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Abstract: The detection and tracking of mobile objects (DATMO) is progressively gaining
importance for security and surveillance applications. This article proposes a set of
new algorithms and procedures for detecting and tracking mobile objects by robots that
work collaboratively as part of a multirobot system. These surveillance algorithms are
conceived of to work with data provided by long distance range sensors and are intended for
highly reliable object detection in wide outdoor environments. Contrary to most common
approaches, in which detection and tracking are done by an integrated procedure, the
approach proposed here relies on a modular structure, in which detection and tracking are
carried out independently, and the latter might accept input data from different detection
algorithms. Two movement detection algorithms have been developed for the detection
of dynamic objects by using both static and/or mobile robots. The solution to the overall
problem is based on the use of a Kalman filter to predict the next state of each tracked object.
Additionally, new tracking algorithms capable of combining dynamic objects lists coming
from either one or various sources complete the solution. The complementary performance
of the separated modular structure for detection and identification is evaluated and, finally, a
selection of test examples discussed.

Keywords: DATMO; multirobot; critical infrastructure surveillance



Sensors 2014, 14 2912

1. Introduction

Surveillance of large “structures” is a major modern concern for governments and companies. Energy
production centers, transportation infrastructures, food and water supply centers or storage facilities
of sensitive classified materials are examples of critical infrastructures (CIs) where a robotic security
solution can be applied. In this and other related areas, detection and tracking of dynamic objects
(DATMO) has become an emerging research field in which solutions are required for the correct
development of multidisciplinary applications, such as traffic supervision [1], autonomous navigation
of robots and other vehicles [2,3] or autonomous surveillance of large facilities [4]. Due to this
increasing interest, robotic solutions for security and surveillance are currently being developed by
different research laboratories [5,6] and commercial enterprises such as MoviRobotics or Robowatch.
Although the commercial products have experienced significant improvements during the past years,
there are still problems not fully resolved in areas, such as robot positioning, or by the detection and
tracking of mobile objects. This paper focuses on this latter subject.

In conventional security and surveillance applications, automatic systems are capable of detecting
movement within a surveillance zone, leaving to the human operator the definition of the risk level.
Emerging new applications require autonomous surveillance systems capable of both detecting moving
objects simultaneously and tracking their trajectories within large security zones. Different sensors,
such as laser systems, visual and infrared cameras or ultrasound systems, can be used to detect dynamic
objects within a security perimeter. It is the aim of the present work to develop a series of algorithms
capable of handling several detected parameters to enable an autonomous decision made by surveillance
robots operating in real scenarios. This requires the implementation of accurate methods of detecting
and tracking dynamic objects at long distances.

1.1. Detection of Dynamic Objects

Most utilized systems for the detection of dynamic objects rely on either video cameras coupled
with computer vision, laser imaging detection and ranging sensors (LiDAR) [7,8] and, more recently,
time of flight (ToF) cameras [9] or 3D LIDAR [10]. The use of visual or infrared video cameras
for DATMO has been proposed for different applications, in which the incorporation of specific data
handling methodologies is usually required to improve recognition [11–14]. Other methods based on
ultrasonic or infrared sensors are capable of detecting movement in a given area, but not of determining
the location or any other feature of the moving object [15]. In another recent approach, sound detection
by using a microphone array has been proposed [16].

Laser-based procedures may incorporate different numbers of sensors and rely on specific methods
of data analysis. Traditionally, most LiDAR-based applications work with enhanced 2D information,
i.e., the sensor provides the depth to all elements in a single horizontal plane. The main difficulty for the
analysis is to separate the sensor measurements changes produced by the movement of the robot from the
modifications induced by dynamic objects in the environment. To overcome this problem and effectively
detect mobile objects, Bobruk and Austin [17] proposed a method in which they compare consecutive
laser scans and compensate for the movement of the robot with a fusion between pure odometry data and
a translation and rotation produced by an iterative closest point (ICP) algorithm. Another methodology



Sensors 2014, 14 2913

proposed by Chen et al. [18] was based on simultaneous location and mapping (SLAM) techniques to
generate maps and extract dynamic objects by comparing the static object map with the new additions.
Another related approach relies on the use of a conditional particle filter to detect persons in motion [19].

These previous methods do not use 3D information as input for their calculations, a restriction that
limits their use for security applications, as they only detect moving objects at a predetermined height.
This shortcoming was released by Tanner and Hartmann [9] by using a single time of flight (ToF) indoor
camera. In the same line, Swadzba et al. [20] were able to track dynamic objects to reconstruct a static
scene by using a ToF camera and a 6D data representation consisting of 3D sensor data and computed
3D velocities. Other options combine a 2D LIDAR scanner with a vertical servo to obtain 2.5D data
of the environment (range images or point clouds). Using this combination, Ohno et al. [21] were
able to eliminate the moving objects from the scans of static scenes by comparing collision distances
in the same area. More recently, Moosmann and Fraichard [22] have proposed a method consisting of
deriving a dense motion field based exclusively on range images for performing object-class independent
trajectory estimations.

However, none of the previous approaches use full environment range images to effectively detect and
track multiple dynamic objects from multiple robots. Herein, we develop two methods to detect moving
objects from a robotic platform using range images. The first one is intended for static platforms and the
second for dynamic ones. Furthermore, detection based on this type of data is followed by an effective
tracking process using the generated dynamic objects lists.

1.2. Tracking of Dynamic Objects

There are several possibilities for tracking dynamic objects using a single robot. One of the most
successful approaches [17] uses parameters, such as size and position, in a blob segmentation algorithm
to characterize each detected object. These blobs are managed by creating a movement hypothesis
with specific position and velocity data for each object. Each hypothesis is stored and updated with
the estimated position and velocity of the objects, as well as with a weighting probability of the actual
tracking of the moving object.

In multi-robot systems, the information generated by each robot must be combined to enable
better tracking. Stroupe et al. [23] proposed two-dimensional Gaussian distributions to represent
each observation of the object and a statistical procedure based on the Bayes rule and Kalman
filters to combine two measurements. Another cooperative target tracking approach as proposed by
Wang et al. [24] consists of a distributed Kalman filter to estimate the target position. Mazo et al. [25]
proposed a hierarchical algorithm to locate and track a single dynamic object from data provided by
a two-robot system. The two robots share their sensor information to estimate the position of the
object by triangulation. Although the problem was efficiently solved for one object, the method is not
applicable to a multiple-object environment, because all the robots need to detect and track the same
object simultaneously. The main drawback of these methods, intended to detect and track a single object
by its simultaneous observation by several robots, is that they cannot be extrapolated to detect and track
multiple objects.

