

Sensors 2014, 14, 2305-2349; doi:10.3390/s140202305

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors
Article

Marginal Probabilistic Modeling of the Delays in the Sensory
Data Transmission of Networked Telerobots

Ana Gago-Benítez, Juan-Antonio Fernández-Madrigal and Ana Cruz-Martín *

Systems Engineering and Automation Department, University of Málaga, Campus Teatinos,
Boulevard Luis Pasteur s/n, Málaga 29071, Spain; E-Mails: anagagobenitez@gmail.com (A.G.-B.);
jafma@ctima.uma.es (J.-A.F.-M.)

* Author to whom correspondence should be addressed; E-Mail: anacm@ctima.uma.es;
Tel.: +34-952-132-893; Fax: +34-952-133-361.

Received: 25 September 2013; in revised form: 3 December 2013 / Accepted: 18 December 2013 /
Published: 29 January 2014

Abstract: Networked telerobots are remotely controlled through general purpose networks
and components, which are highly heterogeneous and exhibit stochastic response times;
however their correct teleoperation requires a timely flow of information from sensors to
remote stations. In order to guarantee these time requirements, a good on-line probabilistic
estimation of the sensory transmission delays is needed. In many modern applications this
estimation must be computationally highly efficient, e.g., when the system includes a web-
based client interface. This paper studies marginal probability distributions that, under mild
assumptions, can be a good approximation of the real distribution of the delays without using
knowledge of their dynamics, are efficient to compute, and need minor modifications on
the networked robot. Since sequences of delays exhibit strong non-linearities in these
networked applications, to satisfy the iid hypothesis required by the marginal approach we
apply a change detection method. The results reported here indicate that some parametrical
models explain well many more real scenarios when using this change detection method,
while some non-parametrical distributions have a very good rate of successful modeling in
the case that non-linearity detection is not possible and that we split the total delay into its
three basic terms: server, network and client times.

Keywords: networked sensors; remote robot operation; stochastic time delays

OPEN ACCESS

Sensors 2014, 14 2306

1. Introduction

Telerobots, and, in general, platforms with remotely controlled sensors, are present in many
advanced applications, like telecare robotics [1], telesurgery [2], underwater exploration [3], space
operation [4], etc. In particular, mobile networked telerobots [5] are a class of mobile telerobots
controllable over networks like the Internet, that are accessible to the general public through, for example,
the World Wide Web. The main operation of such a mobile platform consists of receiving and executing
motion commands that are issued from a remote user station, which in turn is displaying information
acquired by the sensors of the robot, typically cameras, range sensor data, etc. (see Figure 1). This remote
control task has time requirements that should be satisfied, because, e.g., the user cannot perform correctly
robot navigation if the data are not received from the sensors at the client side with enough frequency.

Figure 1. General scheme of a sensory loop in a networked telerobot controlled through
the Internet, where both hardware and software components are non-deterministic in the
real-time sense.

Current Internet technology presents important problems to perform a hard real-time remote control
of these robots due to its stochasticity, but not only the network is an issue in this regard: operating
systems and application software, typical of these general-purpose applications, are problematic as
well because they may inject unpredictable delays, in some occasions longer than the ones of the
network, in a way that makes impossible to guarantee a timely information flow through the control
loop in all situations. These are thus soft real-time systems [6], where only statistical requirements can
be satisfied, for instance “the data from that sensor must arrive every 500 milliseconds with 90% of
probability”. A good probabilistic estimation of the delays in the transmission of the sensory data is

Sensors 2014, 14 2307

consequently required to be able to predict the subsequent delays and thus make decisions that
guarantee the probabilistic satisfaction of time requirements.

Different approaches, not necessarily robotic, may be found in literature to deal with stochastic
delays of this kind: in the networking community they typically try to enhance the Quality of Service
(QoS) of the network based on the modeling and control of the information flow [7,8], which usually is
addressed by modifications in the network protocols or the hardware [9], or through more exotic
approaches such as the injection of artificial delays in the transmission path in order to compensate the
already existing ones [10]; in the automatic control area, different theoretical models have been
proposed to cope with the full dynamics of remote or distributed systems dedicated to process
control—which includes the dynamics of time delays—[11–13], and an important amount of research
also is being developed on stochastic networked control systems (NCS), although it is common in
these communities to consider the non-network components as deterministic and, usually, to know the
dynamics of the plant to control. Finally, approaches to control the timing of data flow in multimedia
applications also exist [8,14,15], but they do not need to cope with the strict time requirements of
controlling robots. It is noteworthy that most solutions reported in the literature to the modeling and
regulation of the delays occurring in networked systems only deal with the network part: typically the
end-to-end delay, which includes only A/D conversion, packetization, network propagation, queuing
and buffering [16], or the RTT (round-trip time), that refers to the delay existing between sending a
package through the network and receiving its acknowledgment [17].

In this paper we are interested in analysing minimalistic mathematical models for all the time delays
(not only network delays) found in the kind of applications described before—note that the networked
telerobot applications can be generalized, under the perspective of the modeling and regulation of their
delays, to any scenario where remote sensors send data to a station through a stochastic network and
other non-deterministic software components. The approach presented here pursues to satisfy the
following goals: the application requires the data to arrive before a particular time—at least under
probabilistic constraints, as explained above—in order to be useful; minimal modifications can be
done to the existing system; no previous knowledge is available about the dynamics of the delays; and
only a low computational power is available. Taking into account all these constraints, we present a
thorough statistical analysis of the time delays of the sensory flow for networked telerobots. We show
that temporal sequences of delays gathered from such a system can be successfully modeled with
simple statistical tools based on marginal probability distributions, especially when abrupt changes in
the signal are appropriately detected—i.e., quickly and with high sensitivity—since those abrupt
changes can be then used for separating the sequence into segments that do not contain such non-
linearities (in statistical terms, marginal probability distributions are correct models as long as there is
temporal independence between values in the sequence). We analyse in the paper the scenarios where
this approach is expected to work, and the general characteristics they show. Our marginal distribution
approach has reduced computational complexity with respect to other methods, and maintains an
appropriate level of accurateness. In particular, it provides statistical significance to the model, or, in
other words, the models obtained can explain the data in a statistical sense.

Standard methods that are commonly applied to characterize this kind of sequences of random
values work by representing the entire sequence by a single model that captures as accurately as
possible all the dependences existing between the values, instead of separating the sequence into nearly

Sensors 2014, 14 2308

independent segments as we propose here. The two most common approaches found in literature are
time series and hidden Markov models (HMM), both with well-known computational costs [18] (they
are also very often used off-line). On the one hand, time series come in several flavors, depending on
their flexibility: ARMA models are O(m3T), where T is the length of the series and m = p + q the
sum of orders of the model—these orders are to be decided previously with some additional
procedure— but they are unable to represent signals with abrupt changes or trends; when the series has
trends we can use a more involved ARIMA model, which is O(T2) [19], but it cannot deal with abrupt
changes in the signal; when the signal is to be segmented due to the presence of such abrupt changes,
real-time algorithms based on ARMA exist that are O(m3T2) [20]; finally, more complex and specific
time series algorithms can be found, but with even worse computational costs [21]. On the other hand,
HMM deal naturally with signals that change abruptly, representing them as the output of a stochastic
process that varies its (hidden) state probabilistically. Unfortunately, learning the parameters of an
HMM usually requires a T that is longer than in the ARMA case, i.e., to gather appreciably longer
sequences of values; in addition, its complexity is O(N2T2), where N is the number of states considered
for the system. That number should be estimated previously with some other procedure.

