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Abstract: In recent years, various applications regarding sparse continuous signal recovery 

such as source localization, radar imaging, communication channel estimation, etc., have 

been addressed from the perspective of compressive sensing (CS) theory. However, there 

are two major defects that need to be tackled when considering any practical utilization. 

The first issue is off-grid problem caused by the basis mismatch between arbitrary located 

unknowns and the pre-specified dictionary, which would make conventional CS reconstruction 

methods degrade considerably. The second important issue is the urgent demand for  

low-complexity algorithms, especially when faced with the requirement of real-time 

implementation. In this paper, to deal with these two problems, we have presented  

three fast and accurate sparse reconstruction algorithms, termed as HR-DCD, Hlog-DCD  

and Hlp-DCD, which are based on homotopy, dichotomous coordinate descent (DCD)  

iterations and non-convex regularizations, by combining with the grid refinement technique. 

Experimental results are provided to demonstrate the effectiveness of the proposed algorithms 

and related analysis. 

Keywords: compressed sensing; sparse continuous signal recovery; off-grid problem;  

low-complexity reconstruction; non-convex regularization 
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1. Introduction 

Compressive sensing (CS) and sparse signal representation have received widespread attention and 

increasing interest over the past few years [1,2], which are motivated by the sparse nature of the real 

world data and the advantages of the CS theory. The applications of CS in numerous areas have been 

widely investigated in the literature, such as magnetic resonance imaging (MRI) [3], synthetic aperture 

radar (SAR) imaging [4], inverse synthetic aperture radar (ISAR) imaging [5], passive radar imaging [6], 

direction-of-arrival (DOA) estimation [7], communication channel estimation [8], seismic signal 

processing [9], spectral estimation [10], image processing [11], speech enhancement [12], etc. Generally 

speaking, those disciplines explore the following linear signal model [13]: 

       (1) 

where        is a     complex vector,        is a      complex measurement matrix, 

       represents the     unknown complex signals of interest, and        denotes a     

complex noise vector. Suppose   is sparse or compressible in a known dictionary       , i.e., 

    , where        is a K-sparse vector, namely it can be approximated by its K largest 

coefficients or its coefficients satisfy a power decay law with K strongest coefficients. Therefore, 

linear measurements are obtained in CS as: 

        (2) 

where           represents the sensing matrix. Although the above equation is usually ill-posed, 

the CS theory has shown that if   satisfies some certain conditions, we can construct   and   stably 

from highly undersampled measurements   [14]. 

1.1. Off-Grid Problem in CS-Based Methods 

In the CS processing procedure, the first necessary step is to design a dictionary through a discretization 

operation with the assumption that the elements of unknown   lie exactly on those pre-defined grids 

corresponding to  . Obviously, this is practically impossible since the continuous nature of the 

unknowns of  , such as the unknown directions, may not fall into the predefined angular grids in DOA, 

and the scatterers of the target may not locate exactly on the pre-discretized scene grids in radar 

imaging. Hence, once faced with a continuous signal, the off-grid problem in using the conventional 

sparse recovery techniques is inevitable, no matter how densely we grid  . Previous researches [15–17] 

have demonstrated that the traditional CS-based methods would be severely affected when the off-grid 

problem emerges, and [18] also claimed that the off-grid problem is one of the major constraints in 

popularizing CS-based methods in practice. It is worth noting that there may be other factors leading to 

basis mismatch, for example, in the radar imaging field, unsatisfactory system parameters (e.g., 

position errors of transceivers [19] and phase synchronization mismatch [20]) are also likely to 

degrade the performance of conventional CS-based methods from our previous researches, however 

this paper only focuses on the off-grid problem, and assumes the system errors are small enough. 

The solutions for off-grid problem have been broadly studied in previous literatures [21–30]. So far, 

main research topics include three types as follows: 

http://en.wikipedia.org/wiki/Inverse_synthetic_aperture_radar
http://en.wikipedia.org/wiki/Inverse_synthetic_aperture_radar
http://en.wikipedia.org/wiki/Inverse_synthetic_aperture_radar
http://en.wikipedia.org/wiki/Inverse_synthetic_aperture_radar
app:ds:broadly
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(a) Direct method according to theories of Xampling and the finite rate of innovation (FRI). This 

scheme is first introduced by Michaeli et al. as a general framework within various solutions for 

analog signals [21]. The significant advantage of this method is its direct solution, without any 

pre-discretization of the continuous signal at first. Thus it is less sensitive to off-grid problem 

compared with traditional CS-based methods. However, this method is mainly based on spectral 

estimation algorithms (e.g., ESPIRT [22], MUSIC [6], Matrix Pencil [23]), which needs special 

signal expression in linear measurement model and its performance may suffer from low SNR 

and few snapshots [24]. 

(b) Off-grid CS method. This kind of method is under a first order Taylor expansion model, and 

thus is quite sensitively depended on the model’s accuracy, and cannot give a thorough solution 

when higher order approximations are significant [23]. Furthermore, it is likely to involve 

highly-computational burden [25,26] for alternatively finding the sparse solution and estimating 

the off-grid error, especially in large scale problem. 

(c) Grid refinement approach. The idea of the grid refinement technique was firstly introduced by 

Malioutov et al. [27] to mitigate the effect of limiting estimates to a grid of spatial locations in 

source localization problem. Then it is generalized by Liu et al. [28] for locating two-dimensional 

multiple underwater acoustic sources. Recently, Guldogan et al. [29] have proposed a novel grid 

refinement algorithm to alleviate off-grid problem by using a particle swarm optimization (PSO) 

and orthogonal matching pursuit (OMP), which makes use of the PSO to perturb the location of 

each grid point. 

Since the “grid refinement approach” is iteratively refined to match with the desired resolution of 

the off-grid components by “coarse and fine grid partition” operations, and does not have the 

drawbacks of (a) and (b), this paper follows the idea of “grid refinement approach” which makes a 

coarse grid first instead of having an universally fine grid to reduce the complexity, then achieves fine 

grids around the peaks using more refinement levels. In this way, after a few iterations of refining 

process, it becomes fine enough that off-grid problem effect is negligible. 