The problem of simultaneously tracking several objects has been addressed in the work of
Chau et al. [26], in which multiple object tracking is achieved by using a multiple features similarity
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methodology comparing color images. Multiple object tracking using multiple cameras for surveillance
applications has been addressed by Kachhava et al. [27]. A procedure for tracking multiple walkers with
multiple robots equipped with 2D LIDAR sensors has been recently proposed by Tsokas et al. [28].

Another possibility for tracking multiple targets would be the use of particle filters [29,30] to combine
observations from multiple robots, increasing in that way the quality of the tracking. This technique
shows several advantages over other estimators; it is certainly well suited to accommodate the types
of uncertainty that arise in the distributed surveillance scenario and allows for estimating future states.
Nevertheless, although the previously referred solutions show an important reduction in the bandwidth
required by reducing the number of particles exchanged among the robots, the amount of information
and the re-simulation requirements are considerable higher than proposed in this work. Moreover, in
CIs, it is not common to have multiple robots surveilling the same area, since they are usually equally
spread through the whole installation.

In general, the previous methodologies tightly couple detection and tracking, making the latter quite
dependent on the type of data and environment set-up requirements used for the detection algorithms.
This makes that alternative detection methods not able to be easily integrated together with the
tracking process.

1.3. Objectives and Scope of the Work

The method proposed in the present work tackles the previous problems by developing independent
detection and tracking algorithms that can work either separately or coupled sequentially in a common
DATMO process. The advantage of this approach is that alternative detection algorithms might be used in
combination with the tracking algorithms. An example of this capability applied to images taken from an
unmanned aerial vehicle (UAV) has been recently proposed by the authors, Rodrı́guez-Canosa et al. [31].
Therefore, in the present work, we develop tracking procedures that are compatible with data supplied
by different detection algorithms. This would enable one to apply the tracking process to multiple
heterogeneous robots with different sensor configurations. A scheme of the modular concept intended in
the present work is shown in Figure 1.

To make the detection algorithms compatible with the tracking, they must provide a list of dynamic
objects with at least the following characteristics: a 3D position in a global reference frame and a specific
size estimate, both types of data with provided error assessments. If they were available, the tracking
algorithms can also process other object properties, such as color, temperature, etc. Furthermore, if the
detection algorithms were to be applied for surveillance purposes, some common requirement will be
that they have to analyze vertical and horizontal environmental data (i.e., at least 2.5D range images,
point clouds, stereo images, etc.), with a long-distance detection range and a high reliability at medium
distances. The detection algorithms developed in the present work comply with all these requirements.

The tracking algorithms developed in the work are intended for surveillance in large outdoor facilities
and need to comply with a set of additional requirements, such as a multiple targets/multiple robots
tracking, efficient occlusions handling and, as already stated, independence from the detection sensors
and procedures. Other important requirements for their practical implementation are that they can work
with a decentralized system structure and are easily scalable to work with a variable number of robots.
Moreover, although the developed approach depicting a decentralized structure, in which all robots
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communicate between each other, can be implemented both in a centralized or a decentralized system.
To our knowledge, this comprehensive handling of the problem has not been previously considered.

In summary, the paper provides a new modular approach for detection and tracking that allows both
centralized and decentralized methods be used in multirobot systems. The modular architecture provides
the system with flexibility, allowing total or partial substitution of the algorithms without additional
changes. Therefore, it is important to highlight that the work is neither focused on performing a global
comparative analysis of DATMO techniques nor in considering planning strategies for task assignment
among robots.

Figure 1. Scheme of the modular concept developed for detection and tracking of mobile
objects (DATMO) with multiple robots. Detection and tracking modules work in an
autonomous manner.

Moreover, the software presented in this work has been developed under open source policy and
ROS (robotics operative system) premises. Therefore, both detection and tracking algorithms have been
implemented as ROS modules. Currently, the authors are working on documenting the code in order to
contribute to the ROS official repository. Anyway, up to that moment, the software could be provided by
the authors on demand.

The paper is organized as follows. Section 2 describes the algorithms developed for detecting moving
objects. Section 3 presents the developed tracking algorithms. Section 4 shows a selection of tests. The
conclusions of the work are presented in Section 5.

2. Detection of Dynamic Objects

In this section, we firstly present the type of input data used by the two algorithms developed to detect
moving objects. Then, we describe these two detection algorithms and their respective use with static
and dynamic platforms.
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The developed algorithms are designed to use 2.5D range images (an image with depth information in
each of its pixels) as input data from the environment. This data can be originated from different sensors,
such as a time of flight (ToF) camera or a 3D LIDAR. Another common combination is a 2D LIDAR
scanner mounted on a pan-tilt unit.

The data matrix obtained is called the distance matrix (D), where each element represents a distance
to a collision point. For each matrix element (i, j), there are three known parameters: the distance, Dij ,
and the angles formed by the beam with respect to the laser coordinate frame.

To produce this type of range image, ToF cameras (such as the Kinect R©) are becoming very popular,
because they provide range information together with color information without arduous calibration
processes. However, when using other sensors, such as 2D or 3D LIDAR devices, sensor fusion
techniques [32] can be used to assign color information to the range data matrix (D). An example
of this sensor fusion can be seen in Figure 2.

Figure 2. Example of a color (a) and range image (b) of the same scene.

(a)

(b)

2.1. Detection from a Static Platform

The first developed algorithms aim at detecting moving objects in the environment from a sequence of
2.5D range images. Since the sensor is static, any change in the images is produced by dynamic objects
or measurement noise. The main problem is to separate these two effects.

The developed procedure firstly determines the difference between two consecutive range images.
Then, the distance differences that exceed a predefined threshold are eliminated according to the criteria
specified in Equation (1).
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Dif(i, j) =

1 if
∣∣Dk

ij −Dk−1
ij

∣∣ > Diflim

0 if
∣∣Dk

ij −Dk−1
ij

∣∣ < Diflim
(1)

In this equation, Dk
ij is the current distance matrix, Dk−1

ij the distance matrix previous to the current
one, Dif(i, j) the differential distance matrix and Diflim the threshold value used to extract the points
where there is movement. This threshold value takes into account the resolution and the accuracy of the
sensor and is usually set at a value 25%–50% higher than the accuracy.

