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Abstract: Calibration between color camera and 3D Light Detection And Ranging 

(LIDAR) equipment is an essential process for data fusion. The goal of this paper is to 

improve the calibration accuracy between a camera and a 3D LIDAR. In particular, we are 

interested in calibrating a low resolution 3D LIDAR with a relatively small number of 

vertical sensors. Our goal is achieved by employing a new methodology for the calibration 

board, which exploits 2D-3D correspondences. The 3D corresponding points are estimated 

from the scanned laser points on the polygonal planar board with adjacent sides. Since the 

lengths of adjacent sides are known, we can estimate the vertices of the board as a meeting 

point of two projected sides of the polygonal board. The estimated vertices from the range 

data and those detected from the color image serve as the corresponding points for the 

calibration. Experiments using a low-resolution LIDAR with 32 sensors show robust results. 

Keywords: camera calibration; 3D LIDAR; sensor fusion; calibration board; 3D point 

clouds; calibration matrix 
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1. Introduction 

Recently, multi-sensors have been frequently used in the field of robot vision. For instance, a 

ranging sensor such as high-speed 3D LIDAR is used in conjunction with a color camera for various 

robot navigation tasks. The 3D LIDAR sensor is capable of providing 3D position and depth information 

about objects, whereas the color camera captures their 2D color features. Therefore, by providing the 

2D image data with the 3D positional information, one can visualize the objects with a more realistic 

view. However, as a prerequisite, we need to know their relative positions and orientations by calibrating 

both sensors of the LIDAR and the color camera. 

A checkerboard plane has been used to calibrate between a camera and a LIDAR. The calibration 

method using a checkerboard usually involves a two-step process [1], namely intrinsic and extrinsic 

calibrations. Therefore, two measurements from the checkerboard are required for the two-step calibration, 

which may cause two sources of error [2,3]. Also, we often observe a systematic range-reflectivity-bias 

in the LIDAR on the checkerboard as seen in Figure 1. The measurement variations on the checkerboard 

will cause measurements errors and affect the final calibration. Thus, the calibration targets with 

different patterns and colors may produce slightly different calibration results. To reduce the impact of 

the reflectivity bias, we use a calibration board with a monochromatic color (e.g., a white planar board). In 

addition, we adopt a board with a polygonal shape such as triangle or diamond to improve the calibration 

accuracy. That is, the polygonal board enables us to estimate the vertices (i.e., corners) from the scanned 

range data. Then, the estimated vertices serve as reference points between the color image and the 3D 

scanned data for the calibration. The vertices of the polygonal planar board in the 2D image are detected by 

a corner detection method and their corresponding points in the 3D LIDAR are estimated from the 

scanned 3D data. 

Figure 1. Velodyne HDL-32E scanning on checkerboard and monochromatic board:  

(a) Checkerboard; (b) Scanned data of (a); (c) Monochromatic board; (d) Scanned data of (c). 
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In this paper we are interested in finding a projection matrix between the camera and the LIDAR 

directly without needing to perform a separate two-step (i.e., intrinsic and extrinsic) parameter estimation. 

The direct estimation needs to identify corresponding points between the 2D image and 3D LIDAR to 

solve the equations for the projection matrix. However, it is hard to expect the LIDAR to scan a 

specific point such as a vertex of a calibration board, while its corresponding pixel point in the 2D 

image can be readily detected. For example, a less expensive 3D LIDAR such as Velodyne HDL-32E 

has a lower vertical resolution compared with a more expensive scanner with 64 sensors such as the 

Velodyne HDL-64E, making it almost impossible for the 3D LIDAR to scan specific points (e.g., 

vertices) on the board. With scanners of low vertical resolution, our approach for the direct calibration 

is to estimate specific unscanned points on the board using the scanned data. That is, given scanned 

data on the board, we estimate specific 3D positions on the board such as the corners (vertices). To this 

end, we use a polygonal board, where the vertices of the board are the meeting points between the two 

adjacent sides. Therefore, to localize the vertices on the planar board we first need to estimate the 

equations for the projected side lines of the board. As shown in Figure 2, the slope of the projected side 

can be estimated from the scanned points near the border. Then, with the information of the calculated 

slopes and the (known) real lengths of the adjacent sides of the planar board, it is possible to calculate 

their meeting points (i.e., the vertices of the polygonal board). 