1.2. Fast and Efficient Algorithms for Real-Time Implementation 

Furthermore, there exists another common challenge by utilizing the CS-based methods, i.e., we 

need fast and efficient algorithms for real-time system implementation, particularly for digital electronic 

circuits (e.g., ARM, FPGA, DSP) [30]. From previous researches, sparse recovery techniques can be 

roughly divided into two families, that are greedy methods (e.g., MP [31], OMP [32], GP [33]) and 

optimization based methods (e.g., l1 optimization [34], smoothed l0 optimization [35], non-convex 

optimization [36]). Generally speaking, greedy methods have the advantages of lower complexity, 

faster speed, less storage requirement, and flexible implementation compared with optimization 

based methods, and are considered the most suitable candidates for hardware implementation. 

However, their performances are inferior to those of the optimization based methods, such as l1 

norm minimization basis pursuit de-noising (BPDN) [34]. 
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As the coordinate descent (CD) search has an inherent property of being low complexity when 

signals are sparse, Zakharov et al. have successfully exploited dichotomous CD (DCD) iterations for 

solving LS [37], RLS [38] and MVDR beamforming problems [39] using FPGAs for real-time 

implementation. In addition, to solve the reweighted l1 minimization problem, they have developed a 

greedy algorithm called Hl1-DCD [40], i.e., homotopy DCD method with reweighted l1 penalty, which 

has shown a high recovery performance with relatively low complexity. It turns out that the overall 

complexity of the algorithm is comparable to that of MP. Moreover, homotopy iterations result  

in high accuracy of the solution, even higher than that of the YALLl algorithm. Meanwhile,  

Liu and Zakharov et al. [28] have utilized the low complexity homotopy approach combined with CD 

search for locating underwater acoustic sources by solving the multi-frequency BPDN problem. The 

proposed method is evaluated by applying to simulated and real experimental data. As far as we know, 

previous studies [28,37–40] are mainly focusing on homotopy DCD with convex regularizations, while 

there are seldom researches linking to homotopy DCD with non-convex regularizations. 

1.3. Our Contribution 

From the above discussion, we have addressed two major issues (i.e., off-grid problem and efficient 

algorithms for real-time implementation) of applying CS to sparse continuous signal reconstruction.  

In this paper, motivated by the idea of Hl1-DCD [40] and grid refinement approach [27], we  

present three fast and accurate sparse reconstruction algorithms (i.e., HR-DCD, Hlog-DCD and  

Hlp-DCD) which are based on homotopy, dichotomous coordinate descent (DCD) iterations and  

non-convex regularization, combining with the grid refinement technique to deal with the aforementioned 

issues. The main contributions of this paper are as follows: (1) we formulate the sparse recovery 

problem by homotopy DCD method with three typical classes of non-convex penalties, which are 

proved to recover sparsity in a more efficient way than homotopy DCD method with convex penalties 

as shown in Zakharov’s previous researches [28,37–40]; (2) further, the grid refinement technique [27] 

is utilized to combine with our algorithms to alleviate the effect of off-grid problem and reduce the 

complexity simultaneously; (3) experimental results of three representative applications (DOA, passive 

radar imaging, ISAR imaging) are carried out to verify the effectiveness of the proposed methods. 

The outline of this paper is as follows: in Section 2, two sparse recovery problems are discussed. 

Section 3 describes the proposed methods and related analysis. In Section 4, extensive experimental 

results are presented to verify our methods. Finally, Section 5 draws the conclusions. 

Throughout this paper we shall make use of the following notation: bold-case letters are reserved 

for vectors and matrices, e.g., x is a vector, A is a matrix; Elements of A and x are represented as An,p 

and xn, respectively. I and Ic
 denote the support and its complement, respectively. Further, we represent 

by R
(q)

 the q-th column of R; AI a matrix obtained from A keeping only columns corresponding to I;  

xI the subset of x that contains entries from x corresponding to I;      denotes the lp norm of a vector, 

     is the spectral norm of the matrix A;     denotes the inner product;     ,      ,       denote the 

conjugate transpose, conjugate and real part operations, respectively. 
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2. Problem Formulation and Motivations 

This section briefly introduces the general sparse recovery framework, upon which we develop  

our algorithms. As stated before, various applications can be represented by the linear model as 

Equation (2) shows. 

When considering the practical applications, sparse recovery techniques require low-complexity 

algorithms just as some kinds of greedy methods which are suitable for real-time implementation. 

However, the performances of greedy methods are compared unfavorably with optimization based 

methods (e.g., using l1 norm, reweighted l1 norm, lp norm, smoothed l0 regularization). Recently, 

Zakharov et al. have proposed the homotopy DCD method with convex regularizations, including l1 

and reweighted l1 norms, which have shown a high recovery performance and relatively low complexity. 

Moreover, most of the operations in the algorithms are additions, therefore, they are very suited for the 

hardware implementation of real-time operating systems. Motivated by the idea of homotopy DCD 

method and the fact that non-convex regularization usually yields a sparser solution than any convex 

penalty for a given residual energy (see Figure 1 for example), this paper proposes a fast and accurate 

sparse signal reconstruction by homotopy DCD technique with non-convex regularizations. Three typical 

non-convex penalty functions [12,41] are considered, i.e., the first order rational function penalty, the 

logarithmic penalty and the lp penalty, respectively. With the corresponding penalties, we have 

achieved the derivation of the HR-DCD, Hlog-DCD and Hlp-DCD algorithms in the next section. 

Figure 1. Examples of different penalty functions. 

 

Since x is usually distributed continuously in the corresponding space in many applications,  

the off-grid problem is likely to exist. For example, in the radar imaging field, the reflectivity centers 

of the scatterers are generally not located at exact on-grid spatial positions illustrated in Figure 2, 

which means the measurement matrix should cover the basis vectors corresponding to off-grid 

scatterers. As conventional CS-based methods do not consider the off-grid effect, therefore the related 

sparse reconstruction techniques suffer unacceptable degradation in image quality. This paper has 

utilized the grid refinement approach [27] shown in Figure 3 combined with the HR-DCD, Hlog-DCD 

and Hlp-DCD algorithms to alleviate the impact of off-grid problem (see details in Section 3.2). 

Experimental results in Section 4 are provided to demonstrate the performance improvement of the 

proposed algorithms. 
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Figure 2. Off grid and on grid scatterers. 

 

Figure 3. Illustration of grid refinement approach. 