For a Hokuyo UTM-30LN laser with an accuracy of ±50 mm in a 30-m range, this threshold was set
at 7–8 cm.

The results of this calculation can be seen in Figure 3b, representing a matrix in which the
nonzero points indicate movement. Since not all nonzero points necessarily belong to dynamic
objects, a eight-connectivity grouping process is carried out to isolate and remove the points caused
by measurement errors (Figure 3c). The resulting groups are labeled as differentiated objects, provided
that they contain more than four points. Otherwise, they are discarded. The discarded groups usually
result from measurement errors or small changes in the environment. At this stage, a matrix is obtained
in which all the pixels belonging to the same object are marked with the same label and in which the
other pixels are zero. A representation of this matrix can be seen in Figure 3c, in which each detected
object is highlighted with a different color.

A problem with the eight-connectivity grouping technique is that, if object surfaces are homogeneous
to the sensor, a single moving object can be detected as multiple separated fragments. To merge these
fragments into the real object, two artificial vision techniques, dilation and erosion, are applied. The
result of applying these techniques to the process is shown in Figure 3d.

The main advantage of this method with respect to other approaches in the literature [18] is that, by
using range images, it does not limit the detection of dynamic objects to a plane, and therefore, it may
provide much more accurate information about the environment.

2.1.1. Dynamic Reference Range Image for Environment Perception

According to the criteria defined in Equation (1), a group of matrix points could be identified as
part of the moving object even though the laser measurements actually correspond to the environment.
Figure 4 illustrates the nature of this problem with the detection of a moving square. Area (a) includes
those points that were part of the object in a previous distance matrix, but no longer form part of it after
its movement to the right. However, according to Equation (1), if the difference between points of the
distance matrix is larger than a defined threshold value, points in (a) will be marked as part of the object.

To eliminate this incongruence and effectively identify and remove these points, a dynamic reference
matrix (Dref

ij ) is recursively updated with each range image. Dref
ij is kept updated along successive

iterations according to the mean (D
k

ij) and variance (V k
ij ) values of the last three range distance images
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(Equation (2)). The slower the objects move, the higher the number of range images that must be taken
into account for an accurate perception of the environment.

D
k

ij = 1
3

∑l=2
l=0D

k−l
ij

V k
ij = 1

3

∑l=2
l=0 (Dk−l

ij −D
k

ij)
2

(2)

Figure 3. Laser matrices along the detection procedure. Plots (a) represents a distance
matrix; (b) represents the difference between two consecutive distance images; (c) is the
filtered difference; and (d) the objects with more than four points after the erosion and
dilation process.

(a) (b)

(c) (d)

Updating results from the application of two rules (Equation (3)) to all the distance matrix points:
(i) if the calculated variance is smaller than the reference variance, the values are updated; (ii) if the
variance is smaller than four times the reference variance and the calculated mean distance is greater
than the reference distance, the values are also updated.

If V k
ij < V ref

ij

If V k
ij < 4V ref

ij &D
k

ij > Dref
ij

}
Dref
ij = D

k

ij

V ref
ij = V k

ij

(3)
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Figure 4. Scheme for the detection of a moving square. (a,b) The area marked as object in
the differentiation matrix, even if the laser measurements (a) correspond to the environment.
The reference matrix is used to isolate the points belonging uniquely to the object, area (b).

After this evaluation, larger distances are generally maintained in Dref
ij , as they likely belong to the

background. Small distance values (generally due to objects close to the scanner) could also substitute
reference distances if the concerned objects remain static for a certain period of time. This procedure is
also useful to incorporate those dynamic objects that have ceased to move for a long period of time and,
therefore, have become a static part of the environment with respect to the reference matrix.

2.1.2. Real Characteristics of Dynamic Objects

Once the dynamic objects have been detected, it is necessary to extract their defining characteristics,
in this case, position, size and color. For this purpose, a collision matrix containing the collision points
in a global reference system is calculated. This collision matrix or point cloud might be calculated at the
beginning of the algorithm together with the whole distance matrix, although the overall process is much
faster when it only involves the object points.

This method can be considered as the core of the static detection algorithm to determine the position
and size of the objects. It proceeds along the following steps:

1. Determination of dynamic points. For each element (i, j) in each previously labeled object,
it compares Dij with Dref

ij and removes those points (i, j) with values similar to those in
the reference.

2. Calculation of position. It calculates a central cell in the range matrix for object Ok. The collision
point of this cell in the global reference system is taken as the position of the object. The obtained
position is the center of the object side facing the sensor. The depth of the object cannot be
estimated, as no depth information is available.

(a) iOk
cent =

∑
∀iεOk

i/nrow

(b) jOk
cent =

∑
∀jεOk

j/ncol

3. Calculation of size. For all object points, the maximum and minimum values of each coordinate
are calculated. Size is estimated by the difference between these two values. Since the input data
are 3D points distributed on the side of the object facing the sensor, only two dimensions would
be significant, and the maximum value from the three calculated dimensions is kept.

(a) Size = max([max(x)−min(x),max(y)−min(y),max(z)−min(z)])
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After repeating this process for all objects, a list that contains the positions and sizes associated with
all of them is obtained. These steps are summarized in Algorithm 1.

Algorithm 1 Static Detection Algorithm.

Require: Distance matrices Dk
ij and Dk−1

ij .
Update Dref

ij with Equation (3).
Differentiate Dk

ij and Dk−1
ij according Equation (1).

Eight-connectivity grouping of pixels.
Dilation and erosion.
Position and size calculation.
return Object list Lk.

2.2. Detection from a Dynamic Platform

When the data proceeds from a sensor on a moving robot, the coordinate frame from the measurement
changes as the robot moves. Thus, the previous approach of range images differentiation is not
applicable. To avoid this restriction, a comparison of ground reconstructions to determine the areas
containing moving objects is proposed. Since this procedure deals with point clouds and provides the
actual heights of buildings, dynamic objects and other elements in the environment, it is expected to be
more reliable than other available terrain-reconstruction approaches using a single predefined height for
all features [33].