In contrast to these standard approaches, our marginal distribution method is O(T), since the
estimation of the distribution parameters and the change detection algorithm are O(T) at most: on the
one hand, in the worst case when we use a non-linear optimization algorithm to find the parameters of
the distribution—which is avoided if we employ maximum likelihood estimation, as it is the case in
many of our models, such as the lognormal [22]— the number of optimization steps can be bounded to
a constant in all practical cases; on the other hand, the change detection algorithm that we present in
Section 4.1 consists in the application of a mathematical expression, which is simply O(1). Also,
although our approach is specifically devised to detect and rule out abrupt signal changes, it produces
improvements in the modeling of the signal when the delays have smooth (non abrupt) trend changes,
since the procedure partitions the sequence of delays into shorter segments where the trend has a
relatively lesser significance.

The first result reported in the paper is a statistical analysis, based on a diverse dataset gathered
from very different real scenarios, that shows how most typical situations have delays with negligible
autocorrelation as long as abrupt changes are detected, and produce long enough near-stationary
regimes in that case, thus enabling the assumption of independence and consequently the application of
our marginal model. After that, we show how our marginal approach applies to modeling the total
delay in the sensory loop of many real scenarios, not only the network delay. Finally, our study
proceeds to establish that some heavy-tailed marginal distributions such as the lognormal, along with
our confidence interval method for detecting abrupt signal changes, highly improve the modeling of
the delays, without requiring any previous knowledge about the dynamics of the system (elsewhere we
have reported more in depth results for other heavy-tailed distributions when used with a different,
more computationally involved change detection algorithm [23], that in this paper is used only as a
near-optimal bound of the results that can be obtained with our marginal approach). The confidence
interval method introduced in this work for detecting non-linearities does not overload the control
loop—it is intended to be executed at the client side—and thus it is a promising start for further
practical applications that use the proposed models in platforms with low computational capacity.
Apart from these results with parametrical distributions, we also report results showing that some

Sensors 2014, 14 2309

non-parametrical models are able to model correctly the delays of most scenarios of interest when they
are just split into three basic components, something that is easy to do in many situations. This is
practical in those cases where we cannot detect and process abrupt changes in the delay signal.

The document is structured as follows: Section 2 describes our experimental settings and justifies in
which cases the marginal distribution is a suitable approximation of the stochastic behaviour of the
delays; Section 3 proposes theoretical models of the time delays and evaluates their goodness-of-fit
when confronted with the unprocessed experimental data; Section 4 introduces the confidence interval
method to detect outliers, bursts and regime changes, and provides the results of fitting and hypothesis
testing on the same scenarios, complementing them with the illustration of near-optimal results that
would be obtained if the change detection algorithm is allowed to be more computationally involved.
Finally, some conclusions and future work are outlined.

2. Overview of the Experimental Setting

We have set up a number of scenarios (listed in Table 1) for covering the diversity of combinations
of non-deterministic components that can be found in many networked telerobot systems, thus
obtaining a very complete idea of the possible behaviours of the delays in the transmission of sensory
data. Some of these scenarios have been previously used in other works (e.g., [23]), but only with one
particular model of the delays, and using different, more computationally involved change detection
methods. In this paper the number of scenarios is much larger and we use them for analysing many
models simultaneously; we also split some of them into their fundamental parts, and provide, in
general, a both wider and deeper analysis of the problem.

Table 1. Summary of the experimental scenarios that have been set up for modeling the
delay in sensory data transmission from our networked telerobots (more details on the
elements of this table can be consulted in the main text).

Scenario Robot Sensor Resolution Location
Client

Computer
Server

Computer
Network

#1 SANCHO Laser
181 data
points

Same building A a 1

#2 SANCHO Webcam
20% full

B&W
Same city B a 2

#3 SANCHO Webcam
40% full

B&W
Same city B a 2

#4 SANCHO Webcam
30% full

B&W
Same city B b 3

#5 SANCHO Webcam
100% full

color
Same city B b 3

#6 SANCHO Webcam
10% full

B&W
Same building A b 4

#7 SANCHO Webcam
50% full

B&W
Same building A b 4

#8 SANCHO Webcam
100% full

B&W
Same building A b 4

Sensors 2014, 14 2310

Table 1. Cont.

Scenario Robot Sensor Resolution Location
Client

Computer
Server

Computer
Network

#9 SURVEYOR Webcam
5.86% full

color
Same building C c 5

#10 GIRAFF Odometry 9323 bytes Same building D d 1 + 4

#11
PHP simulated
odometry only

Null
(echo)

20 bytes
Ituzaingó

(Argentina) &
Málaga (Spain)

E e 4 + 6 + 7

#12
C++ mobile

robot simulator
Odometry 80 bytes Same city F e * 2+4

#13 Arduino
Analog
input

27 bytes Same desk (p2p) G f 8

#14
PHP simulated
complete robot

Null
(echo)

4 bytes Same building H h 4

#15
PHP simulated
complete robot

Simulated
camera

100% RGB Same computer H g No net

#16
PHP simulated
complete robot

Simulated
laser

2048 data
points

Same building H h 4

#17
PHP simulated
complete robot

Simulated
camera

100% RGB Same computer H h 4

#18
PHP simulated
complete robot

Simulated
camera

100% RGB
Plymouth (UK) &

Málaga (Spain)
I e 4 + 6 + 7

Legend: A: Pentium M@1.8 GHz, 1 GB RAM, LINUX, FireFox. B: Intel Core Duo T7200@2 GHz, 2 GB RAM,
LINUX, FireFox. C: Android smartphone Galaxy SII. D: Desktop PC Intel R CoreTM i5 3330@3 GHz, 8 GB
RAM, Windows XP, teleoperation graphical interface of [24]. E: Laptop Intel core 2 duo T6400@2 GHz, 2 GB
RAM, Windows XP. F: Laptop Intel core 2 duo T7200@2 GHz, 2 GB RAM, Linux. G: Desktop PC Intel core i7
960@3.20 GHz, 12 MB RAM, Linux. H: Desktop PC Intel core i7 940@2.93 GHz, 12 GB RAM, Linux. I: Laptop
Intel Core 2 Duo P9600@2.53 GHz, 4 GB RAM, Linux. a: Intel Pentium M@2 GHz, 1 GB RAM, LINUX. b: Intel
Pentium IV@3.2 GHz, 1 GB RAM, WINDOWS. c: Surveyor, Android. d: Mini-PC, Intel core i3 M@2.10 GHz, 3
GB RAM, Windows Embedded Standard. e: Desktop PC Intel core i7 950@3.07 GHz, 16 GB RAM, Linux.
f: Arduino board with Atmel Atmega 328P@16 MHz, 2 KB RAM, no OS. g: Desktop PC Intel core i7 940@2.93
GHz, 12 GB RAM, Linux. h: Mini PC Intel core i5 650@3.20 GHz, 4 GB RAM, Windows 7 Enterprise N. 1: WiFi
802.11b/g, local University provider in the same building as the robot. 2: WiFi 802.11b/g, ISP provider located in
Madrid (about 600 km from our lab). 3: RTC 56 Kbps, ISP provider located in Madrid (about 600 km from our
lab). 4: Twisted-pair 1GBs Cable. 5: WiFi ad-hoc. 6: Submarine data cables [25]. 7: WiFi 802.11b/g ISP provider
in Ituzaingó, Argentina. 8: USB 2.0 point-to-point cable.
*: robot simulation running in a virtual machine with Windows XP and the BABEL development system [26].

One of the scenarios (#13) does not belong to the scope of the problem discussed in this paper: its
stochasticity in the delays is practically null. It has been included here for analysing our algorithms in
the limit case that delays are almost deterministic instead of stochastic. In reality it could correspond to
a very small microrobot with a 8-bit microcontroller on-board, connected to a external PC that requests
sensory data through an USB cable (see description below).

