
with a sensor array. Thus, we evaluated the class separability power of each composite vector based on
a discriminant distance and selected the only composite vectors with large discriminative information.
This selection process has the advantage to holistically view the electronic nose response by its focus
on the extraction of informative response characteristics. The proposed composite vector selection
method not only reduced the computational complexity, but also helped to extract better features. Since
extracting good features not only relieves the influence of noise in the measured data, but also improves
the performance of a classifier such as SVM and NN. When using SVM without any feature extraction,
while the classification rate for the original electronic nose data was 98.0%, the classification rate
dropped to 51.2% for the data with Gaussian noise. On the contrary, NN with the features extracted
by the proposed method gave the classification rates of 99.8% and 98.4% for the same data sets,
respectively. Hence, the proposed method can be utilized together with algorithms of other classification
processes such as feature selection or classifier design and improve the performance of the overall
classification system.

In this paper, we focus on the classification between gas data classes without interference. It is also
important to classify the data which contains combinations of gases, different concentration, etc. in
e-nose data. In near future, we will deal with the interference between gases and gas combinations.
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