A ground reconstruction is a multiple layer cell map in which different values are assigned to each
cell. These values are obtained from the points of the point cloud whose projections on the ground
are inside each corresponding cell. The ground reconstruction comparison is carried out for maps with
confidence, maximum height and X,Y gradient layers. The main parameters of these maps are:

1. Cell size: This stands for the resolution of the map. This parameter also defines the smallest object
that the system is able to detect. Decreasing the size of the cell would increase the precision of the
detection system, but will increase the computational cost. This minimum size is also limited by
the sensor resolution.

2. Height layer: This parameter determines the characteristic height assigned to each cell.
Differences between two consecutive reconstructions indicate movement. We employ two
different formulations of the height: (i) the mean height and (ii) the maximum height. Maximum
heights turned out to be more reliable for detecting dynamic objects.

3. Gradient layers: These are used to estimate the slopes of the terrain. Gradients are calculated along
fixed axes using only the collision points within the same cell. This parameter is used to discard
static elements, such as walls, fences, etc. When a robot comes closer to one of these elements, the
maximum height of the cell can be increased, although the gradient in the cell remains constant,
thus discarding the designation of such cells as dynamic objects.

4. Confidence layer: This is used to measure the reliability of the data stored in each cell. Since
laser scans have a high horizontal resolution, cells will usually have multiple collision points. Two
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different methods to calculate the confidence have been tried. The first one utilizes the number
of impact points and the second the dispersion of the impact points inside each cell. The latter
procedure provides more reliable results.

An example of this map can be seen in Figure 5, where a portion of the map generated by a robot that
is moving between two walls is shown.

Figure 5. Ground reconstruction example of a robot that, passing between two walls,
is detecting a mobile object.
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2.3. Map Comparison

Since, in this case, the processed measurements come from a sensor mounted in a moving robot,
the change in the robot coordinate frame has to be taken into account. One option would be to keep
increasing the map size as long as the robot moves. With this approach, the computational processing
cost increases with the dimension of the map. The second approach consists of changing the map center
in the global coordinate frame each time that the range of the sensor reaches the limit of the map.

At the beginning of the detection process, the center of the map is taken at the position of the robot and
the dimensions of the map to at least encompass 150% of the detection range in both directions. When
the robot moves and the detection range exceeds the map dimensions, the center of the map must be
changed, as shown in Figure 6. When this occurs, the detection process is paused during three iterations
to enable that the reconstruction maps with reference to the same center and can be properly compared.

Figure 6. Movement of the center of the cell map when the laser range exceeds its
dimensions. The robot position is indicated by a black triangle and the laser range with
a red circle. When the laser range exceeds the cell map dimensions (white rectangle), the
cell map is relocated, as indicated by the arrow.

This technique requires a trustworthy navigation system in order to estimate the movement of the
robot. Thus, a classical combination for outdoor robot positioning techniques, such as odometry and
GPS, provides a precise and robust navigation solution. An additional compass is also available in order
to improve the dynamic estimation of the yaw angle. It is worth noting that big infrastructures usually
rely on their own GPS base stations, which allows for obtaining precisions of several centimeters in real
time by using real time kinematics (RTK) corrections.

Another widely used technique for estimating the movement of the robot could be the use of visual
odometry. The performance of this technique highly depends on changes in light or soil texture.
Moreover, considering that robots should be able to operate in poor light conditions or even in dark,
a solution based on a combination of global navigation satellite system and inertial sensors (GNSS-INS)
is considered more robust. However, the integration of visual odometry into in the navigation system
would provide the system with a higher robustness in situations in which the GPS signal is not available.

Any particular range distance image or point cloud yields a ground reconstruction cell map (Rk).
When two consecutive reconstructions (Rk and Rk−1) are compared, a movement map (Mk) is obtained.
The following rules are applied to perform this process:

1. The confidence of each cell must be greater than a predefined threshold value; usually 0.5.
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2. The difference between gradients X and Y must be larger than zero and smaller than a certain
threshold value defined to get rid of static elements.

3. The difference between the maximum heights must be larger than a certain value. Dynamic objects
smaller than the defined threshold value would not be detected.

When two consecutive movement maps (Mk and Mk−1), obtained from three consecutive
reconstructions with the same center, are available, they are compared to eliminate possible false
detections. Each cell is evaluated independently. For the effective movement map in each iteration
(Movk), a cell is marked as positive (i.e., meaning that there is movement in this cell) if:

1. There is movement in the current movement map. Mk(i, j) = 1

2. There is movement in the environment around the same cell in the previous map.
Mk−1(u, v) = 1;u = [i, i+ 1, i− 1]; v = [j, j + 1, j − 1]

Once an effective movement map (Movk) has been obtained, an eight-connectivity grouping of the
cells is carried out. Each group of cells represents an object with the same position as the center of
the group. In this case, size estimation is not straightforward, because discriminating, in the same cell,
the points belonging to the object from the points of the environment is not straightforward. As an
alternative, a size estimation based on the number of cells occupied by each object is carried out, although
the result is slightly less accurate than in the static detection case.

At the end of this process, we obtain a list of dynamic objects and their associated positions. These
steps are summarized in Algorithm 2.

Algorithm 2 Dynamic Detection Algorithm.
Require: Distance matrices Dk, Dk−1 and Dk−2

Calculate reconstruction Rk, Rk−1 and Rk−2

Ensure: Center of reconstructions is the same.
Calculate movement maps Mk and Mk−1.
Compare Mk and Mk−1 to obtain Movk.
Eight-connectivity grouping of cells.
Calculate position and size of objects.
return Object list Lk

3. Tracking of Dynamic Objects

In this section, we propose a tracking procedure that can work with dynamic object data supplied
by any kind of detection algorithms complying with the conditions specified in Section 2. Another
singularity of the method is that it can also handle and process dynamic object lists provided by other
robots or sensors working in the same surveillance area.

Typically, position and size and their corresponding errors are the main parameters associated with
each object. All tests and evaluations in this work have been carried out with these input parameters.
However, our algorithms might also manage additional information from the detected objects provided
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by other sensors, such as color or temperature. This additional information might be assigned to each
pixel by using sensor fusion techniques [34].