 

3. Homotopy DCD with Non-Convex Regularization Algorithms 

We consider minimization of the following cost function to solve the problem Equation (2): 

 
2

2

1
( )

2
J   x y Ax x

 
(1) 

where the sparsity measurement function      is generally separable, or             , where      

denotes the parameterized form and satisfies such conditions that      is sparsity-preserving, and 

    is a regularization parameter. As mentioned in previous researches, we can use DCD iterations 

for minimizing the cost function, which is represented in a fixed point. The DCD algorithm is 

appealing for practical designs as it operates at the bit level, resulting in stable hardware 

implementations, which is shown in Table 1. Different from Zakharov’s studies [28,37–40], this paper 

utilizes the non-convex regularizations instead of convex regularizations embedding with the DCD 

algorithm, and chooses three typical penalty functions as follows: 

  

UnknownsGrid Unknowns

Second time grid parition 

First time grid parition 

UnknownsGrid Unknowns

Second time grid parition 

First time grid parition 
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(a) The first order rational function penalty: 

 
1

2

i

i

i

x
x

a
x

 


 

(2) 

(b) The logarithmic penalty: 

   
1

log 1i ix a x
a

  
 

(3) 

(c) The lp penalty: 

 
p

i ix x 
 (4) 

In order to reduce the complexity of the DCD algorithm, we develop a greedy algorithm that is 

based on homotopy method with respect to a set of the parameter  . Besides, the updates of our DCD 

algorithm are only done within the support instead of all elements. As the support is usually much 

smaller than N, therefore, the complexity is further reduced. We consider the first order rational 

function penalty at first, and develop HR-DCD algorithm. Then Hlog-DCD algorithm and Hlp-DCD 

algorithm can be similarly obtained. 

Table 1. DCD Algorithm. 

Step Equation 

 Initialization:              , m = 0,   = H 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

for m = 1 to Mb, repeat: 

                       

 for i = 1 to N, repeat: 

 for k = 1 to 4, repeat: 

                 
       

 
                       

 if     , do: 

                    

end if 

end for 

end for 

end for 

The following two propositions define the rules for adding/removing elements into/from the support 

of HR-DCD algorithm.  

Let I be the support at some homotopy iteration, and I
c
 be its complementary set. Denote r = y − Ax, 

      and      . 

Proposition 1: Add the t-th (    ) element into the support I according to the rule: 

    
2 2,

, , , ,2

,

arg max 4 . . 4
c

k k k

k k k k k t t t t t
k I

k k

a b R
t R a b aR s t R a b aR

aR
 




      (5) 
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Proposition 2: Remove the t-th (   ) element from the support I according to the rule 

   
2 2* *

, ,

1 1
arg min . . 0

2 2
1 1

2 2

k t

k k k k k t t t t t
k I

k t

x x
t x R x b s t x R x b

a a
x x

 


     

 
 

(6) 

We now prove Proposition 1. 

Proof: Let the t-th element      be activated as                  , and the updated solution 

vector is denoted as   . The update of the cost function Equation (3) is then given by: 

     
2

,

1
ˆ

2
1

2

t t tJ J J R b
a


  



     



x x

 
(7) 

The cost function is reduced if     . For a fixed     ,    achieves a minimum value if  

              , and in this case: 

2

,

1

2
1

2

t t tJ R b
a


  



   


 

(8) 

Let: 

    

 

2

, ,

2 2

, ,

,

, , ,

4 1
2

2 4

4

t t t t t t

tt t t t t t

t t

t t t t t t

a
J J

aR R a b b

bR a b R a b
aR

aR aR aR



   


 

 
    

 

    

      
          

       

(9) 

For      , if      
          

     
, we have: 

  2

, ,

,

1
4 t t t t t

t t

J aR R a b
aR

    

 
(10) 

If      , then                     
 

  . Thus, there exists a value of   that results in     , 

i.e., in reducing the cost function. It is seen from the last expression that if we want to add a new 

element to the solution vector, the index t of the element should correspond to the maximum of 
          

     
              

 
          over     . In this case, we will obtain the largest decrement of 

the cost function. 

Thus, the value of   that for a fixed t such that                     
 

   results in the 

decrement of the cost function is given by:  

 arg,

,

tj bt t t

t t

a b R
e

aR





 
(11) 

According to the above statements, the      -th nonzero element to be activated in    should satisfy: 

    
2 2,

, , , ,2

,

arg max 4 . . 4
c

k k k

k k k k k t t t t t
k I

k k

a b R
t R a b aR s t R a b aR

aR
 




    

 
(12) 

For      , we have: 
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   

2

,

,

1

2
1

2

2 2 4

4 1
2

t t t

t t t

J R b
a

R b a
a


  




  



   



   
 
 

   

(13) 

If             
 

        , then in this case: 

     

 

2

, ,

,

2

, ,

,

1
2 2

4 1
2

0

4 1
2

t t t t t t

t t

t t t t t

t t

J R b a R a b
a aR

aR R a b
a

aR


 








  
      

     
 

   
 
 

   

(14) 

Therefore, if    > 0 then for            
 

        , we have   > 0, i.e., the cost function increases. 

We now prove the Proposition 2: 

Proof: Let the t-th element      be activated as       and the updated solution vector is denoted 

as   . The update of the cost function is then given by: 

     
2 *

,

1
ˆ

2
1

2

t

t t t t t

t

x
J J J x R x b

a
x

     



x x

 
(15) 

Thus, if     
             

             
 

 
        , then     , there exists a nonzero 

value of the t-th element that decreases the cost function that should be removed from the support. 

Table 2. HR-DCD Algorithm. 

Step Equation 

 Initialization:                          

1 

 

2 

3 

 

4 

5 

 

 

 

6 

 

 

Choose the first (t-th) element into the support according to: 

              ;              

Repeat until a termination condition is met: 

Solve      
         

                          on the support I and 

update r using DCD iterations 

Update the regularization parameter:            

Remove the t-th element from I according to the rule: 

                             
                               

     
             

                         

If the t-th element is removed, update r:        
   ,        

Add the t-th element into I according to the rule: 

                             
                

 
                            

 
         

 If the t-th element is added, update:       

Combining the DCD algorithm in Table 1 and the above two propositions, we arrive at the HR-DCD 

algorithm presented in Table 2. 
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The HR-DCD algorithm starts with the zero support    , and       . For each  , it updates the 

support and minimizes the cost function according to the corresponding propositions. Besides, the 

algorithm will terminate if the iteration times reach the preset parameter   or        (     is a 

predefined parameter). 