The following are the non-deterministic components that set up our scenarios:

● Remote sensors: We have used a mobile service robot called SANCHO [27] with: (i) a USB
color camera sensor (webcam) with 48-bit color depth and 640 × 480 maximum resolution
(it also captures B&W pictures) and (ii) a SICK LMS-200 laser scanner providing 360, 180 and

Sensors 2014, 14 2311

90 range data, connected through RS-422. The second robot we have employed in our
experiments is the Surveyor microrobot [28], which has a CMOS image sensor with
1.3 megapixels requesting 320 × 240 images (5.6% of the full color resolution). The Surveyor
robot sends compressed images (JPEG), which randomly alter the actual density of the
transmitted data. In the experiments we have considered only this single fixed resolution in
order to carry out our analysis consistently. The third robot in our experiments is the Giraff [26],
a robotic assistant for the elderly from which we have used the odometry sensors and the
camera. We have also included in the experiments some simulated robots: (i) a simple
simulation of the odometry of a differential wheeled robot written in PHP (for being executed
by the same web server that is receiving the sensor requests); (ii) a complete robot simulation,
also in PHP, that includes cameras (only noisy data is served, but with different resolutions);
and (iii) a much more realistic simulation written in C++ that have been used in the last decade
for a number of robotic experiments in our lab (it resembles the SANCHO robot, including laser
scanners, odometry, reactive navigation, etc.). Finally, we have used a non-robotic device for
simulating microrobots smaller than the Surveyor: an Arduino board [29] that only serves
readings from one of the analog input channels of its microcontroller. This system provides
much more deterministic delays than all the others, therefore it is especially difficult to model
by our stochastic approach.

● Servers for the sensory system: The camera sensor of SANCHO is plugged-in to an Intel
Pentium IV@3.2 GHz laptop with 1 GB RAM. The laser sensor is connected to a second
on-board laptop (Intel Pentium M@2 GHz with 1 GB RAM). Both laptops are connected to the
local network through Ethernet, with only twisted pair segments at 1 Gbps (the robot is
stopped), and run MS Windows XP and also a robotic software mini-architecture built on the
CORBA middleware [30]. The Surveyor robot uses a proprietary firmware that allows a remote
client to request specific commands for getting images and other actions. The camera of the
Giraff robot and its motion/odometry system are connected to the onboard mini-PC (Intel core
i-3-M@2.10 GHz, 3GB RAM, Windows Embedded Standard), which is connected through
WiFi to the router of the lab where these experiments have been carried out.

● Web servers: For SANCHO, an Apache web server is located in the same sub-network as the
robot. It runs GNU/Linux (Ubuntu), and serves a PHP [31] page that connects through TCP/IP
sockets to the robot middleware. The Surveyor, in contrast, includes an onboard ad-hoc web
server that processes remote requests directly. The Giraff robot does not use a web server since
it is not managed through a web-based interface, but an ad-hoc one [24]. The PHP simulated
robots are run by the same web server that receives the sensor requests (on Linux). The C++
simulated robot run on the same machine as this web server, but within a virtual machine with
Windows XP. The Arduino system does not have any web server.

● Web clients: The client web browser for SANCHO has been Firefox on Linux, where a piece of
Asynchronous JavaScript and XML (AJAX) code [31] continuously requests data from the
sensors and measures the time delays. Two different laptops have been tested for running this
web client: an Intel Core Duo T7200@2 GHz with 2 GB RAM (running Mandriva Linux) and a
Pentium M@1.8 GHz with 1 GB RAM (running Ubuntu Linux). Both can use WiFi 802.11b/g
connections to access the network: the former through an ISP provider located in Madrid (at

Sensors 2014, 14 2312

about 600 km from our lab); the latter through a local University provider in the same building
as the robot. In addition, we have included in some experiments a 56 kbps narrowband segment
by using an old phone modem. For the Surveyor robot, a specific Android client application
connects to the robot onboard web server, using the robot control protocol and a WiFi ad-hoc
(single-hop) connection, and retrieving camera images. The Giraff robot is managed through an
ad-hoc teleoperation graphical interface written in C++ [24], that is run in an external desktop
PC (Intel R CoreTM i5 3330@3 GHz, 8 GB RAM, Windows XP). The PHP simulated robots
have a simple web interface that has been run on three different computers (Laptop intel
core 2 duo T6400@2 GHz, 2 GB RAM, Windows XP; Desktop PC Intel Core
i7-940@2.93 GHz, 12 GB RAM, Linux; Laptop Intel Core 2 Duo P9600@2.53 GHz, 4 GB
RAM, Linux) with Firefox and Chrome browsers. The C++ simulated robot has the same web
interface but run in a different computer (Laptop Intel core 2 duo T7200@2 GHz, 2 GB RAM,
Linux). Finally, the Arduino system has no interface: direct sensor requests are conducted
through the USB connection from a testing program, also written in C++, that runs on a Desktop
PC Intel core i7 960@3.20 GHz, 12 MB RAM, Linux.

As we have already reported elsewhere [23], since our approach is aimed at not using any
knowledge about the plant that is producing the delays, its applicability cannot be demonstrated
analytically for every existing combination of network, computer hardware and software, but notice
that the components enumerated above are representative of a wide range of practical, non hard
real-time applications: concerning the network, some of our setups include a number of hops, since
they have been carried out from geographically distant places—including transatlantic submarine
Internet cables—while others have been performed just with one network segment in the system or
even a simple point to point connection; the hardware of the robots is obviously fixed, but both are
very different and in particular have different computing power, based on a microcontrollers, standard
laptops and mini-PCs; in addition we have used common robotic sensors, which include cameras to
justify the applicability of our approach to a wide diversity of scenarios, because they allow us to
largely vary the amount of data transmitted; finally, the software used in all the experiments is for
standard general-purpose machines (except for the Surveyor firmware and the Arduino board), and we
have no restriction in working with any reasonable number of applications, not related to our
experiments, while they were executed, including modules in charge of other tasks in the robot, office
software, Internet navigation in the case of the client controller (with different web browsers and
OSes), and other applications in the case of the web server.

Moreover, the state-of-the-art literature on networked telerobots shows that these components are
the most common in this kind of robots (see, for instance, [32,33]). In [34] you can consult a list of
usual telerobots and camera sensors. Regarding the communication links, [32] presents a survey of
wired and wireless connections (they refer to 2006, though the technologies presented are still valid).
In Table 2 we summarise two examples of this kind of robots and their components.

In stochastic systems like the ones described before, the total delays of the sensory loop
(i.e., network + robot + client and server software) may vary over time due to different causes:
transmissions from other sensors, network congestion, non-real-time operating systems in the loop,
unpredictable behaviour of the client and the robot software applications, etc. Note however that it is

Sensors 2014, 14 2313

unlikely that the delay produced when requesting data from a sensor depends on the values of previous
delays measured for the same sensor, provided both that the sensor is not requested again until the
previous requests end, and that the system has no explicit memory of these delays. Therefore, our
hypothesis is that the dependences appearing in a sequence of delays will be strongly determined by
changes in the underlying stochastic state of the components of the system, out of our reach.

Table 2. Two networked telerobots (one non-mobile and the other mobile) as examples of
the usual kind of components that are found in these systems.