3.1. Kalman Filter for Tracked Objects

In the present approach, each robot handles a different list of tracked objects, and a single Kalman
filter is used to track and predict the state of each object.

The normal formulation of a Kalman filter [35] implies a lineal dynamic model, where each state, k,
depends on the previous state, as shown in Equation (4), where xk is the current state, Ak is the state
transition model, xk−1 the previous state, Bk the control input model, uk the velocities vector and wk
the process noise, which is assumed to be a multi-variant normal distribution with a zero mean and a Qk

covariance (wk(t) ∼ N(0, Qk(t))).

xk = Ak · xk−1 +Bk(t) · uk + wk(t) (4)

Each dynamic object has a set of associated features that are considered its state. This state
encompasses its position in the global reference system and some physical features, such as size and
color, as shown in Equation (5). Other parameters, such as temperature, could also be added to the
object state if provided by the detection system.

xk = [x, y, z, size, R,G,B]′ (5)

Using a constant velocity model, the matrices from Equation (4) are shown in Equation (6), where
∆t = (tk − tk−1) is the time difference between the current state and the predicted state. This
way, we consider uk to be the velocity of the object, assuming that both the size and the color
remain constant.

Ak = I7 =



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1


, Bk(t) =



∆t 0 0

0 ∆t 0

0 0 ∆t

0 0 0

0 0 0

0 0 0

0 0 0


(6)

The process noise is also time dependent, as shown in Equation (7)

Qk(t) =



∆t2σ2
x 0 0 0 0 0 0

0 ∆t2σ2
y 0 0 0 0 0

0 0 ∆t2σ2
z 0 0 0 0

0 0 0 σ2
size 0 0 0

0 0 0 0 σ2
RGB 0 0

0 0 0 0 0 σ2
RGB 0

0 0 0 0 0 0 σ2
RGB


(7)
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The process noise, Qk, represents the variation between the real value of the object characteristics
and the estimate obtained from the sensors. Due to its time dependency, it has to be set in each
iteration. Based on sensor features, the values (σ2

x, σ2
y , σ2

z , σ2
size, σ

2
RGB) must be defined before the system

is initialized.
For the correct behavior of the tracking module, it is very important that a reasonable movement

model is chosen for the tracked object. There are several options to make these predictions, which are
based on constrained networks [36], on learned motion patterns [37] or on statistical approaches [38].
The herein applied approach does not require any previous knowledge about the object (since it is not
available), but previous observations made by the detection algorithms. A constant linear and angular
velocity model has been chosen for the ground coordinates (x, y) and a constant linear velocity model
for the altitude. This latter assumption is justified, because most objects would be ground-bounded and
most changes in height will be produced by errors in the detection process.

To properly make this prediction, the method computes the current velocity by using a programmable
number of historical records (n), according to Equation (8). The involved angles are shown in Figure 7.

ω̄ =
1

n− 1

k−1∑
i=k−n

∆θ|i+1
i

∆t|i+1
i

; v̄ =
1

n− 1

k−1∑
i=k−n

|v|i (8)

Figure 7. Velocities calculation diagram. The different detected positions of a dynamic
object are connected by the angle increment used to obtain the marked angular velocity.
In the velocity calculation, both the linear and angular velocities are used to improve the
movement model.

To incorporate the calculated mean velocities in the prediction equation, they have to be expressed
according to the coordinates (vx, vy) obtained according to Equation (9).
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vx = v̄ cos
(
ω̄∆t|kk−1 + arg(vk−1)

)
vy = v̄ sin

(
ω̄∆t|kk−1 + arg(vk−1)

) (9)

To simplify the prediction process and allow the use of a linear Kalman filter, but still be able to
predict curvilinear trajectories, the information of the lasts positions is used to calculate an expected
velocity based on the last position of the object.

3.2. Single Robot Object Tracking

The tracking process requires an efficient and robust pairing procedure capable of identifying the
objects coming from the detection algorithms among the objects in the list stored locally in each
robot. Such a pairing is carried out by comparing the predicted state (x̂k|k−1) and the new obtained
measurements (zik). When the object measurements come from the detection module in the same robot,
all of them are characterized by a unique time.

The pairing process is based on the Mahalanobis distance (Equation (10)) [39], a well-known function
that determines the similarities between two multidimensional variables.

DM(x̂ik|k−1, z
j
k) =

√√√√ Nv∑
v=1

x̂ik|k−1(v)2 − zjk(v)2

P i
k|k−1(v)

(10)

After determining all possible pairs, those with the smallest distances are selected until completion of
the pairing process. The number of selected pairs will be equal to the number of elements in the list with
less objects. After the selection of the pairs according to the Mahalanobis distance criterion, the objects
in the local list are separated into two subsets to perform the iteration solely with the objects from which
the system has received new measured data (i.e., those that have been paired). If the number of objects
increased considerably, an alternative method would be implemented in order to avoid the calculation of
the distance for all the possible pairs (i.e., k-distance tree).

The selection of this distance threshold is not trivial and will define the performance degree of the
algorithm. Additionally, since it is possible that a single moving object is detected as two nearby objects,
this threshold will determine whether these duplicates are incorrectly assigned to another object or, on
the contrary, are introduced in the objects list to be handled by a filter reduction mechanism.

With these selected pairs, the two lists are divided into three groups:

• (x̂seltin|k−1, z
sel
k ): The objects included in the selected pairs will perform a Kalman filter (KF)

iteration with zselk as input.

• x̂no selk−1|k−1: Non-selected objects in Lloc. They will be evaluated by the elimination rules to verify
whether they must be removed from the local list.

• zno selk : New non-paired objects from zk. They will be introduced in Lloc as a new KF .
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3.2.1. Elimination Conditions

Elimination conditions to remove objects from the local list have been incorporated into the algorithm,
both to avoid ever-growing lists of dynamic objects and to preclude false pairings produced after long
periods of time. The defined rules address two main magnitudes: time and distance.