Figure 2. Calibration board with adjacent sides: the scanned points on the border of the 

plane are used for estimating the side lines of the board. 

 

In this paper, we propose a new calibration method between a camera and a 3D LIDAR using a 

polygonal board such as a triangle or diamond plane. By estimating the 3D locations of vertices from 

the scanned laser data and their corresponding corners in the 2D image, our approach for the calibration is 

to find point-to-point correspondences between the 2D image and the 3D point clouds. The corresponding 

pairs are used to solve the equations to obtain the calibration matrix. 

This paper is composed of the following sections: in Section 2, we survey previous works related to 

camera and range sensor calibration. The mathematical formulation of the calibration between 2D and 

3D sensors is presented in Section 3. In Section 4, we address the proposed calibration method. 

Experiments conducted on real data are explained in Section 5 and the conclusions follow in Section 6.  
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2. Related Works 

Calibration between sensors can be done by finding geometric relationships from co-observable 

features in the data captured by both sensors. For a color camera and a range sensor, feature points in 

2D images can be readily detectable, but it is hard to identify the corresponding 3D points from the 

range data. Therefore, instead of pinpointing individual 3D feature points, the projected 3D points on 

the planar board (or on the line) were used to formulate constraints to solve the equations for a 

transformation matrix. For example, Zhang and Pless [1] proposed the use of a calibration board with a 

checkerboard pattern on it. Here, the corners of the checker pattern are detected in the images with 

various board positions for the intrinsic parameter estimation. Then, the estimated intrinsic parameters 

are used to set a constraint for the extrinsic parameters. Note that if we need the intrinsic parameters, 

then we take this two-step parameter estimation with the checkerboard. However, if the final goal is to 

get the projection matrix between the camera and the LIDAR, then it is not necessary to estimate the 

intrinsic and extrinsic parameters separately. Rather, the two measurements in the separate parameter 

estimation can cause an additional source of error [2,3]. 

A planar board plays an important role in the calibration. Wasielewski and Strauss [4] used a  

rig with a black and white planar board to calibrate a 2D laser scanner with respect to a camera.  

Willis et al. [5] also designed a rig which has many corners that can be used to find the corresponding 

data in the LIDAR. Naroditsky et al. [6] used a white planar board with a black line. In [7], a triangle 

plane board was used and its side lines were used to minimize the distance between the projected line of 

the plane and the intersected laser point on the line. Kwak et al. [8] also tried to minimize the projected 

errors of the laser points on the line created by v-shaped planes. 

As 3D laser range sensors become popular, the calibration problem turned to a calibration between a 

3D LIDAR and a camera [2,3,9–15]. Here, the calibration methods using a planar checkerboard were 

extended from 2D to 3D LIDAR. Andreasson et al. [9] used a calibration board which was framed with 

a reflective tape, enabling the use of the reflective (remission) data from the laser scanner to automatically 

estimate the 3D positions of the chess board corners. In [10–12], methods exploiting the detected edges 

or trihedrons from natural scenes were proposed instead of an extra calibration rig. Lines and corners 

from indoor or outdoor structured environment were used as reference features for the calibration. 

Aliakbarpour et al. [13] used an Inertial Measurement Unit (IMU) to provide extra information for 

robust calibration. Also, a simple laser pointer was used as a bright spot to find corresponding points. 

Pandey et al. [14] used three checkerboards which have different normal vectors, because three views 

are required to completely constrain the six degree of freedom (DOF) pose of one sensor with respect 

to the other. Geiger et al. [15] used multiple sheets of checkerboards. So, the camera and scanner were 

calibrated using a single image. All the previous methods mentioned above are for the rigidly mounted 

sensors with off-line calibration. Recently, an on-line calibration for the sensors of occasional movements 

was proposed [16], where the point-based feature correspondences were used for the calibration. 

Many types of special rig for 3D range sensor besides the LIDAR were used to estimate extrinsic 

parameters between a camera and a range sensor [17–19]. For example, a time-of-flight (ToF) device 

or Microsoft Kinect™ has a limited field of view compared to the omnidirectional 3D LIDAR, but it 

can acquire high density 3D point clouds. Jung et al. [17] designed a planar board with round holes on 
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it and Shahbazi et al. [18] used a multi-resolution white squares pattern on a black plane to calibrate 

between a camera and the ToF device with a low resolution. 