Project
Physical

Structure
Sensors Communications Software Interface

The
Mercury
Project

IBM SR5427
robotic arm
by Sankyo

CCD Camera gray
192 × 165

Internet, Ethernet
card, serial line

Server A: Sun
SPARCServer 1000,

SunOS 5.3
Server C: PC,

MS-DOS

Camera image
X,Y,Z coordinates
Robot Movement

(low-level
commands)

Xavier

B24 mobile
base by Real

World
Interface

Bump panels
Wheel Encoders

24 sonar ring
30° fov laser

Color camera + pan-tilt
Speaker

Speech-to-text card

Wireless Ethernet
Thin-wire
Ethernet

Two PC computers
and a 486 laptop, all

of them running Linux
Sparc5 workstation

with Netscape
webserver

Camera image
Zoomable map

Robot Movement
(high-level
commands)

Figure 2 shows the sequences of total delays that we have measured in the sensory loop for each of
the scenarios defined in Table 1, versus the time when each delay value was measured; it is easy to
observe abrupt changes of regimes, outliers and bursts in those delay signals. Also, some of them
exhibit smooth changes in their average, i.e., their trends vary. In that figure we have drawn thick lines
for separating portions of the scenarios where we cannot detect visually relevant abrupt changes or
other non-linearities (i.e., these portions are near-stationary, also called “regimes”), and marked some
clear bursts. The boxplots of Figure 3 confirm the wide range of time delays measured and the
pronounced skewness of their marginal distributions.

As explained in the introduction, it is a suitable approximation to assume statistical independence of
sequential delay values in the stationary parts of the signal, which will allow us to apply the basic tools
of the next sections and, in general, work with marginal distributions as suitable models of the data. To
confirm this, we have analysed the correlation coefficients in the acquired data: the delays would be
dependent if the autocorrelogram function (ACF) goes above the corresponding confidence limits;
otherwise, our independence hypothesis cannot be rejected [35]. Figure 4 shows the ACFs of the
scenarios, where it is clear the strong dependence of many of them when non-stationarity is not
detected and handled, and also the ACF of the visually purged scenarios (eliminating the visually
detected bursts and regimes marked in Figure 2). We can see how the ACF stays closer to zero in the
latter, and it remains below the confidence limits in most cases. This supports our assumption of
considering iid sequences of delays (independent and identically distributed) as long as they are
separated in regimes and we can also detect bursts and isolated outliers. Of course, smooth variations

Sensors 2014, 14 2314

on the underlying distribution—smooth trend changes—are still possible, but the results obtained with
our abrupt detection method also applies in many cases that exhibit such trending.

Figure 2. Real delays, in milliseconds, gathered from the sensory loop of the scenarios of
Table 1. They present bursts and regime changes (visually detected with black lines), and
in some cases smooth trend variations. The bottom x-axes show the absolute time when
each sample was gathered. Note the highly deterministic behavior of scenario #13.

0 2 4 6 8 10 12 14 16 18
1010

1020

1030

1040

1050

1060

1070

1080

1090

1100
Sc. #1

Gathering time (mins)

D
el

ay
 v

al
ue

 (m
se

cs
)

0 20 40 60 80 100 120

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5
x 10

4 Sc. #2

Gathering time (mins)

D
el

ay
 v

al
ue

 (m
se

cs
)

0 50 100 150 200 250 300 350 400
1.5

2

2.5

3

3.5

4
x 10

4

reg 1 reg 2 reg 3

Sc. #3

Gathering time (mins)

D
el

ay
 v

al
ue

 (m
se

cs
)

0 10 20 30 40 50 60

0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

reg 1 reg 2

Sc. #4

Gathering time (mins)

D
el

ay
 v

al
ue

 (m
se

cs
)

0 50 100 150 200 250 300 350 400 450
4

5

6

7

8

9

10
x 10

4

reg 1 reg 2 reg 3 reg 4

Sc. #5

Gathering time (mins)

D
el

ay
 v

al
ue

 (m
se

cs
)

0 2 4 6 8 10 12 14

1000

1500

2000

2500

3000

3500

4000
Sc. #6

Gathering time (mins)

D
el

ay
 v

al
ue

 (m
se

cs
)

Sensors 2014, 14 2315

Figure 2. Cont.

0 2 4 6 8 10 12 14 16 18 20
1500

2000

2500

3000

3500

4000

4500

5000
Sc. #7

Gathering time (mins)

D
el

ay
 v

al
ue

 (
m

se
cs

)

0 5 10 15 20 25 30 35 40 45

1000

2000

3000

4000

5000

6000

7000

8000
Sc. #8

Gathering time (mins)

D
el

ay
 v

al
ue

 (m
se

cs
)

0 5 10 15 20
200

400

600

800

1000

1200

1400

1600

1800

2000
Sc. #9

Gathering time (mins)

D
el

ay
 v

al
ue

 (m
se

cs
)

0 1 2 3 4 5 6

0

500

1000

1500

2000

2500

3000

3500
Sc. #10

Gathering time (mins)

D
el

ay
 v

al
ue

 (m
se

cs
)

0 1 2 3 4 5 6 7
0

500

1000

1500

2000

2500
Sc. #11

Gathering time (mins)

D
el

ay
 v

al
ue

 (m
se

cs
)

0 0.5 1 1.5 2 2.5

100

150

200

250

300

350

400

450

500

550
Sc. #12

Gathering time (mins)

D
el

ay
 v

al
ue

 (m
se

cs
)

0 1 2 3 4 5 6 7 8 9
475

480

485

490

495

500

505
Sc. #13 (Arduino)

Gathering time (mins)

D
el

ay
 v

al
ue

 (m
se

cs
)

0 0.02 0.04 0.06 0.08 0.1 0.12

0

10

20

30

40

50

60

70

80

90
Sc. #14

Gathering time (mins)

D
el

ay
 v

al
ue

 (m
se

cs
)

Sensors 2014, 14 2316

Figure 2. Cont.

0 5 10 15 20 25 30
1450

1500

1550

1600

1650

1700

1750

1800

1850

1900
Sc. #15

Gathering time (mins)

D
el

ay
 v

al
ue

 (m
se

cs
)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

10

20

30

40

50

60

70

80

90
Sc. #16

Gathering time (mins)

D
el

ay
 v

al
ue

 (m
se

cs
)

0 5 10 15 20 25
1350

1400

1450

1500

1550

1600

1650
Sc. #17

Gathering time (mins)

D
el

ay
 v

al
ue

 (m
se

cs
)

0 1 2 3 4 5 6 7

400

500

600

700

800

900

1000

1100

1200

1300

1400
Sc. #18

Gathering time (mins)

D
el

ay
 v

al
ue

 (m
se

cs
)

Figure 3. Boxplots of the scenarios of Figure 2. The y-axis is shown in logarithmic scale to
appreciate better the amount of delay values (red markers) that are above the principal
quartiles (blue boxes), which demonstrates the skewness of the marginal distributions.

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18

10
1

10
2

10
3

10
4

10
5

D
el

ay
 v

al
ue

s
(m

se
cs

.,
 lo

g
sc

al
e)

Scenario

Boxplots of scenarios

For this article, we have classified the scenarios of Table 1 into three different categories,
depending on the kind and combination of non-linearities that can be observed in Figure 2. This
classification is subjective and a priori, but it is interesting because it reflects some important features
of the signal. We have defined, by simple visual inspection of the data, three classes:

Sensors 2014, 14 2317

● Some of the scenarios do not exhibit clear abrupt changes, but do show a smooth fluctuating
trend instead. We set these as class A (scenarios #1, #9, #3reg1—corresponding to the left part
of scenario #3, Figure 2, which we have visually split into two regimes #3Reg1 and #3Reg2—,
#10, #12, #15, #16, #17).

● Another broad group of scenarios do not show any continuous, smooth changes in their trend,
and may or not have abrupt changes of regimes or bursts. They are class B, which can be further
sub-divided into sub-class B1, on the one hand, for the scenarios that do not have those abrupt
changes or that have only one dominant regime in the signal (scenarios #2 and #18), and
sub-class B2, on the other hand, for scenarios #3reg2, #4, #5, #6 and #7.

● Finally, we have consider a special class C for scenarios that have neither abrupt changes of
regime or bursts nor relevant fluctuation of their trends—thus, in principle they could be in class
B—but that present outliers that are much smaller than the majority of its sequence of delays,
something that does not occur in other classes and that we believe can have consequences in its
modeling with many of the distributions explained in Section 3.1—due to the fact that their
histograms do not follow the typical shape of a long-tailed distribution on its left-side portion.
Scenarios #8, #11, #13 and #14 can be assigned to this class.