The first considered parameter is the time elapsed since the last observation of a given object.
The condition is directly reflected in the Kalman filter, because the process noise (Qk, as shown
in Equation (7)) is already time dependent. This time condition can be expressed as shown by
Equation (11).

if (tin − tdet) > tmax then remove object (11)

The second condition refers to the traveled distance predicted for each object in Lloc. If the filter
estimates that the robot has traveled a distance longer than a given threshold, then the object is eliminated
from the list, as shown in Equation (12); since a different threshold distance is set for each robot
according to its own detection distance. This criterion will be efficient for eliminating those objects
that are no longer within its range. It is most likely that fast moving objects are eliminated by this
condition, rather than by the previous one referring to elapsed time.

if ||(x̂(x,y,z)tin|k−1 − x̂
(x,y,z)
k−1|k−1|| > distmax then remove object (12)

3.2.2. Object Scoring

The elimination of false positives produced by the detection module is carried out in the tracking
module by using a scoring mechanism. Thus, the tracking module assigns a score to each object provided
by the detection module. Only objects with a score higher than a threshold are considered as “real”
dynamic objects and, therefore, are communicated to other robots or to the central station. Table 1
presents the scoring mechanism for the three possible situations in which the score of a given object
will change. This threshold has been experimentally set to four, although this limit will depend on the
frequency of the detection algorithm and on the type and range of the sensors. Thus, the faster the
detection system, the higher the score that should be used in order to eliminate false positives. From a
practical point of view, this limit depends on the number of consecutive times that the detection module
has to detect the object, so as to be included in the list of dynamic objects. Once a dynamic object is
marked as a real object, the scoring procedure losses its purpose, because the elimination rules do not
depend on this particular score (see Section 3.2.1.).

Table 1. Scoring table for single robot tracking.

Action Scoring

New object 1

Paired object +1− DM

DM |max

Object not paired −0.5
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The complete single robot object tracking process is described in Algorithm 3.

Algorithm 3 Single Robot Object Tracking Algorithm.
Require: Input object list with nin objects.
Require: Local object list with nloc objects.
Ensure: nin > 0 ∨ nloc > 0.

1: for i ∈ Lin do
2: for j ∈ Lloc do
3: ∆t = tin − tdet(j).
4: Temporal Kalman filter prediction with object j and ∆t.
5: Mahalanobis distance according to Equation (10)
6: Possible pairs distance matrix PD[i, j] = DM(i, j).
7: end for
8: end for
9: Create selected pairs list.

10: while Size(Selected Pairs)< min(nin, nloc) do
11: Select minimum valid value of PD
12: if PD[i, j] < DM |max then
13: Include pair (i, j) in selected pairs.
14: Mark row i and column j with invalid values.
15: else
16: Stop selecting pairs.
17: end if
18: end while
19: KF iteration for objects in selected pairs.
20: Eliminate objects from Lloc. . Not fulfilling elimination conditions
21: Add new objects not paired to Lloc.
22: Filter reduction to detect duplicates.
23: Update objects scoring.

3.3. Multirobot Object Tracking

For a multirobot application, it is necessary to share the dynamic object information among the
different robots and the control station. This implies combining the information from two different object
lists. List merging will always involve a local list (Lloc) of dynamic objects that must be updated with
the information contained in an input list (Lin). There are some restrictions that preclude the direct use
of Algorithm 3 to share information between different robots. Since dynamic object lists from different
robots have been originated at different times, the Kalman filter prediction stage cannot be applied at
the same time to all objects, Lloc. To overcome this problem, a new pairing algorithm (Algorithm 4) has
been developed. It has a structure similar to that of Algorithm 3, but it deals effectively with the different
time origins. Another important difference is that in this new algorithm, the objects list values in Lin
have different covariance values, thus precluding the use of the Mahalanobis distance.
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Algorithm 4 Multirobot Object Tracking Algorithm.
Require: Input object list with nR1 objects
Require: Local object list with nR2 objects
Ensure: nR1 > 0 ∨ nR2 > 0

1: for all i ∈ LR1 do
2: for all j ∈ LR2 do
3: if |tR1

i − tR2
j | > ∆tmax then

4: Mark pair as invalid.
5: end if
6: if ∆t = tR1

i − tR2
j ≥ 0 then

7: x̂jk|k−1(t
R1
i ) = A · x̂jk−1|k−1 +B · uk−1(tR1

i ).
8: Calculate DB(x̂jk|k−1, x̂

i
k−1|k−1).

9: else if ∆t = tR2
j − tR1

i > 0 then
10: x̂ik|k−1(t

R2
j ) = A · x̂ik−1|k−1 +B · uk−1(tR2

j ).
11: Calculate DB(x̂ik|k−1, x̂

j
k−1|k−1).

12: end if
13: Possible pair distance matrix PD[i, j] = DB(i, j).
14: end for
15: end for
16: Select min(nR1, nR2) pairs using lines 9–18 from Algorithm 3 with DB|max.
17: for all j ∈ LR2 do
18: if j ∈ selected pairs (Pair (i, j)) then
19: Update information of object i with info from object j .
20: else
21: Add j in LR1 if scorej > scoremin.
22: end if
23: end for

3.3.1. Localization Errors

In the single robot case, the uncertainty in the robot position was not included in the calculation under
the assumption that within the same iteration, it was the same for all the objects. However, when lists
from different robots have to be combined, this assumption is no longer valid.

The variances of the detected position for dynamic objects can be calculated with respect to the
variances in the distance measurements and the variances of the detecting robots’ positions. As a result
of this calculation, one obtains the position variances defined by Equation (13), where zd and zφ are the
distance and relative angle to the object and σd and σφ the variances of the corresponding measurements.

σ2
x = c2σ2

d + σ2
x1

+ (szd)2(σ2
φ + σ2

θ1
)

σ2
y = s2σ2

d + σ2
y1

+ (czd)2(σ2
φ + σ2

θ1
)

∥∥∥∥∥∥
c = cos(zφ + θ1)

s = sin(zφ + θ1)
(13)
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Figure 8 shows a schematic diagram explaining why the global error in the object tracked position
(OR1) increases when it is expressed with respect to the global coordinate frame (εOR1

global) instead of to the
robot position (εR1

det).

Figure 8. Influence of the robot position error onto the tracked position error. Robot R1

with a localization error, εR1, detects a moving object in position (OR1) with an error, εR1
det.

The global error in the object position (εOR1
global) is a function of the other errors.

A critical problem by any tracking process is to define a procedure to compare two lists of variables
with different variances in order to find the most accurate pairs. It has been already mentioned that the
Mahalanobis distance cannot be used for this purpose, and therefore, a new metric has to be implemented
with the restriction of efficiently handling variables with different covariance values.