Remark 1: When the penalty is logarithmic function, we give two similar propositions as follows: 

Proposition 3: Add the t-th (    ) element into the support according to the rule: 

arg max . .
c k t

k I

t b s t b 


 
 

(16) 

Proposition 4: Remove the t-th (   ) element from the support according to the rule: 

       
2 2* *

, ,

1 1 1 1
arg min log 1 . . log 1 0

2 2
k k k k k k t t t t t t

k I
t x R x b a x s t x R x b a x

a a
 


       

 
(17) 

Remark 2: When the penalty is lp norm, we can also give two similar propositions as follows: 

Proposition 5: Add the t-th (    ) element into the support according to the rule: 

2 1

,arg max . . 2
c

p p

k t t t
k I

t b s t b R
 



 
 

(18) 

Proposition 6: Remove the t-th (   ) element from the support according to the rule: 

   
2 2* *

, ,

1 1
arg min . . 0

2 2

p p

k k k k k k t t t t t t
k I

t x R x b x s t x R x b x 


     
 

(19) 

The proofs for Equations (18)–(21) will be shown in the Appendix. By combining the corresponding 

propositions with related DCD algorithms, it is easy to obtain Hlog-DCD algorithm and Hlp-DCD 

algorithm, respectively, and we omit the tabulated expressions here for simplicity.
 

3.1. Complexity Analysis 

The complexity is given by                          . The term     is for 

computing the initial b. The term     is for selection of elements in the support. The term      is for 

updating b in the total number    of successful DCD iterations, and each update requires only 2N real 

valued additions, as multiplications by    are bit-shifts. The term    takes into account    (total 

number of DCD iterations) tests to decide if the DCD iteration is successful. The debiasing (       ) 

is now done by using extra      DCD iterations on the finally identified support with size   . 

3.2. Off-Grid Problem Solution 

As stated before, we explore the idea of grid refinement technique [27] to reduce the number of the 

arbitrarily located potential positions of  . Two-dimensional passive radar imaging is selected as an 

example to illustrate the procedures of solution, which is realized as follows: 

(1) Under a coarse resolution        , where         represent the range step and azimuth step 

respectively, calculate the coarse localizations                 results by finding   largest 

amplitude peaks using the proposed algorithms, i.e., HR-DCD, Hlog-DCD and Hlp-DCD. 
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(2) Build a denser grid around the estimated locations         with a finer resolution           as 

Figure 2 mentioned in Section 2. 

(3) Set       and     
 

 
        

 

 
   , repeat for   times from Step (1) until the desired 

resolution is achieved. 

In order to reduce the multiplications, we use dichotomy for grid refinement, which can use bit-shifts 

instead of multiplications to be implement in hardware system. According to our experimental results 

in Section 4, no more than 10-step grid refinement process is needed. 

3.3. Extension to Multiple Measurement Vectors (MMV) Case 

Although we have derived HR-DCD, Hlog-DCD and Hlp-DCD algorithms from a single measurement 

vector (SMV), the results can be generalized to MMV case. In some kinds of applications, such as 

wideband source localization [42], multiple frequency bins are explored. As we all know that single 

frequency results can be easily disturbed by noise and interference, and in this issue, we can use a 

frequency diversity to achieve better performance. A traditional method of modifying the above 

approach to multi-frequency signals is averaging the results of all the frequencies. But due to the 

presence of noise, environmental mismatch and interference, different frequencies may give different 

results, thus this combining method may not work well. 

By the similar approach used in [28], our proposed methods require that for all frequencies to have 

the same support, which utilize the joint sparsity pattern, and choose an element to add to the support 

according to the corresponding propositions to achieve greater frequency diversity and avoid the possible 

wrong results. And the final result can be given by averaging all the results of all the frequencies through 

this way. 

4. Experimental Results 

In this section, we will present several simulation results which illustrate the effectiveness of  

the proposed methods. All experiments are performed by using MATLAB R2013a on a PC equipped 

with an Inter Core i7 3770k CPU, 3.5GHz and 32 GB memory. The state-of-the-art sparse recovery 

methods such as MP, BP, FOCUSS, SBL, Hl1-DCD, etc. are selected for comparison. As a benchmark 

we will utilize an oracle sparse recovery (OSR) to represent the best inversion performance, which 

knows the true support of  . In addition, we set parameter      in Equation (4) for HR-DCD, in 

Equation (5) for Hlog-DCD, and       in Equation (6) for Hlp-DCD, and                  

      by experience from extensive simulation results. Other predefined parameters such as  ,  ,  , 

and the grid refinement times  , etc., are decided according to the actual conditions, which will be given 

in details in the next text. 

4.1. DOA Estimation 

As described by Malioutov et al., for one snapshot case, the DOA problem of Equation (5) in [27] is 

equivalent to Equation (2) in this paper. With the assumption that the sources can be viewed as point 

sources and their number is small, the underling spatial spectrum is sparse and it can be solved via 

sparse recovery methods mentioned above. The first simulation considers the scenario that there are 

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1453780
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five uncorrelated signals impinging from [−47.7°, −28.5°, −9.2°, 11.6°, 30.1°]. The grid is set to be 

within the range of −90° to 90° with 1° spacing. A 30-element uniform linear array (ULA) spaced in 

half-wavelength units is used, and the signal-to-noise ratio (SNR) is set to be 20 dB. Here we only 

consider one snapshot case, and set               . Figure 4 depicts the solutions solved 

by different methods, and the vertical dashed lines mark the true directions. Obviously, our methods 

find the positions and the amplitudes exactly and achieve much sparser solutions than MP and BP. 

Moreover, they have a better amplitude estimation than Hl1-DCD [40]. 

Figure 4. Solutions of MP (a), BP (b), Hl1-DCD (c), HR-DCD (d), Hlog-DCD (e),  

Hlp-DCD (f) for off-grid DOAs. True DOAs are denoted by the vertical dashed lines. 

  

(a) MP (b) BP 

  

(c) Hl1-DCD (d) HR-DCD 

  

(e) Hlog-DCD (f) Hlp-DCD 
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We give a time cost for the aforementioned methods in Table 3. From the results, we can see that 

our methods have the same time cost as the Hl1-DCD. Although they are a little longer than MP, but 

they are much less costly than BP. However, the significant advantages of our methods are that they 

are very easy to implement in a hardware platform because only bit-shifts are needed instead of 

multiplications similar as [37–40], besides, they can achieve the similar reconstruction performance as 

BP without off-grid problem. 