Figure 4. Autocorrelograms of the original scenarios of Figure 2 and of the visually purged
scenarios once they are divided into the visual regimes marked there. Observe that in the
cases when some lags go above/below the confidence limits, they do not exceed the 5% of
the total count of lags (except for scenario #13).

0 5 10 15 20
-0.2

0

0.2

0.4

0.6

0.8

1

1.2
Sc. #1

Lags

A
ut

oc
or

re
la

tio
n

0 5 10 15 20

-0.5

0

0.5

1

1.5

2

2.5

3

Cleaned scenario

Scenario #2

Sc. #2

Lags

A
ut

oc
or

re
la

tio
n

0 5 10 15 20
-1

0

1

2

3

4

5

Cleaned regime 1

Cleaned regime 2

Cleaned regime 3

Scenario #3

Sc. #3

Lags

A
ut

oc
or

re
la

tio
n

0 5 10 15 20

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Cleaned regime 1

Cleaned regime 2

Scenario #4

Sc. #4

Lags

A
ut

oc
or

re
la

tio
n

Sensors 2014, 14 2318

Figure 4. Cont.

0 5 10 15 20
-1

0

1

2

3

4

5

6

Cleaned regime 1

Cleaned regime 2

Cleaned regime 3

Cleaned regime 4

Scenario #5

Sc. #5

Lags

A
ut

oc
or

re
la

tio
n

0 5 10 15 20

-0.5

0

0.5

1

1.5

2

2.5

3

Cleaned scenario

Scenario #6

Sc. #6

Lags

A
ut

oc
or

re
la

tio
n

0 5 10 15 20
-0.2

0

0.2

0.4

0.6

0.8

1

1.2
Sc. #7

Lags

A
ut

oc
or

re
la

tio
n

0 5 10 15 20

-0.5

0

0.5

1

1.5

2

2.5

3

Cleaned scenario

Scenario #8

Sc. #8

Lags

A
ut

oc
or

re
la

tio
n

0 5 10 15 20
-0.2

0

0.2

0.4

0.6

0.8

1

1.2
Sc. #9

Lags

A
ut

oc
or

re
la

tio
n

0 5 10 15 20

-0.5

0

0.5

1

1.5

2

2.5

3

Cleaned scenario

Scenario #10

Sc. #10

Lags

A
ut

oc
or

re
la

tio
n

0 5 10 15 20
-0.5

0

0.5

1

1.5

2

2.5

3

Cleaned scenario

Scenario #11

Sc. #11

Lags

A
ut

oc
or

re
la

tio
n

0 5 10 15 20

-0.5

0

0.5

1

1.5

2

2.5

3

Cleaned scenario

Scenario #12

Sc. #12

Lags

A
ut

oc
or

re
la

tio
n

Sensors 2014, 14 2319

Figure 4. Cont.

0 5 10 15 20
-0.5

0

0.5

1

1.5

2

2.5

3

Cleaned scenario

Scenario #13

Sc. #13 (Arduino)

Lags

A
ut

oc
or

re
la

tio
n

0 5 10 15 20

-0.2

0

0.2

0.4

0.6

0.8

1

1.2
Sc. #14

Lags

A
ut

oc
or

re
la

tio
n

0 5 10 15 20
-0.2

0

0.2

0.4

0.6

0.8

1

1.2
Sc. #15

Lags

A
ut

oc
or

re
la

tio
n

0 5 10 15 20

-0.5

0

0.5

1

1.5

2

2.5

3

Cleaned scenario

Scenario #16

Sc. #16

Lags

A
ut

oc
or

re
la

tio
n

0 5 10 15 20
-0.2

0

0.2

0.4

0.6

0.8

1

1.2
Sc. #17

Lags

A
ut

oc
or

re
la

tio
n

0 5 10 15 20

-0.2

0

0.2

0.4

0.6

0.8

1

1.2
Sc. #18

Lags

A
ut

oc
or

re
la

tio
n

One purpose of this preliminary visual classification is to illustrate better (i.e., more intuitively)
further experimental results. In principle, those results should go as follows: class B1 should produce
good models due to its lack of abrupt changes and trend variations, and the same should occur for class
B2 as long as abrupt changes are detected, since that can be enough to reduce the effects of the trends;
class A is in a similar situation as B2: it can produce good models as long as the detection method
reduces the mentioned effects of the changing trends; finally, it is not clear how class C will be
modeled by our approach, since in principle it should have good models for its lack of abrupt changes
and trends, but the presence of the special outlier makes that uncertain.

Sensors 2014, 14 2320

3. Modeling Unprocessed Delays

In this section we present how the original scenarios, without filtering out their non-linearities,
fit directly with parametrical, non-parametrical and mixed marginal distribution models, which is
assessed by two goodness-of-fit tests. This illustrates the basic methods employed (summarised in
Section 3.1) and states their limitations in that initial situation. After showing these modeling results in
Section 3.2, Section 3.3 is devoted to improve them—still without filtering the data—through a simple
splitting of each delay into three different additive parts that correspond to the three general
components that constitute our networked telerobot: the delay in the client side, in the network, and in
the server (robot). We analyse whether that splitting, which involves a negligible overhead in the
algorithms and in the modifications required on the system, leads to better results.

3.1. General Settings

Our main analysis procedure has two steps: (i) a fitting of a certain theoretical marginal model with
a large enough set of delays selected from the real scenario; and (ii) a hypothesis test where the rest of
the delays of the scenario are used for assessing the suitability of that fitting. We have used even index
delay values from each original sample for the fitting step, while odd index values have been selected
for the statistical assessment of the goodness of the model (hypothesis testing). This is to preserve as
best as possible the same autocorrelations in the temporal sequence of the signal in both steps. Also,
using this division we decouple fitting from hypothesis testing, avoiding the reduction in degrees of
freedom and allowing us to use tables that exist for some of the statistical tests [36].

For modeling the marginal stochastic behaviour of the sequences of delays we have chosen both
parametrical (listed in Table 3) and non-parametrical probability density functions (pdfs). We have not
included symmetrical distributions like the normal (proposed in some works, such as [14,37]) because
of the pronounced skewness of our scenarios. The models we have selected reflect some insights about
the characteristics observed in the real data, namely:

● When the system has very short delays—for example when the sensors send few data, as it is
the case with the typical range sensors or the odometry of a mobile robot, or when the
communications and/or software run really fast—the shape of the statistical distribution of the
delays is very close to an exponential [38]. Actually, exponential distributions are used for
modeling inter-arrival times in many situations [39]. In order to make this model more flexible
we have also included in our analyses the erlang distribution, which can explain data coming
from a sum of k independent exponentially distributed components.

● In the networking literature, long-tailed and heavy-tailed distributions are often assumed for the
transmission delays in the network when the delays are not so short. For instance, lognormal
distributions have been proposed elsewhere [40]. To our knowledge there is no report in the
literature showing that the total delay (i.e., network + client + server) supports this model, but
our final results corroborate its suitability for more scenarios than other models; furthermore,
when the three additive components of the total delay are split (Section 3.3), or when we use
our change detection method (Section 4.2), the lognormal becomes the parametrical model
of preference.

Sensors 2014, 14 2321

● In order to increase the feasibility of the previous mentioned models we have also tested the
Weibull distribution, which is a generalization of the exponential. For the same reasons we have
included the gamma distribution, which generalizes the erlang and has been proposed for
modeling the round trip time of wireless network transmissions [17].