In the previous studies, various types of calibration rigs or environmental structures were used to 

improve the calibration accuracy. However, the performance of those methods relies on the density 

and location of actual scanned points on the calibration board (or the environmental structure). This 

implies that the accuracy of the calibration may drop quickly for a low resolution 3D LIDAR with a 

relatively small number of sensors. In this work, we solve this problem by adopting the following 

novel approaches: 

(i) We propose a polygonal planar board with adjacent sides as a calibration rig. Then, our 

calibration matrix can be obtained by simply solving linear equations given by a set of 

corresponding points between the 2D-3D vertices of the polygonal board. 

(ii) The 3D vertices of the polygonal board are estimated, but not measured, from the scanned 3D 

points on the board. That is, once the geometric structure of the calibration board is known, we 

can calculate specific 3D points such as the vertices of the board without actually scanning 

those points. This property enables us to estimate the projection matrix directly using the 

corresponding pairs between 2D image and 3D points, which is especially useful for a low 

resolution 3D LIDAR with a relatively small number of sensors. 

(iii) Using our approach, the combined projection matrix of the extrinsic and intrinsic matrices can 

be estimated without estimating them separately. Of course, our method can be used only for 

the extrinsic transformation matrix as usual. 

3. Calibration Model for Camera and 3D LIDAR 

We set a triangle board in front of the rigidly mounted camera and 3D LIDAR (see Figure 3). A 

Velodyne HDL-32E LIDAR with 32 vertically mounted laser sensors is used as the 3D LIDAR. The 

image data captured by the camera are formed by two-dimensional coordinate system ( ,  ) and the 

range data of the 3D point clouds are represented by three-dimensional coordinate system (     ). 

Our goal is to estimate the projective transformation matrix   of intrinsic and extrinsic parameters 

between the color coordinate ( ,  ) and the LIDAR coordinate (     ). Then the transformation from 

a 3D point (x,y,z) to a 2D point (u,v) can be represented by: 
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where    and    are the effective focal lengths in horizontal and vertical directions, respectively, and 

        is the center point of the image plane. Also,   and   are the rotation and the translation 

matrices. As one can see in Equation (1), the transformation matrix   is a fusion of the intrinsic 

camera parameters (  ,   ,        and the extrinsic parameters ( ,  ) and the matrix coefficient     

can be determined by corresponding pairs of ( ,  ) and (     ). That is, (1) can be rewritten as the 

following equations: 
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and in the form of matrix multiplication as: 

 
                   

                   
 

 

 
 
 
 
 
 
 
 
 

   

   

   
   

   
   

   
   

   
   

   

    

 
 
 
 
 
 
 
 
 

  
 
 
  (4)  

For each corresponding pair we have two equations as in Equation (4). To determine the unknown 

coefficients     we need a sufficient number of corresponding pairs. 

Figure 3. Calibration configuration of a camera and 3D LIDAR with a triangle board. 

 

4. Vertex Correspondences in Polygonal Board 

Our calibration method uses a polygonal planar board with adjacent sides (e.g., triangle and 

diamond boards) (see Figure 4). Li et al. [7] also used a triangular board for the calibration, where the 

reference for the calibration errors in [7] is the boundary line (edge) of the board and the calibration 

criterion is to minimize the distances from the scanned laser points on the boarder of the plane to the 

boundary line. In this paper, we use key points (e.g., the vertices) on the board instead of the line to 

make point-to-point correspondences between 2D image and 3D points, leading direct solution of the 

linear equations for the estimation of the projection matrix. 

camera

3D LIDAR

Triangle planar board

R,t

V

Y

X
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Figure 4. Polygonal planar boards: (a) Triangle board and (b) Diamond board. 

 

Noting that our vertex-based calibration method can be applied for any polygonal board with 

adjacent sides, we explain our method with a simple triangle planar board and the extension to other 

polygonal board such as a diamond plane should be straightforward. The overall steps of our method 

can be summarized as follows. 

(i) Data acquisition: Place one or more triangle planar boards in front of the camera and 3D 

LIDAR. Take camera images and measure the 3D point clouds of the 3D LIDAR for various 

locations of the board. To reduce the measured errors in the 3D LIDAR and to easily detect 

vertices of the triangle planar board in the image, it is recommended to use a bright 

monochromatic color for the board. Also, the board color should be distinctive from the 

background and the size of the board has to be large enough to include multiple laser scanning 

lines of the 3D LIDAR on the board surface. 