Table 3. Time consumption of different methods. 

 MP BP Hl1-DCD HR-DCD Hlog-DCD Hlp-DCD 

Time(s) 0.013 0.721 0.130 0.122 0.129 0.126 

Next we compare the mean squared error (MSE) of position and amplitude estimation performances 

by applying the proposed methods and several popular methods (MP, BP, FOCUSS, SBL, Hl1-DCD, 

OSR), which are defined as follows: 

 

 

2

2

2

2

ˆ( )
_

position position
Position MSE

position


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x x
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2
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
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x x
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where    is an estimate of  . 

Figure 5a compares the MSEs of DOA estimation results of different methods under varying SNR, 

which are averaged by 100 Monte Carlo trials. From the curves of MSE of position versus SNR shown 

in Figure 5a, it can be seen that Hl1-DCD and the proposed methods have similar results in position 

estimation, and outperform their counterparts. However, our methods have better amplitude estimation 

accuracy than Hl1-DCD from Figure 5b, and are even very close to the OSR performance. 

Figure 5. MSE of position vs. SNR (a) and amplitude vs. SNR (b). Uncorrelated source 

signals come from 47.7°, −28.5°, −9.2°, 11.6°, and 30.1°. Herein one snapshot is used. 
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The MSEs of DOA estimation versus number of signals shown in Figure 6 are obtained over  

100 Monte Carlo trials with SNR equals to 20 dB. We can clearly see that our methods perform best 

compared to other methods with the same parameters, especially on the amplitude estimation results. 

Figure 6. MSE of position vs. number of signals (a) and amplitude vs. number of signals (b). 

SNR is fixed at 20 dB. 

  

(a) (b) 

4.2. Passive Radar Imaging 

In this part, we aim to test the performance of the proposed methods in a passive radar imaging 

system. Based on the final echo Equation (17) stated in [6] which is similar to Equation (2) in this 

paper, sparse recovery techniques can be utilized to solve the problem of passive radar imaging. In the 

simulation, we choose seven digital video broadcasting (DVB) satellites as opportunity transmitters and 

10 receivers, and the initialization grids are       represented for the imaging scene           

(here we use the axis function in matlab to make the scene limited to be           so as to achieve 

a better visual effect). There are nine off-grid scatterers with different reflection coefficients in  

the scene of interest as the red circles illustrated in Figure 7. The number of frequency samplings 

corresponding to each transmitter is 10, and the SNR equals to 20 dB. Other simulation parameters are 

the same as displayed in [6]. Here we set            and grid refinement times     . 

Figure 7a shows the poor imaging result by BP due to the reason that in practice the scatterers are 

not located exactly on the pre-discretized grids, and the echoes are mismatched with the measurement 

matrix, therefore the performances of CS-based reconstructions are generally unsatisfactory. Figure 7b 

is the imaging result by Hl1-DCD, and we can see that it can seek the exact locations of the target, 

however the amplitude estimation of the reflection coefficients is not precise. 

Figure 7c–e represents the imaging results by the proposed methods. As expected, the proposed 

methods do not have the off-grid problem from the perspective of both the position and amplitude 

estimation results, which show the potential of our methods to be applied in practical passive  

radar system. 
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Figure 7. Passive radar imaging results by applying BP (a), Hl1-DCD (b), HR-DCD (c), 

Hlog-DCD (d), Hlp-DCD (e). Left and Right figures show the amplitude and position 

estimates, respectively. Red circles denote the true scatterers of the target, and blue crosses 

represent the estimated results. 

(a) BP 

  

(b) Hl1-DCD 

  

(c) HR-DCD 

  

(d) Hlog-DCD 

  

(e) Hlp-DCD 
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Figure 8 shows the MSEs of position and amplitude estimation results versus SNR by applying 

different methods, which are averaged over 100 Monte Carlo trials. In the simulation, we have assumed 

that there are nine off-grid scatterers with unit reflection coefficients distributed randomly in imaging 

region. It is seen that our methods outperform the conventional methods (MP, BP, FOCUSS, SBL) in 

further improvement of MSEs of position and amplitude estimates when off-grid target emerges. In  

the meantime, they have better amplitude estimation result than Hl1-DCD with the same parameters 

shown in Figure 8b. Moreover, the performances of our methods approach the OSR very closely under 

varying SNR, both in position and amplitude estimates. 

Figure 8. MSE of imaging results versus SNR. MSE of position vs. SNR (a) and amplitude 

vs. SNR (b). 

  

(a) (b) 

4.3. ISAR Imaging 

We utilize the CS ISAR imaging model as discussed in [43], and assume that the translational 

motion compensation has been already achieved and thus only the rotational motion is considered.  

The relation between the received signal and the complex reflection coefficients can be written as 

Equation (10) in [43], which is equivalent to Equation (2) in this paper. 

We use the quasi real data of an airplane (B-727) provided by the U.S. Naval Research Laboratory 

to test the feasibility and performance of the proposed methods, which is available on the website 

http://airborne.nrl.navy.mil/~vchen/tftsa.html. The stepped frequency radar operates at 9 GHz with the 

equivalent pulse repetition interval (PRI) of 3.2 ms and has a bandwidth of 150 MHz. For each pulse 

train, 64 complex range samples were saved, and the file contains 200 successive pulse trains within 

the long coherent processing interval (CPI). An additive noise is added to the original B-727s data, and 

the SNR is set to 10 dB. Herein we choose 40 range cell numbers and 20 cross range cell numbers  

for short CPI test, and the reconstruction of target spatial domain is discretized with 64 range bins and 

32 cross range bins, besides, we set            and    . Since in radar imaging field, the 

position estimates are very important when off-grid problem exists. 