When performing the merging of the dynamic lists provided by different sources, the herein proposed
algorithm solves the previous problems by taking into account both the actual acquisition times of each
set of measurements and the covariance values of these measurements for each object. This means
that two dynamic objects lists have to be paired. For this alternative pairing process, it is necessary to
calculate a characteristic distance for each possible pair. This distance calculation will depend on the
detection time for each object in the pair. For a pair of objects, i(R1) and j(R2), representing moving
objects tracked by two different robots, three different situations can be envisaged, in which:

• If tR1
i > tR2

j then temporal KF prediction of object j to tR1
i .

• If tR1
i < tR2

j then temporal KF prediction of object i to tR2
j .

• If |tR1
i − tR2

j | > ∆tmax then pair is not viable.

It is worth nothing that a significative increment in the time difference will make the information in
the local list non-usable. Even if the objects were the same, the new information would be included in
the local list as a new object.

The first two situations require a calculated distance to evaluate the pairing by using, in each
case, the most recent values for x and z. We propose the use of the Bhattacharyya [40] distance,
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a correlation distance that allows a direct comparison between two distributions and their covariance
matrices. Equation (14) shows the application of the Bhattacharyya distance to our case by using the
available information.

DB =
1

8
(x̂R1

k|k − x̂R2
k|k)

TP−1(x̂R1
k|k − x̂R2

k|k) +
1

2
ln

 detP√
detPR1

k|k · detPR2
k|k



P =
PR1
k|k + PR2

k|k

2

(14)

Another critical issue of the algorithm is the object score update by using the introduction of some
modifications when the information comes from another robot. Table 2 presents the scoring mechanism
under different possible situations.

Table 2. Scoring criteria for multirobot tracking.

Action Scoring

New object Object score in previous list

Paired object +0.5

(
1− DB

DB|max

)
Object not paired 0

The implementation of all the previous concepts in the new algorithm brings about as the main
advantage, in comparison with previous approaches in the literature [25,41], the capability for dealing
with centralized or decentralized communication structures with no changes required (apart from
communication issues, such as broadcast or point-to-point communication schemes).

Algorithm 4 describes the complete single robot object tracking process previously discussed in a
systematic manner.

4. Results

A selection of tests were carried out in order to evaluate the performance of the algorithms within the
modular structure proposed in this work. The purpose of these experiments was to identify and track
the position and size of some dynamic objects. Tests in both simulated and real environments were
carried out.

Section 4.1 shows the results obtained by using computer simulation in a series of CIs generated by
using the Webots platform [42]. This simulation system takes into account not only sensor errors, but
also typical errors in position and attitude estimates according to state-of-the-art navigation techniques.

On the other hand, Section 4.2 describes some tests carried out by using a Summit–XL robotic
platform equipped with a Hokuyo UTM-30LX range finder mounted on a tilt unit in a real scenario.
This combination can be appreciated in Figure 9. The main drawback of this combination is that it has
a lower frequency than a real 3D LiDAR, such as, for example, the Velodyne HDL-64E. This results in
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a lower velocity range for the detected objects. However, for the purposes of algorithm validation, the
used sensor turned out to be fast enough.

Figure 9. Hokuyo laser and tilt unit mounted on top of the Summit–XL robot. (a) Side view;
(b) front view.

(a) (b)

Using these testing platforms, different detection and tracking exercises have been carried out to
prove the performance of the algorithms. For simplicity, only some selected examples will be shown
here to specifically highlight their robustness under occlusions and for long surveillance distances, two
of the main problems encountered during DATMO in CIs. For better comprehension, the selected tests
describe increasingly complex situations and trajectories, from very simple linear trajectories to more
realistic movements and scenes. To critically evaluate the feasibility of the modular integration between
the detection and tracking algorithms, examples involving different situations are shown.

4.1. Simulations

A single robot must be able to detect and track multiple dynamic objects in an environment with
obstacles and to follow their trajectories correctly. The first test is carried out in a simulated solar plant.
The initial position of the elements in this test is shown in Figure 10a. For this test example, the range
of the camera was set to 80 m.
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Figure 10. Simulation in an environment with obstacles. (a) The initial position of the
elements and the surrounding environment is shown. (b) The tracked positions of the
dynamic objects are show

(a)Initial position

(b)Tracked Objects Position

Figure 10b shows the tracked positions for the detected objects. In this drawing, the ground layout of
the solar panels is plotted for clarity, although the detecting robot did not have this information during
the test. The detected trajectories plotted in this figure demonstrate that three out of four objects in the
scene are perfectly detected, along with a couple of miss-detections located in the base of some of the
solar panels. The fourth object is a simulated Pioneer-3AT robot (0.5 × 0.5 × 0.3 m) located about
50–60 m from the detector robot. This object, following the trajectory marked with a red rectangle in the
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figure, has not been detected. This failure in the detection is not due to the performance of the algorithm,
but stems from the small size of the object and its long distance (i.e., more than 60 m) from the detecting
robot. Under these conditions, only very few laser beams impact the object, making it impossible to
discern between its movement and noise-induced changes in the laser measurements.

As shown in Figure 10b, the tracking algorithm can deal with occlusions. The trajectory of Object
3 is a perfect example of how this algorithm deals with these situations. The zoomed area shows
an occlusion and how the tracking algorithm predicts the position of the object in that zone until the
detection algorithm finds it again.

Not just obstacles can be used to conceal possible intruders. Buildings can also be good hiding places
for intruders moving along the walls to avoid detection. Figure 11 shows the initial position of the
elements in a simulation in which a robot tracks a dynamic object between two walls. This situation
could also represent a robot making a surveillance patrol between shelves in a storage area or between
rows of containers in a harbor docking area.

Figure 11. Initial position of the elements before the test of an object moving between walls.

Figure 12 shows the tracked trajectory of the moving object. Although the frequency of the detection
is smaller than in other cases, the robot still manages to track the intruder. The main problem when trying
to detect dynamic objects between or close to walls is that collision points in walls tend to have very
different heights for the same cell in the ground reconstruction. These wall collisions may sometimes
mask a dynamic object that moves close to them. To solve this problem, an efficient gradient calculation
was included in the algorithms, allowing one, in this manner, to efficiently discern the cells that belong
to the vertical walls.