● Non-parametrical models allow for greater flexibility in their shapes than parametrical ones,
which has pros and cons: they can fit better more complex behaviours, such as the ones in
unprocessed scenarios, but they are more likely to model the variations of a particular sample
rather than the underlying stochastic process of the whole signal (i.e., overfitting), being poor
models when new samples are gathered. We have included two non-parametrical models in this
work: one based on a Gaussian kernel [41], able to model signals with more than one mode
(which can be useful for sequences of delays that have more than one regime), and a spline
distribution consisting of a cubic polynomial sequence that interpolates a set of control
points [42]. The latter is more likely to suffer from overfitting, since it imposes the least rigidity
on the data.

● Finally, we have also included in our analyses a hybrid model that draws advantages from both
parametrical and non-parametrical representations: a sum or mixture of gaussians (SoG), which
is less likely to suffer from overfitting than the spline and is more rigid than the kernel. This
model consists of a sum of a given, fixed number of Gaussians (this is different from the
Gaussian kernel model, which can have an unlimited number of kernels). We have chosen
specifically four Gaussian modes for this SoG, which has been deduced visually from the
multimodal behaviours of Figure 2. Its parameters have to be estimated with a special trust
region non-linear optimization algorithm, which is implemented by the Curve Fitting Tool of
Matlab [43].

Table 3. Mathematical forms of the parametrical pdfs used in our characterization. All of
them are considered three-parametrical, being γ the offset, i.e., the lower bound for
the delays.

pdf Constraints
()(1)()(; , ,)

(1)!

xxErlang x e
γα

β
α

γα β λ
β α

− −−−
=

−
 , , , , , , 0x xα β γ α β γ∈ >

()(1)()(; , ,)
()

xxGamma x e
γα

β
α

γα β λ
β α

− −−−
=

Γ
 , , , , , , 0x xα β γ α β γ∈ >

2

2

1 (ln())(; , ,)
2() 2

xLognormal x e
x

γ µµ σ γ
σγ σ π

− − −
=

−
 2, , 0xµ γ σ∈ ≥

1
(() /)(; , ,)

k
k

xk xWeibull x k e γ λγλ γ
λ λ

−
− −− =

 , , , 0k xλ γ ≥

()(; ,) xExponential x e λ γλ γ λ − −= , , 0xλ γ ≥

For finding the best fitting for any of these models, a histogram of the data is constructed first with
2n2/5 cells, where n is the fitting sample size. We use then maximum likelihood estimation (MLE) for
each distribution (or the trust algorithm in the case of the SoG). After this fitting, in order to study the
goodness-of-fit, we have employed both the Chi-Squared (χ2) and the Kolmogorov-Smirnov (K-S)

Sensors 2014, 14 2322

significance tests with 0.05 of significance. As it will be shown further on, the former gives worse
results in general, particularly due to its higher sensitivity to shorter samples (something that is likely
to occur when detecting abrupt changes and separating the sequence of delays into segments, as it is
shown in Section 4.2).

3.2. Results for Unprocessed Delays

After running the significance tests, we see in Table 4 that, as expected from the multimodal nature
of most scenarios, only a few of them can be explained by parametrical models: #3, #2 and #18
(corresponding to the B class and to a percentage of all delay values in all the scenarios below 12%).
The rest of the scenarios do not support the null hypothesis. In the case of non-parametrical models,
kernel and spline provide the best results, with above 40% of delay values explained. Non-rejected
scenarios are displayed in Figure 5 for illustrative purposes. These results show that, for a parametrical
choice, the lognormal or erlang distributions could be preferred when we are not able to detect outliers,
bursts and regimes, but these are not good enough and might be applicable to very few scenarios.
For a non-parametrical option, the kernel distribution should be the best election. In general
non-parametrical models are able to explain scenarios from all classes (A, B, C), given their closest
fitting to the particular data in the sample (which leads, on the other hand, to the previously mentioned
problem of overfitting). The SoG model obtains worse results than the kernel due to its restriction in
the number of modes, while the spline is also worse than the kernel due to its greater overfitting, that
produces very good models of the data used for fitting but not in its goodness-of-fit with the delays
reserved for hypothesis testing.

Table 4. Non-rejected hypotheses for each unprocessed scenario, indicating which class it
belongs to and the percentage of non-rejected delay values (in bold), that is, the proportion
of delays explained by that model with respect to all delay values of all scenarios tested.
This percentage is calculated independently of the length of each scenario for a
fairer comparison.

Exponent

ial

(p-Value)

Erlang

(p-Value)

Gamma

(p-Value)

Lognormal

(p-Value)

Weibull

(p-Value)

SoG

(p-Value)

Kernel

(p-Value)

Spline

(p-Value)

χ2 - - - - - -

#4B2(0.14)

#7B2(0.51)

#8C(0.16)

16.7%

-

KS -

#3A/B2(0.03)

#18B1(0.06)

11.1%

#18B1(0.08)

5.6%

#2B1(0.07)

#18B1(0.03)

11.1%

#3A/B2(0.03)

5.6%

#2B1(0.13)

#3A/B2(0.05)

#5B2(0.04)

#8C(0.39)

#9A(0.12)

27.8%

#2B1(0.30)

#4B2(0.44)

#5B2(0.21)

#7B2(0.05)

#8C(0.50)

#9A(0.04)

#17A(0.07)

#18B1(0.40)

44.4%

#3A/B2(0.28)

#9A(0.25)

#15A(0.03)

#17A(0.18)

#18B1(0.52)

27.8%

Sensors 2014, 14 2323

Figure 5. Illustrative histograms and fittings of the models that do not reject one or both
hypothesis tests according to Table 4.

0.5 1 1.5
x 10 4

0
50

100
150
200
250
300
350
400

Sc. #2 with lognormal/KS

Delays (msecs)

Fr
eq

ue
nc

y

 Scenario histogram
Model predicted histogram
Model pdf (scaled)

0.5 1 1.5
x 10 4

0
50

100
150
200
250
300
350
400
450

Sc. #2 with SoG/KS

Delays (msecs)

Fr
eq

ue
nc

y

 Scenario histogram
Model predicted histogram
Model pdf (scaled)

0.5 1 1.5
x 10 4

0
50

100
150
200
250
300
350
400

Sc. #2 with kernel/KS

Delays (msecs)

Fr
eq

ue
nc

y

 Scenario histogram
Model predicted histogram
Model pdf (scaled)

1.5 2 2.5 3 3.5 4
x 10 4

0
50

100
150
200
250
300
350

Sc. #3 with erlang/KS

Delays (msecs)

Fr
eq

ue
nc

y

 Scenario histogram
Model predicted histogram
Model pdf (scaled)

1.5 2 2.5 3 3.5 4
x 10 4

0
50

100
150
200
250
300
350

Sc. #3 with weibull/KS

Delays (msecs)

Fr
eq

ue
nc

y

 Scenario histogram
Model predicted histogram
Model pdf (scaled)

1.5 2 2.5 3 3.5 4
x 10 4

0
50

100
150
200
250
300
350
400
450

Sc. #3 with SoG/KS

Delays (msecs)

Fr
eq

ue
nc

y

 Scenario histogram
Model predicted histogram
Model pdf (scaled)

1.5 2 2.5 3 3.5 4
x 10 4

0

100

200

300

400

500

600
Sc. #3 with spline/KS

Delays (msecs)

Fr
eq

ue
nc

y

 Scenario histogram
Model predicted histogram
Model pdf (scaled)

0 0.5 1 1.5 2 2.5 3 3.5 4
x 10 4

0
50

100
150
200
250
300
350
400
450

Sc. #4 with kernel/CHI

Delays (msecs)

Fr
eq

ue
nc

y

 Scenario histogram
Model predicted histogram
Model pdf (scaled)

Sensors 2014, 14 2324

Figure 5. Cont.