  

0 10 20 30 40 50
-25

-20

-15

-10

-5

0

5

10

SNR/dB

P
o

s
it
io

n
_

_
M

S
E

/d
B

 

 

Hl1-DCD

HR-DCD

Hlog-DCD

Hlp-DCD

FOCUSS

SBL

MP

BP

0 10 20 30 40 50
-20

-15

-10

-5

0

5

SNR/dB

A
m

p
lit

u
d

e
_
_

M
S

E
/d

B

 

 

Hl1-DCD

HR-DCD

Hlog-DCD

Hlp-DCD

FOCUSS

SBL

MP

BP

OSR

app:ds:in
app:ds:the
app:ds:meantime


Sensors 2014, 14 5945 

 

 

Figure 9 are the position recovery results by MP, SBL, FOCUSS, BP, Matrix-Pencil, ESPRIT,  

Hl1-DCD and the proposed methods (HR-DCD, Hlog-DCD and Hlp-DCD) shown as the red circles, 

and we use the conventional FFT-based ISAR image as the background for fair comparison. As stated 

above, the imaging performances of the classical methods (MP, BP, FOCUSS, SBL) are not good 

because of the off-grid errors. Matrix Pencil and ESPRIT can direct solve the positions of the plane, 

but their performances suffer from low SNR and few snapshots, therefore the imaging results are not 

good enough. In contrast, our methods can deal with the off-grid target, and achieve satisfying imaging 

performances which have better visual effect for the airplane shape. Moreover, it is obvious that the 

imaging results of our methods are better than Hl1-DCD with the same parameters, especially on the 

details of airplane wings and tails as illustrated in zoomed-in regions of Figure 9h–j, which demonstrate 

the advantage of homotopy DCD method with non-convex regularization compared with convex 

regularization under the same measurements. 

Figure 9. ISAR imaging results of B-727 by MP (a), SBL(b), FOCUSS (c), BP (d), 

Matrix-Pencil (e), ESPRIT (f), Hl1-DCD (g), HR-DCD (h), Hlog-DCD (i), Hlp-DCD (j). 

The red circles denote the corresponding position recovery result, and background represents 

the FFT-based reconstruction. 

  

(a) MP (b) SBL 

  

(c) FOCUSS (d) BP 
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Figure 9. Cont. 

  

(e) Matrix-Pencil (f) ESPRIT 

  

(g) Hl1-DCD (h) HR-DCD 

  

(i) Hlog-DCD (j) Hlp-DCD 

In order to quantitatively evaluate the amplitude estimation performances of the obtained ISAR 

images via different methods, we use the correlation value [44] to evaluate the similarity between the 

recovered images and the reference image, and the image entropy [44] to measure the focusing quality 

of the recovered images. They are defined as follows: 
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where    and    denote the reference image vector using full measurements and the recovered image 

vector by different methods, and    is the histogram of the recovered gray level (0~255) image. 

The correlation and entropy values of the recovered ISAR images under different methods are 

summarized in Table 4. It can be seen that the proposed methods have a higher correction with the 

reference image and a lower entropy than their counterparts, and thereby exhibit a better capability of 

target-information extraction. 

Table 4. Correlation and entropy values by different methods. 

 MP SBL FOCUSS BP 
Matrix 

Pencil 
ESPRIT Hl1-DCD HR-DCD Hlog-DCD Hlp-DCD 

Cor 0.817 0.890 0.887 0.913 0.816 0.798 0.925 0.952 0.957 0.965 

Ent 0.826 0.811 0.836 0.859 0.810 0.802 0.713 0.689 0.683 0.613 

5. Conclusions 

Two major problems of applying CS to sparse continuous signal reconstruction are discussed in  

this paper, and we have presented computationally efficient and accurate methods to overcome the 

difficulties. For solving the off-grid problem, we utilized the grid refinement technique. In the meantime, 

in order to obtain high recovery performance and keep low calculation complexity, we propose a fast 

and accurate homotopy DCD reconstruction combined with three typical non-convex regularizations, 

which promotes sparsity more strongly than any convex penalty function can. Extensive experiments 

have been conducted to validate and compare the performances of the proposed methods with  

several popular solvers. Our future work will try to synthesize with parallel sparse optimization 

technique using multi-core CPUs/GPUs [45], which may provide a viable solution to real-time 

potential applications. 

Acknowledgments 

The work is supported by the General Program of National Natural Science Foundation of China 

under Grant No. 61172155, and the Hi-Tech Research and Development Program of China under 

Grant No. 2013AA122903. Moreover, the authors would like to thank Li Ding and ChangChang Liu 

for support and fruitful discussions. 

Author Contributions 

All authors contributed extensively to the work presented in this paper. Tianyun Wang designed the 

study, analyzed the data and wrote the paper; Xinfei Lu, Tianyun Wang and Xiaofei Yu designed and 

performed the experiments; Weidong Chen and Zhendong Xi supervised its analysis and edited the 

manuscript, and provided their valuable suggestions to improve this study. 

Conflicts of Interest 

The authors declare no conflict of interest.  

  



Sensors 2014, 14 5948 

 

 

References 

1. Donoho, D.L. Compressed sensing. IEEE Trans. Inform. Theory. 2006, 52, 1289–1306. 

2. Candes, E.J.; Wakin, M.B. An introduction to compressive sampling. IEEE Signal Process. Mag. 

2008, 25, 21–30. 

3. Lustig, M.; Donoho, D.; Pauly, J.M. Sparse MRI: The application of compressed sensing for rapid 

MR imaging. Mag. Reson. Med. 2007, 58, 1182–1195. 

4. Wei, S.J.; Zhang, X.L.; Shi. J.; Xiang, G. Sparse reconstruction for SAR imaging based on 

compressed sensing. Prog. Electromagn. Res. 2010, 109, 63–81. 

5. Zhang, L.; Xing, M.D.; Qiu, W.C.; Li, J.; Sheng, J.L.; Li, Y.C.; Bao, Z. Resolution enhancement 

for inversed synthetic aperture radar imaging under low SNR via improved compressive sensing. 

IEEE Trans. Signal Process. 2010, 48, 3824–3838. 

6. Wang, T.Y.; Liu, C.C.; Lu, H.C.; Chen, W.D. Sparse Passive Radar Imaging Based on Digital 

Video Broadcasting Satellites Using the Music Algorithm. In Proceedings of International 

Conference on Signal Processing (ICSP), Beijing, China, 21–25 October 2012; pp. 1925–1930. 

7. Hyder, M.M.; Mahata, K. Direction-of-arrival estimation using a mixed l2,0 norm approximation. 

IEEE Trans. Signal Process. 2010, 58, 4646–4655. 

8. Meng, J.; Yin, W.T.; Li, Y.Y.; Nguyen, N.T.; Han. Z. Compressive sensing based high resolution 

channel estimation for OFDM system. IEEE J. Sel. Top. Signal Process. 2012, 6, 15–25. 