(ii) Matching 2D-3D point correspondences: Detect vertices of the triangle plane in images and 

identify their corresponding 3D points from the laser scans by estimating the meeting points of 

two adjacent sides of the board. 

(iii) Estimate the calibration parameters between 3D LIDAR and camera. With the corresponding 

pairs solve the linear equations for the initial estimate and refine the solutions for the final estimates.  

Of the above three steps we elaborate steps (ii) and (iii) in the following subsections. 

4.1. Matching 2D-3D Point Correspondences 

In order to solve the linear equations for the transformation matrix, we need to find point-to-point 

correspondences between the image and the 3D laser point at the vertices of the triangle planar board. 

For a 2D image, the vertices can be easily detected by a corner detection method such as Features from 

Accelerated Segment Test (FAST) [20]. Among all the detected corners, only three corners which 

represent vertices of the triangle plane are selected. The three vertices on the triangle board are located 

at the top center,           , at the lower left,           , and at the lower right,           . The 

corresponding vertices in the laser 3D coordinate are                ,                 and 

               . The vertices in the image can be readily detected by the corner detection algorithm, 

(a) (b)
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whereas the corresponding vertices in the 3D LIDAR coordinate are hard to locate and the chance to 

lie the scan line exactly on the three vertices of the triangle board is quite low especially for a low 

resolution LIDAR such as the Velodyne HDL-32E. In this situation, our strategy to identify the 3D 

correspondences of the vertices is to estimate them by calculating the meeting points of the side lines 

on the planar board. 

4.2. Estimation of 3D Points on the Board 

To locate the vertices on the triangle board in the 3D LIDAR coordinate, we first need to measure 

the 3D point clouds on the board plane. Suppose that there are   scan lines                on the 

triangle board and each line    at the line n consists of    points such that                   
 , 

where     represents the mth point in the nth scan line on the board scan (see Figure 5). Although the 

calibration board is a flat panel, the 3D points   generated from the 3D LIDAR usually have uneven 

measurements on the board, so we need to sort out the 3D points which are close to the board surface 

with smaller errors. To this end, we employ a 3D plane fitting method based on the Random Sample 

Consensus (RANSAC) [21] algorithm with the following three steps: (i) among all 3D points in   we 

take three sample points at random and calculate the plane equation formed by the points;  

(ii) according to the calculated plane equation, each 3D point in   is classified into either an inlier 

point or an outlier point by a distance threshold; (iii) repeat the steps (i) and (ii) by selecting another 

three points randomly in   until we find the best fitted plane   according to the largest inlier line 

density. Here, the inlier line density is the density of the 3D points included in the inlier for each line 

scan on the triangle board. Note that the inlier points selected by the RANSAC algorithm are used to 

estimate the adjacent sides of the triangle board, which requires the inlier 3D points to be spread all 

over the scan line. Therefore, we define the inlier line density as the criterion of the RANSAC 

algorithm instead of the total number of inliers, so we first define the inlier ratio, which is the ratio 

between the number of detected inliers and the total number of data as: 

             
   

 
   

   
 
   

 (5) 

where    is the number of inliers on the scan line n and    represents the total number of 3D points on 

the scan line  . Note that if we use the inlier ratio of Equation (5) for the RANSAC algorithm, then 

the majority of the inliers are from the bottom lines of the triangle board (see Figure 5) and the plane 

equation will be biased by the bottom lines. For example, in Figure 6a, red circles represent the input 

3D points for the RANSAC algorithm and the green ones are the projected 3D points on the estimated 

plane. As one can see, the plane estimation is biased by the majority 3D points from the bottom lines 

of the triangle board and gives large projection errors at the upper scan lines. To solve this problem, 

we define inlier line ratio, where each scan line contributes to the plane estimation equally regardless 

of the total number of 3D points on each line. This can be done by giving different weights for the 

points in different scan lines. That is, the weight for the nth scan line    is inversely proportional to 

the total number of 3D points on the line: 

   
 

          
 (6)  
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where we assume that the vertical distance    between two consecutive scan lines and their 3D point 

increment    are constant (see Figure 5). That is, the number of 3D points at line n can be represented 

by an arithmetic series               and    in Equation (6) is inversely proportional to the 

total number of 3D points at each scan line. Multiplying    and    by   , our inlier line ratio is 

defined by: 

                  
     

 
   

     
 
   

  
(7)  

Figure 5. Scanned laser (dotted) lines on the triangle planar board. 