0 0.5 1 1.5 2 2.5 3 3.5 4
x 10 4

0
50

100
150
200
250
300
350
400
450

Sc. #4 with kernel/KS

Delays (msecs)

Fr
eq

ue
nc

y

 Scenario histogram
Model predicted histogram
Model pdf (scaled)

3 4 5 6 7 8 9 10
x 10 4

0
20
40
60
80

100
120
140

Sc. #5 with SoG/KS

Delays (msecs)

Fr
eq

ue
nc

y

 Scenario histogram
Model predicted hist.
Model pdf (scaled)

3 4 5 6 7 8 9 10
x 10 4

0

50

100

150
Sc. #5 with kernel/KS

Delays (msecs)

Fr
eq

ue
nc

y

 Scenario histogram
Model predicted hist.
Model pdf (scaled)

1000 1500 2000 2500 3000 3500 4000 4500 5000 0
100
200
300
400
500
600
700

Sc. #7 with kernel/CHI

Delays (msecs)

Fr
eq

ue
nc

y

 Scenario histogram
Model predicted histogram
Model pdf (scaled)

1000 1500 2000 2500 3000 3500 4000 4500 5000 0
100
200
300
400
500
600
700

Sc. #7 with kernel/KS

Delays (msecs)

Fr
eq

ue
nc

y

 Scenario histogram
Model predicted histogram
Model pdf (scaled)

1000 2000 3000 4000 5000 6000 7000 8000 9000 0
50

100
150
200
250
300
350
400
450

Sc. #8 with SoG/KS

Delays (msecs)

Fr
eq

ue
nc

y

 Scenario histogram
Model predicted hist.
Model pdf (scaled)

1000 2000 3000 4000 5000 6000 7000 8000 9000 0
50

100
150
200
250
300
350
400
450

Sc. #8 with kernel/CHI

Delays (msecs)

Fr
eq

ue
nc

y

 Scenario histogram
Model predicted hist.
Model pdf (scaled)

1000 2000 3000 4000 5000 6000 7000 8000 9000 0
50

100
150
200
250
300
350
400
450

Sc. #8 with kernel/KS

Delays (msecs)

Fr
eq

ue
nc

y

 Scenario histogram
Model predicted hist.
Model pdf (scaled)

Sensors 2014, 14 2325

Figure 5. Cont.

200 400 600 800 1000 1200 1400 1600 1800 2000 0

50

100

150

200

250
Sc. #9 with SoG/KS

Delays (msecs)

Fr
eq

ue
nc

y

 Scenario histogram
Model predicted hist.
Model pdf (scaled)

200 400 600 800 1000 1200 1400 1600 1800 2000 0

50

100

150

200

250
Sc. #9 with kernel/KS

Delays (msecs)

Fr
eq

ue
nc

y

 Scenario histogram
Model predicted hist.
Model pdf (scaled)

200 400 600 800 1000 1200 1400 1600 1800 2000 0

50

100

150

200

250
Sc. #9 with spline/KS

Delays (msecs)

Fr
eq

ue
nc

y

 Scenario histogram
Model predicted hist.
Model pdf (scaled)

1450 1500 1550 1600 1650 1700 1750 1800 1850 1900 0
20
40
60
80

100
120
140
160
180
200 Sc. #15 with spline/KS

Delays (msecs)

Fr
eq

ue
nc

y

 Scenario histogram
Model predicted hist.
Model pdf (scaled)

1350 1400 1450 1500 1550 1600 1650 0
20
40
60
80

100
120
140
160
180

Sc. #17 with kernel/KS

Delays (msecs)

Fr
eq

ue
nc

y

 Scenario histogram
Model predicted hist.
Model pdf (scaled)

1350 1400 1450 1500 1550 1600 1650 0
20
40
60
80

100
120
140
160
180

Sc. #17 with spline/KS

Delays (msecs)

Fr
eq

ue
nc

y

 Scenario histogram
Model predicted hist.
Model pdf (scaled)

400 600 800 1000 1200 1400 0
20
40
60
80

100
120
140
160
180

Sc. #18 with erlang/KS

Delays (msecs)

Fr
eq

ue
nc

y

 Scenario histogram
Model predicted histogram
Model pdf (scaled)

400 600 800 1000 1200 1400 0
20
40
60
80

100
120
140
160
180

Sc. #18 with gamma/KS

Delays (msecs)

Fr
eq

ue
nc

y

 Scenario histogram
Model predicted histogram
Model pdf (scaled)

Sensors 2014, 14 2326

Figure 5. Cont.

200 400 600 800 1000 1200 1400 0
20
40
60
80

100
120
140
160
180

Sc. #18 with lognormal/KS

Delays (msecs)

Fr
eq

ue
nc

y

 Scenario histogram
Model predicted hist.
Model pdf (scaled)

200 400 600 800 1000 1200 1400 0
20
40
60
80

100
120
140
160
180

Sc. #18 with kernel/KS

Delays (msecs)

Fr
eq

ue
nc

y

 Scenario histogram
Model predicted hist.
Model pdf (scaled)

200 400 600 800 1000 1200 1400 0
20
40
60
80

100
120
140
160
180

Sc. #18 with spline/KS

Delays (msecs)

Fr
eq

ue
nc

y

 Scenario histogram
Model predicted hist.
Model pdf (scaled)

In summary, the higher percentage of non-rejected samples of all scenarios (bold numbers in
Table 4) corresponds to a non-parametrical distribution, the kernel model, although with less than 50%
of the total delays that have been tested. This can be further improved without filtering non-linearities
in the sequence of delays, as it will be explained in the next section.

3.3. Results for Unprocessed Split Delays

To obtain better adjustments of the marginal models without detecting and processing bursts and
regimes yet, we can divide the complete timing behaviour of the sensory loop into three different terms
that are added to obtain the total delay: Server time, client time and network time. They can be
modeled separately and perhaps more accurately.

These split times can be measured without much intervention in many networked systems, just by
time-stamping at the client interface and at the server side the sensory data being transmitted, which
neither involves a significant overload nor requires the use of distributed clock synchronization
algorithms. However, this splitting is not always possible. There are a number of reasons for this:
(i) the server side might not allow us to time-stamp messages because it is a closed implementation;
(ii) if the format of the messages carrying the requested sensor data cannot be modified, they cannot
include the time-stamps; and (iii) the clock precision on the server side might not be good enough to
distinguish short server delays, which are really common—we cannot allow for zero delays in our
approach because of the impossibility of many distributions to explain their occurrence: lognormal,

Sensors 2014, 14 2327

weibull, erlang and gamma are limited to model strictly positive delays in most or all of their
parameter configurations.

Due to the previous situations, we have been able to collect split information only from scenarios
#4–#8, #13 and #18, summarising the results in Table 5. In general, parametric distributions do not fit
better when we split the delays, except for the lognormal distribution. However, when
non-parametrical distributions are set up as null hypotheses, the K-S test does not reject the null
hypothesis of kernel for 66.7% of the total of delays, which is a really good result. Thus, in situations
when we are not able to detect non-linearities, the kernel model should be the preferred approximation,
if augmented with this simple splitting of delays.

In Table 5 and Figure 6 it can be seen how the different parts of the delays can be more or less
predominant in the total time, and most of them can be modeled with our marginal approach. This
serves to demonstrate that in a networked telerobot, taking into account only the delay produced by the
network transmission of data (as many approaches in literature do) is not appropriate.

Table 5. Condensed comparative table of non-rejected scenarios for both unprocessed (U)
and split (S) scenarios, with parametrical and non-parametrical distributions (the unprocessed
part is the same as Table 4).