9. Wang, Y.F.; Cao, J.J.; Yang, C.C. Recovery of seismic wavefields based on compressive sensing 

by an l1-norm constrained trust region method and the piecewise random subsampling. Geophys. 

J. Int. 2011, 187, 199–213. 

10. Polo, Y.L.; Wang, Y.; Pandharipande, A.; Leus, G. Compressive Wide-band Spectrum Sensing. 

In Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing 

(ICASSP), Taipei, Taiwan, 19–24 April 2009; pp. 2337–2340.  

11. Yang, A.; Zhou, Z.H.; Balasubramanian, A.; Sastry, S.; Ma, Y. Fast l1-minimization algorithms 

for robust face recognition. IEEE Trans. Image Process. 2013, 22, 3234–3246. 

12. Chen, P.Y.; Selesnick, I.W. Group-Sparse Signal Denoising: Concave Regularization, Convex 

Optimization. Available online: http://arxiv.org/abs/1308.5038 (accessed on 30 November 2013). 

13. Eldar, Y.C.; Kutyniok, G. Compressed Sensing: Theory and Applications; Cambridge University 

Press: Cambridge, UK, 2012. 

14. Candès, E.J. Compressive sampling. In Proceedings of the International Congress of Mathematicians 

(ICM), Madrid, Spain, 22–30 August 2006; pp. 1433–1452. 

15. Chi, Y.J.; Scharf, L.L.; Pezeshki, A.; Calderbank, A.R. Sensitivity to basis mismatch in 

compressed sensing. IEEE Trans. Signal Process. 2011, 59, 2182–2195. 

16. Ugur. S.; Arikan, O.; Gurbuz, A.C. Off-grid Sparse SAR Image Reconstruction by EMMP Algorithm. 

In Proceedings of IEEE Radar Conference, Ottawa, Canada, 29 April–3 May 2013; pp. 1–4. 

17. He, X.Z.; Liu, C.C.; Liu, B; Wang, D.J. Sparse frequency diverse MIMO radar imaging for  

off-grid target based on adaptive iterative MAP. Remote Sens. 2013, 5, 631–647. 

18. Gurbuz, A.C.; Teke, O.; Arikan, O. Sparse ground-penetrating radar imaging method for  

off-the-grid target problem. J. Electron. Imaging. 2013, 22, doi:10.1117/1.JEI.22.2.021007. 

http://ieeexplore.ieee.org/search/searchresult.jsp?newsearch=true&queryText=An+introduction+to+compressive+sampling&x=31&y=15
http://ieeexplore.ieee.org/search/searchresult.jsp?newsearch=true&queryText=An+introduction+to+compressive+sampling&x=31&y=15
http://ieeexplore.ieee.org/search/searchresult.jsp?newsearch=true&queryText=Direction-of-arrival+estimation+using+a+mixed+l2%2C0+norm&x=31&y=20
http://ieeexplore.ieee.org/search/searchresult.jsp?newsearch=true&queryText=Direction-of-arrival+estimation+using+a+mixed+l2%2C0+norm&x=31&y=20
http://ieeexplore.ieee.org/search/searchresult.jsp?newsearch=true&queryText=Direction-of-arrival+estimation+using+a+mixed+l2%2C0+norm&x=31&y=20
http://www.icassp09.com/
http://arxiv.org/abs/1308.5038


Sensors 2014, 14 5949 

 

 

19. Liu, C.C.; Chen, W.D. Sparse selfcalibration imaging via iterative map in FM-based distributed 

passive radar. IEEE Geosci. Remote Sens. Lett. 2013, 10, 538–542. 

20. Ding, L.; Liu, C.C.; Wang, T.Y.; Chen, W.D. Sparse Self-calibration via Iterative Minimization 

Against Phase Synchronization Mismatch for MIMO Radar Imaging. In Proceedings of IEEE 

Radar Conference; Ottawa, Canada, 29 April–3 May 2013; pp. 1–4. 

21. Michaeli, T.; Eldar, Y.C. Xampling at the rate of innovation. IEEE Trans. Signal Process. 2012, 

60, 1121–1133. 

22. Liu, C.C.; Wang, T.Y.; Ding, L.; Chen, W.D. Sparse Imaging for Passive Radar System Based on 

Digital Video Broadcasting Satellites. In Proceedings of International Conference on Wireless 

Communications & Signal Processing (WCSP), Huangshan, China, 25–27 October 2012; pp. 1–5. 

23. Wang T.Y.; Liu, C.C.; Chen, W.D.; Song, Z.Q.; Jiang, J. Sparse Imaging Using Modified 2-D 

Matrix Pencil Method in FD-MIMO Radar. In Proceedings of 4rd International Asia-Pacific 

Conference on Synthetic Aperture Radar (APSAR), Tsukuba, Japan, 23–27 September 2013. 

24. Liu, Z.; Huang, Z.; Zhou, Y. An efficient maximum likelihood method for direction-of-arrival 

estimation via sparse bayesian learning. IEEE Trans. Wirel. Commun.. 2012, 11, 1–11. 

25. Zhu, H.; Leus, G.; Giannakis, G.B. Sparsity-cognizant total least-squares for perturbed compressive 

sampling. IEEE Trans. Signal Process. 2011, 59, 2002–2016. 

26. Yang, Z.; Zhang, C.S.; Xie, L.H. Robustly stable signal recovery in compressed sensing with 

structured matrix perturbation. IEEE Trans. Signal Process. 2012, 60, 4658–4671. 

27. Malioutov, D.; Cetin, M.; Willsky, A.S. A sparse signal reconstruction perspective for source 

localization with sensor arrays. IEEE Trans. Signal Process. 2005, 53, 3010–3022. 

28. Liu, C.S.; Zakharov, Y.V.; Chen, T. Broadband underwater localization of multiple sources using 

basis pursuit de-noising. IEEE Trans. Signal Process. 2012, 60, 1708–1717. 

29. Guldogan, M.B.; Arikan, O. Detection of sparse targets with structurally perturbed echo 

dictionaries. Digital Signal Process. 2013, 23, 1630–1644. 

30. Lu, J.; Zhang, H.; Meng, H.D. Novel hardware architecture of sparse recovery based on FPGAs. 

In Proceedings of International Conference on Signal Processing Systems (ICSPS), Dalian, China, 

5–7 July 2010; pp. 302–306. 

31. Cotter, S.F.; Rao, B.D. Sparse channel estimation via matching pursuit with application to 

equalization. IEEE Trans. Communications. 2002, 50, 374–377. 