 

Figure 6. The 3D points (red) and its orthogonal projection (green). The inlier 3D points of 

the RANSAC are selected by: (a) inlier ratio; (b) inlier line ratio. 

 

By using the inlier line ratio in Equation (7), all scanning lines contribute equally regardless of their 

lengths and we can avoid the bias problem of the inlier ratio. For example, using the inlier line ratio 

we can obtain more accurate plane estimation as shown in Figure 6b.  


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Once we estimate the board plane using the inlier 3D points of the RANSAC algorithm,  

we can project all the scanned 3D points   onto the estimated plane to have the projected 3D points 

      
    

      
  , where   

′    ′
  

  ′
  

    ′
   

  (see Figure 7). 

Figure 7. Projection of 3D points (red)   onto the estimated plane   represented by green 

circles  ʹ. 

 

4.3. Estimation of Vertices in Triangle Board 

To estimate the three vertices of the triangle planar board in the LIDAR coordinate we use the 

projected 3D points    on the estimated board plane  . To this end, we estimate the slopes of the side 

lines in the triangle planar board. Then, we can determine the 3D positions of the vertices by 

calculating the meeting points of two side lines. 

Let us denote the three sides of the triangle board as    for the left side,    for the right side, and    

for the bottom side (see Figure 8). Also, we denote the segments of each side as   ,   , and    in the 

3D LIDAR coordinate. The straight lines which include   ,   , and    are expressed as   
    ,   

    , and   
     

and the vectors representing the slopes of   
    ,   

    , and   
     are   

                  ,   
                   , 

and   
                   , respectively. 

Figure 8. Vertices, adjacent lines, and projected points on the triangle board. 

 

Plane A
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To calculate   
     and   

    , a 3D line fitting method based on the RANSAC algorithm is used. That is, 

the estimation of the side line is based on the projected 3D points near the border of the triangle plane, 

namely   ′
  

  ′
  

    ′
  

  for the left line and   ′
   

  ′
   

    ′
   

  for the right line (see 

Figure 8). Here, to improve the accuracy of the line estimation, we can use the virtual points between 

the two consecutive points, where one is off the board and the other is on the board, e.g.,     and     in 

Figure 9. Specifically, the virtual point  ′
  

 is between     and    . Also,  ′
  

 is between     
 

and       . The locations of the virtual points are determined by the average distance between  

the scanned points for each scan line. So, by calculating the average Euclidean distance  

                    
      for the scan line n, we can locate the virtual 3D points on the left and 

the right sides as follows:  

  
  

    
  

  
   

 
    

   
    

  
 

                                 
 

           
  

   

 
   

   
    

  
 

                                
 

 

(8)  

Figure 9. Virtual points (empty circles) near the side line. 

 

Now, locating the boundary points  ′
 

   ′
  

  ′
  

    ′
  

  and 

 ′
 

   ′
  

  ′
  

    ′
  

 , we can estimate   
     and   

    , respectively, as follows:  

  
      

     

   
 

     

   
 

     

   
  

  
      

     

   
 

     

   
 

     

   
  

(9) 
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where  ′
  

               and  ′
  

               are the 3D coordinates of the virtual 

points on the projected scan line n. Also,   
                   and   

                    denote the 

slopes of the left and the right side lines. 

The 3D coordinate of the center vertex on the triangle    can be detected by finding the intersection 

of   
     and   

    . Since   
     and   

     are generated from the projected 3D points  ′ on the plane  , there 

always exists an intersection of the two lines. The intersection of   
     and   

     is the top vertex    on the 

triangle plane. Once we identify the 3D coordinate of the top vertex   , we can calculate the 3D 

coordinates of the other two vertices    and    by using the known lengths of the side lines         
 

and     
    

 as follows (see Figure 10): 

              
  
     

          
    

  
      

(10)  

Figure 10. Vertex estimation process for the triangle board: (a) Projection of 3D points on 

the plane  .; (b) Detection of the center vertex as the meeting point of the adjacent sides; 

(c) Estimation of the left and right vertices from the known lengths of adjacent sides. 