The final purpose of a robot surveillance system is to convey all the information to a central station,
where it must be presented to a human operator in a comprehensive way. To check this functionality,
a successful simulation in which multiple robots transmit their DATMO information to a central station
is required. To prove this capability of the algorithms, a test is carried out with three robots and three
moving objects. Figure 13 shows the initial location of the elements in the test. Two robots are per-
forming surveillance outside a perimeter wall, whereas the third one is patrolling the internal side of the
same wall.
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Figure 12. Tracked position of the moving object, as well as the trajectory of the robot.

Figure 13. Detected object positions by different robots in a centralized structure. The object
positions detected by each robot are marked with a different color.
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The central control station is simulated as a robot with only its tracking module active. The unique
inputs to this control station are the moving object lists generated by the robots performing surveillance.

Figure 14 shows the object positions detected by each surveillance robot. The contour lines of the
static elements in the simulation, as well as the range of detection limits for the static robots are marked
in the same plot for visualization purposes. It is important to notice that the robots have no information
about static objects in the environment. All three robots detect the dynamic objects that are moving in
their respective detection ranges. The dynamic robot, R2, is the only one that produces some detection
errors. These errors appear mainly at obstacle corners, where the gradient conditions do not perform
well in ruling those obstacles out. However, the tracking algorithms eliminate these miss-detections.

Figure 14. Detected object positions by each robot in the central station simulation.

In this test, the central station continuously receives the dynamic object list generated by each
robot. Figure 15 shows the object positions tracked by the central control station. It is apparent that
the multirobot tracking algorithm efficiently combines the object lists and efficiently tracks different
mobile objects, even when they move in areas covered by the the detection ranges of different robots.
It is important to notice that for all detected robots, object identifications numbers (IDs) remain
unaltered through the whole simulation. This ID corresponds to the ID given to the object by the first
detecting robot.
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Figure 15. Tracked object positions by the central control station.

4.2. Field Tests

The 3D range data necessary for the ground robot tests were obtained by combining a 2D LiDAR
sensor with a vertical tilt movement produced by a servo, as presented previously. This system provides
point clouds of 42,500 points. Of course, this arrangement has a lower resolution than that steaming
from real 3D range devices, such as the HDL-32E device from Velodyne, which has an output of about
700,000 points. It must be stressed that the proposed algorithms could also handle such point clouds
without any problem and that, in this case, their performance will be greatly increased. Nevertheless, for
validation purposes, the used sensor data turned out to be good enough to demonstrate the performance
of the algorithms.

The first test was performed by moving a big object in front of the robot. In this case, a car-sized
object moved in front of the robot from right to left, whereby it was occluded at some point by a static
obstacle. A point cloud taken at the beginning of the test can be seen in Figure 16. The evaluation results
of this test can be seen in Figure 17. An occlusion can be clearly observed between the points, (7, 4)
and (6, 2), when the object was passing behind the obstacle. Outside this area, the object was detected
correctly along the whole trajectory. Some small gaps can also be observed in the trajectory that do
not correspond to occlusions. These discontinuities are produced, because the determined center of big
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objects does not always correspond to the object’s real center. These little inconsistencies originate,
because the center of the object is estimated in different positions at different viewing angles.

Figure 16. Point cloud of the initial situation of the test.

Figure 17. Tracked position of the moving objects.

Of course, when the robot is moving, its ability to detect and track moving objects must remain
intact, and therefore, the dynamic detection algorithm must be also tested with real data. To illustrate its
performance, the dynamic detection algorithm was tested in an exterior environment with two objects
(i.e., persons in this test) moving in the detection range of the robot. A point cloud of the position of the
elements at a half period test can be seen in Figure 18a.
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Figure 18. Real environment with obstacles. (a) The initial position of the elements and
the surrounding environment is shown. (b) The tracked position of the moving objects can
be seen.

(a)Point Cloud

(b)Tracked Objects Position

The output of the tracking module for this test can be seen in Figure 18b. The two object trajectories
are clearly visible, and the tracking algorithm identifies the objects correctly, even after object 1002
changes its direction at some moment during the test.

This latter test is a good example of how a robot patrolling the perimeter of a CI can effectively detect
and track different objects. Even if the detection frequencies are lower than in the static case, all the
objects are properly being detected without interruptions.
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5. Conclusions

In this work, we have developed a series of algorithms to detect and track multiple mobile objects
in large surveillance areas using a team of multiple robots. It has been proven that a good approach for
DATMO is to use a modular structure for the calculations in which detection and tracking algorithms are
run in a separate, but communicative way. This would permit us to use different detection algorithms
and a unique tracking algorithm, provided that the data are supplied in a convenient form. The validity
of the approach has been proven by combining two detection and two tracking algorithms in multiple
tests.

Two different methods, intended for either a static or a dynamic robot, have been developed to detect
dynamic objects. These algorithms, supplied with range images of the environment (2.5D data), are
able to handle large surveillance environments and have proven to be efficient for detecting multiple
dynamic objects in the presence of occlusions. For tracking purposes, two identification algorithms have
been developed. The first one relies on well-established techniques aiming at identifying the detected
dynamic objects within a local list in the robot. For this purpose, we combine the information from
different sensors using a time-dependent Kalman filter to predict the next state of each object. Position,
size and color are used to efficiently identify and track the objects by a nearest neighbor search with the
Mahalanobis distance. This flexible algorithm could be expanded to incorporate other parameters, such
as temperature, to track the objects. The second tracking algorithm combines lists of dynamics objects
from different robots. Since the objects in these lists have different detection times and their parameters
different covariances, the Mahalanobis distance cannot be applied. To overcome this limitation, the
pairing of object lists is carried out by applying the Bhattacharyya distance to the nearest neighbor
search. This approach has the advantage of enabling dissimilar robots to combine their knowledge
about the moving objects (e.g., possible threats of the environment). This combination enables a better
characterization of the dynamic objects. Another advantage of the modular combination of the present
approach is that it could be used not only with a centralized, but also with a decentralized, surveillance
architecture. Since the developed sharing procedure is fully scalable to a variable number of robots, it
could be applied without incorporating additional equipment in the control center. This flexibility of the
method would permit its use on an à la carte basis, whereby a variable number of robots could be used
in a given environment by just making small adjustments to the software.
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