32. Tropp, J.; Gilbert, A.C. Signal recovery from partial information via orthogonal matching pursuit. 

IEEE Trans. Inform. Theory. 2007, 53, 4655–4666. 

33. Blumensath, T.; Davies, M.E. Gradient pursuits. IEEE Trans. Signal Process. 2008, 56, 2370–2382. 

34. Chen, S.S.; Donoho, D.L.; Saunders, M.A. Atomic decomposition by basis pursuit. SIAM J. Sci. 

Comput. 1998, 20, 33–61. 

35. Mohimani, H.; Babaie-Zadeh, M.; Jutten, C. A fast approach for overcomplete sparse decomposition 

based on smoothed l0 norm. IEEE Trans. Signal Process. 2009, 57, 289–301. 

36. Saab, R.; Chartrand, R.; Yilmaz, O. Stable sparse approximations via nonconvex optimization.  

In Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing 

(ICASSP), Las Vegas, NV, USA, 30 March–4 April 2008; pp. 3885–3888. 

37. Zakharov, Y.V.; Nascimento, V. Orthogonal matching pursuit with DCD iterations. Electron. 

Lett. 2013, 49, 295–297. 

http://ieeexplore.ieee.org/search/searchresult.jsp?newsearch=true&queryText=A+sparse+signal+reconstruction+perspective&x=28&y=10
http://ieeexplore.ieee.org/search/searchresult.jsp?newsearch=true&queryText=A+sparse+signal+reconstruction+perspective&x=28&y=10
http://ieeexplore.ieee.org/search/searchresult.jsp?newsearch=true&queryText=A+sparse+signal+reconstruction+perspective&x=28&y=10


Sensors 2014, 14 5950 

 

 

38. Zakharov, Y.V.; Nascimento, V. DCD-RLS adaptive filters with penalties for sparse identification. 

IEEE Trans. Signal Process. 2013, 61, 3198–3213. 

39. Liu, J.; Weaver, B.; Zakharov, Y.V.; White, G. An FPGA-based MVDR beamformer using 

dichotomous coordinate descent iterations. In Proceedings of IEEE International Conference on 

Communications (ICC), Glasgow, Scotland, 24–28 June 2007; pp. 2551–2556. 

40. Zakharov, Y.V.; Nascimento, V.H. Homotopy algorithm using dichotomous coordinate descent 

iterations for sparse recovery. In Proceedings of the 46th Asilomar Conference on Signals, 

Systems, and Computers, Pacific Grove, CA, USA, 4–7 November 2012; pp. 820–824. 

41. Gasso, G.; Rakotomamonjy, A.; Canu, S. Recovering sparse signals with a certain family of 

nonconvex penalties and dc programming. IEEE Trans. Signal Process. 2009, 57, 4686–4698. 

42. Xu, L.Z.; Zhao, K.X.; Li, J.; Stoica, P. Wideband source localization using sparse learning 

viaiterative minimization. Signal Process. 2013, 93, 3504–3514. 

43. Li, G.; Zhang, H.; Wang, X.Q.; Xia, X.G. ISAR 2-D imaging of uniformly rotating targets via 

matching pursuit. IEEE Trans. Aerosp. Electron. Syst. 2012, 48, 1838–1846. 

44. Wang, L.; Zhao, L.F.; Bi, G.A.; Wan, C.R.; Yang, L. Enhanced ISAR imaging by exploiting the 

continuity of the target scene. IEEE Trans. Geosci. Remote Sens. 2013, PP, 1–15. 

45. Samadi, M.; Hormati, A.; Lee, J.H.; Mahlke, S. Paragon: Collaborative Speculative Loop Execution 

on GPU and CPU. In Proceedings of the 5th Annual Workshop on General Purpose Processing with 

Graphics Processing Units (GPGPU-5), London, UK, 3 March 2012; pp. 64–73. 

Appendix 

Remark 1: the Penalty is Logarithmic Function. 

Proof for Proposition 3: Let the t-th element      be activated as                  , and the 

updated solution vector is denoted as   . The update of the cost function is then given by 

       
2

,

1 1
ˆ log 1

2
t t tJ J J R b a

a
         x x

 
(24) 

The cost function is reduced if     . For a fixed    ,    achieves a minimum if                , 

and in this case 

 
2

,

1 1
log 1

2
t t tJ R b a

a
       

 
(25) 

As we can see, if      , then     . So if  
   

    
 
     

  , when      , there exists a     that 

makes     . 

,
1

t t t

J
R b

a




 


  

 
 

(26) 

If  
   

    
 
     

  , we can get 

0tb  
 (27) 

Therefore, if       , there exists a     that decreases the cost function. 
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Proof for Proposition 4: Let the t-th element      be activated as      , and the updated 

solution vector is denoted as   . The update of the cost function is then given by  

       
2 *

,

1 1
ˆ log 1

2
t t t t t tJ J J x R x b a x

a
      x x

 
(28) 

Thus, if 
 

 
    

           
      

 

 
               , then     , there exists a nonzero value 

of the t-th element that decreases the cost function that should be removed from the support. 

Remark 2: The Penalty is lp Norm Function. 

Proof for Proposition 5: Let the t-th element      be activated as                  , and the 

updated solution vector is denoted as   . The update of the cost function is then given by  

     
2

,

1
ˆ

2

p

t t tJ J J R b        x x
 

(29) 

The cost function is reduced if     . For a fixed    ,    achieves a minimum if                , 

and in this case  

2 2

2

, ,

, ,

1 1

2 2 2

p pt t

t t t t t

t t t t

b b
J R b R

R R
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 
         

   
(30) 

From Equation (30) we can see that if     
    

    
 and       

    
 

     
  , then     . 

Thus, the value of     results in the decrement of the cost function is given by 

 arg

,

tj bt

t t

b
e

R
 

 
(31) 

And we can get the proposition that if     
          

   
, the t-th element would be added into the support. 

Proof for Proposition 6: Let the t-th element      be activated as      , and the updated 

solution vector is denoted as   . The update of the cost function is then given by 

     
2 *

,

1
ˆ

2

p

t t t t t tJ J J x R x b x     x x
 

(32) 

Thus, if  
 

 
    

           
          

   , then     , there exists a nonzero value of the t-th 

element that decreases the cost function that should be removed from the support. 
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