 

4.4. Suitability Test for the Detected Vertices 

The suitability of the detected vertices can be tested by comparing the known real length     
    

 of 

the bottom line of the triangle and its estimated length               from the detected vertices 

    and   . That is, the following normalized error    between     
    

 and      is used to test the 

suitability of the vertex estimation: 

    
    

    
     

    
    

  (11) 

If    in Equation (11) is less than a threshold   , then we declare that the estimated vertices   ,   , 

and    are accurate enough and accept them as the coordinates of the vertices. Otherwise, we go back 

to the first step of the plane estimation.  

  

(a) (b) (c)
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4.5. Estimation of Calibration Matrix 

The vertices of the triangle board captured by the camera as a 2D image can be readily detected by 

a corner detection method such as FAST [20]. Then, we have   pairs of vertices of the polygonal 

boards between the 3D points                                          and their corresponding 

2D points                                , where            and          are the 3D and 2D 

coordinates, respectively, for a vertex on the polygonal planar board. Given these n pairs of 

correspondences, we have 2n linear equations by substituting each correspondence to Equation (4). 

Then, by using the singular value decomposition (SVD) method, we can solve the linear equations. 

However, due to some measurement errors of the correspondence pairs, the solution of the projection 

matrix does not yield an exact transformation matrix. Therefore, we need a refinement process such 

that, starting from the solution of Equation (4), we iteratively update the solution by using a nonlinear 

least squares method. Specifically, Levenberg-Marquardt algorithm [22] can be applied to update the 

solution of Equation (4) for the final solution. 

4.6. Extension to a Diamond-Shape Planar Board 

Note that, as we have more scan lines on the board, we can estimate the plane more accurately. 

Also, a polygonal structure with more intersections between edges definitely improves the accuracy of 

the solution for the camera calibration. For example, a diamond board with four vertices as in Figure 11 

should be better than a triangle board. The vertex detection method for the triangle board can be 

directly applied to the diamond board. That is, in the diamond board we can estimate each vertex by 

computing the intersection of the adjacent side lines. Then, the suitability test for the detected vertices 

can be done by accumulating the distance errors between the known real length of the side line and its 

estimated length from the detected vertices. Specifically, the normalized error in Equation (11) is 

accumulated for each line in the diamond and tested by a threshold   . 

Figure 11. Diamond board with four vertices. (a) Scan lines on the board; (b) Vertex 

detection as an intersection of two adjacent sides; (c) Suitability test by accumulated errors 

between the real (known) length and estimated one. 

 (a) (b) (c)
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5. Experimental Results 

Experiments with the diamond planar board are conducted to evaluate the performance of our 

method. The lengths of four sides of the diamond board used in our experiment are known and equal  

to 72 cm. For the sensors we used a color camera with resolution of 659 × 493 and a Velodyne HDL-32E 

LIDAR (see Figures 3). The Velodyne HDL-32E LIDAR has 360° horizontal and 41.3° (+10.67 to −30.67) 

vertical field of view with 32 scan lines, so its vertical angular resolution is 1.33 degree. With these 

sensors we took 2D images and 3D LIDAR data with 12 different positions of the diamond board as 

shown in Figure 12. 

Figure 12. Diamond boards with 12 different positions: the distances from the camera to 

the board are 1.7 m, 2.2 m, 3 m and 5~7 m. 

 

Our correspondence-based estimation of M in Equation (1) can be applied to 2D images with or 

without compensating lens distortion. In our experiments, we used the 2D image data without 

compensating the lens distortion. To find the correspondences of the vertices between the 2D image 

and the 3D laser data, we first detect 4 corners on the diamond board in the image. As shown in  

Figure 13, these corners are selected from the detected key points of the FAST algorithm. Once all key 

points including the four vertices are detected by the FAST algorithm, the exact locations of the 

vertices are determined by clicking the mouse around the detected vertices manually. Therefore, the 

role of the FAST algorithm is to locate the exact 2D coordinates of the vertices which can be easily 

selected by mouse clicking near the point. The corresponding corners in the 3D coordinate of the 
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LIDAR are estimated from the side lines of the estimated plane with a threshold         in  

Equation (11) (see Figure 14 for the estimated corners on the diamond board). 

Figure 13. Selection of four corners on the diamond board in 2D image: (a) Detected 

corners in the image with FAST method (green cross markers); (b) Selected 4 corners on 

the diamond board (red circle markers). 

 

Figure 14. Lasers scans on the diamond board: (a) 3D points on the diamond board 

surface; (b) estimated side lines and their intersections (red dots) as estimated 3D corners. 

 

Now, we have four corresponding corners between the 2D image and 3D data and are ready to solve 

the equations for the projection matrix. Note that we need more than 12 correspondence pairs for 

estimating 12 calibration parameters and we have to take more than three different positions of the 

diamond board. Then, the calibration parameters are determined by solving the linear equations and 

the refinement process. 

(a) (b)
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To evaluate the accuracy of the proposed method for different positions of the diamond board, we 

executed our calibration method for various positions of the diamond board and calculated the 

calibration pixel errors. Among all 12 positions in Figure 12, we select three positions for the 

calibration. Then, we have a total of 12C3 = 220 possible combinations for the experiments. For each 

experiment we have 3 × 4 = 12 corresponding vertex pairs for the solution of the matrix equation. 

Once we have the final estimation of the calibration matrix, we can compute the reprojection errors for 

all 48 vertices in all 12 positions. The reprojection errors are calculated based on the distances in pixels 

between the vertex in 2D and its projected 3D vertex by the estimated matrix. Then, we calculate the 

average root mean squares for all 48 reprojection errors. The results are shown as box-plots in Figure 15. 

As one can see from the results, the reprojection errors decrease as the number of boards used 

increases and they sharply drop after three to four boards. The mean values of the reprojection errors 

converged to about 4 pixels after five board sets. 

Figure 15. Box-plots of reprojection (pixel) errors for different numbers and positions of 

the diamond board. The red line in the boxes represents the average error and the extents of 

the boxes are at 25th and 75th percentiles. 

 

After the calibration of the camera and the LIDAR (see Figure 16a), we superimpose the 3D laser 

data on the 2D image according to the estimated projection matrix. The result is shown in Figure 16, 

where on the 2D image of Figure 16b the 3D laser data of Figure 16c in the red-dot box of the 

camera’s field of view are superimposed. As one can see in Figure 16d, the superimposed 3D data 

match the actual depths of the 2D image quite well.  
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Figure 16. Composition of 3D laser data on the color image by the estimated calibration 

matrix. (a) Cart equipped with camera and Velodyne HDL-32E LIDAR; (b) Diamond 

shaped calibration board; (c) 3D point clouds; (d) Superimposed color image with the 

calibrated 3D point clouds (depths are represented by colors on the scan lines).  
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We conducted comparative experiments with the checkerboard method in [15]. The estimated 

parameters using [15] are used to reproject the 3D scan data on the 2D checker image as in Figure 17a. 

Also, we applied our method to estimate the projection matrix. Then, as in Figure 17b, the projection 

matrix is used to reproject the 3D scan data of the checkerboard onto the 2D checker image to facilitate 

the visual comparisons (i.e., the 2D images and 3D scan data from diamond calibration boards are used 

only for the parameter estimation not for the reprojection). Overall, from Figure 17, we can notice that 

our method represents the depths on the boundaries of the objects more accurately (e.g., see the results 

at the third row (bottom)). 

Figure 17. Comparative results: (a) Checkerboard method of [15]. (b) The projection 

matrix is estimated by the proposed method; Then, the estimated projection matrix is used 

to reproject the 3D data of the checkerboard of (a) for visual comparison (depths are 

represented by colors on the scan lines). 
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6. Conclusions 

In this paper, we have proposed a new approach for the calibration of a camera and a 3D LIDAR 

based on 2D-3D key point correspondences. The corresponding 3D points are the vertices of a planar 

board with adjacent sides and they are estimated from the projected 3D laser points on the planar 

board. Since our approach is based on 2D-3D point correspondences, the projection matrix can be 

estimated without separating the intrinsic and extrinsic parameters. Also, our monochromatic 

calibration board provides more reliable measurements of the 3D points on the board than the 

checkerboard. Experimental results confirm that our 2D-3D correspondence based calibration method 

yields accurate calibration, even for a low resolution 3D LIDAR. 
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