Exponential

(p-Value)

Erlang

(p-Value)

Gamma

(p-Value)

Lognormal

(p-Value)

Weibull

(p-Value)

SoG

(p-Value)

Kernel

(p-Value)

Spline

(p-Value)

χ2 (U) - - - - - -

#4B2(0.14)

#7B2(0.51)

#8C(0.16)

16.7%

-

KS

(U)
-

#3A/B2(0.03)

#18B1(0.06)

11.1%

#18B1(0.08)

5.6%

#2B1(0.07)

#18B1(0.03)

11.1%

#3A/B2(0.03)

5.6%

#2B1(0.13)

#3A/B2(0.05)

#5B2(0.04)

#8C(0.39)

#9A(0.12)

27.8%

#2B1(0.30)

#4B2(0.44)

#5B2(0.21)

#7B2(0.05)

#8C(0.50)

#9A(0.04)

#17A(0.07)

#18B1(0.40)

44.4%

#3A/B2(0.28)

#9A(0.25)

#15A(0.03)

#17A(0.18)

#18B1(0.52)

27.8%

χ2 (S) - - - - - -

#4srvB2(0.87)

#4netB2(0.47)

#4cliB2(0.06)

#6netB2(0.33)

#7srvB2(0.08)

#18cliB1(0.07)

28.6%

-

Sensors 2014, 14 2328

Table 5. Cont.

Exponential

(p-Value)

Erlang

(p-Value)

Gamma

(p-Value)

Lognormal

(p-Value)

Weibull

(p-Value)

SoG

(p-Value)

Kernel

(p-Value)

Spline

(p-Value)

KS

(S)
- -

#18netB1(0.05)

4.8%

#4netB2(0.04)

#5cliB2(0.03)

#18cliB1(0.06)

#18netB1(0.07)

19%

-

#4netB2(0.17)

#5srvB2(0.17)

#5netB2(0.31)

#18cliB1(0.05)

#18netB1(0.22)

23.8%

#4srvB2(0.23)

#4netB2(0.37)

#5srvB2(0.24)

#5netB2(0.12)

#5cliB2(0.80)

#6srvB2(0.07)

#6netB2(0.60)

#7srvB2(0.42)

#8srvC(0.48)

#8netC(0.17)

#8cliC(0.17)

#18cliB1(0.03)

#18netB1(0.50)

#18srvB1(0.24)

66.7%

#4cliB2(0.13)

#5srvB2(0.58)

#5cliB2(0.05)

#18cliB1(0.04)

#18netB1(0.59)

#18srvB1(0.73)

28.6%

Figure 6. Illustrative histograms and fittings for the scenarios that can be modeled
successfully after the splitting of delays (see Table 5).

-500 0 500 1000 1500 2000 2500 3000 3500 0

100

200

300

400

500

600
Sc. #4-srv kernel/CHI

Delays (msecs)

Fr
eq

ue
nc

y

 Scenario histogram
Model predicted hist.
Model pdf (scaled)

-500 0 500 1000 1500 2000 2500 3000 3500 0

100

200

300

400

500

600
Sc. #4-srv kernel/KS

Delays (msecs)

Fr
eq

ue
nc

y

Scenario histogram
Model predicted hist.
Model pdf (scaled)

-0.5 0 0.5 1 1.5 2 2.5 3
x 10 4

0
50

100
150
200
250
300
350
400
450

Sc. #4-net lognormal/KS

Delays (msecs)

Fr
eq

ue
nc

y

Scenario histogram
Model predicted hist.
Model pdf (scaled)

-0.5 0 0.5 1 1.5 2 2.5 3 3.5
x 10 4

0

100

200

300

400

500

600
Sc. #4-net SoG/KS

Delays (msecs)

Fr
eq

ue
nc

y

Scenario histogram
Model predicted hist.
Model pdf (scaled)

Sensors 2014, 14 2329

Figure 6. Cont.

-0.5 0 0.5 1 1.5 2 2.5 3 3.5
x 10 4

0
50

100
150
200
250
300
350
400
450

Sc. #4-net kernel/CHI

Delays (msecs)

Fr
eq

ue
nc

y

Scenario histogram
Model predicted hist.
Model pdf (scaled)

-0.5 0 0.5 1 1.5 2 2.5 3 3.5
x 10 4

0
50

100
150
200
250
300
350
400
450

Sc. #4-net kernel/KS

Delays (msecs)

Fr
eq

ue
nc

y

Scenario histogram
Model predicted hist.
Model pdf (scaled)

-50 0 50 100 150 200 0

50

100

150
Sc. #4-cli kernel/CHI

Delays (msecs)

Fr
eq

ue
nc

y

Scenario histogram
Model predicted hist.
Model pdf s(called)

-50 0 50 100 150 200 0

50

100

150
Sc. #4-cli spline/KS

Delays (msecs)

Fr
eq

ue
nc

y

 Scenario histogram
Model predicted hist.
Model pdf (scaled)

-500 0 500 1000 1500 2000 2500 3000 0

50

100

150

200

250

300
Sc. #5-srv SoG/KS

Delays (msecs)

Fr
eq

ue
nc

y

 Scenario histogram
Model predicted hist.
Model pdf (scaled)

-500 0 500 1000 1500 2000 2500 3000 0

50

100

150

200

250

300
Sc. #5-srv kernel/KS

Delays (msecs)

Fr
eq

ue
nc

y

 Scenario histogram
Model predicted hist.
Model pdf (scaled)

-500 0 500 1000 1500 2000 2500 3000 0

50

100

150

200

250

300
Sc. #5-srv spline/KS

Delays (msecs)

Fr
eq

ue
nc

y

 Scenario histogram
Model predicted hist.
Model pdf (scaled)

-1 0 1 2 3 4 5 6
x 10 4

0
20
40
60
80

100
120
140

Sc. #5-net SoG/KS

Delays (msecs)

Fr
eq

ue
nc

y

 Scenario histogram
Model predicted hist.
Model pdf (scaled)

Sensors 2014, 14 2330

Figure 6. Cont.

-1 0 1 2 3 4 5 6
x 10 4

0
20
40
60
80

100
120
140

Sc. #5-net kernel/KS

Delays (msecs)

Fr
eq

ue
nc

y

 Scenario histogram
Model predicted hist.
Model pdf (scaled)

-100 0 100 200 300 400 500 600 700 800 900 0

50

100

150

200

250
Sc. #5-cli lognormal/KS

Delays (msecs)

Fr
eq

ue
nc

y

 Scenario histogram
Model predicted hist.
Model pdf (scaled)

-100 0 100 200 300 400 500 600 700 800 900 0

50

100

150

200

250
Sc. #5-cli kernel/KS

Delays (msecs)

Fr
eq

ue
nc

y

Scenario histogram
Model predicted hist.
Model pdf (scaled)

-100 0 100 200 300 400 500 600 700 800 900 0

50

100

150

200

250

300
Sc. #5-cli spline/KS

Delays (msecs)

Fr
eq

ue
nc

y

Scenario histogram
Model predicted hist.
Model pdf (scaled)

-500 0 500 1000 1500 2000 2500 3000 0
100
200
300
400
500
600
700
800

Sc. #6-srv kernel/KS

Delays (msecs)

Fr
eq

ue
nc

y

 Scenario histogram
Model predicted histogram
Model pdf (scaled)

-100 0 100 200 300 400 500 600 700 0
100
200
300
400
500
600
700

Sc. #6-net kernel/CHI

Delays (msecs)

Fr
eq

ue
nc

y

 Scenario histogram
Model predicted histogram
Model pdf (scaled)

-100 0 100 200 300 400 500 600 700 0
100
200
300
400
500
600
700

Sc. #6-net kernel/KS

Delays (msecs)

Fr
eq

ue
nc

y

 Scenario histogram
Model predicted histogram
Model pdf (scaled)

-500 0 500 1000 1500 2000 2500 3000 3500 0
100
200
300
400
500
600
700

Sc. #7-srv kernel/CHI

Delays (msecs)

Fr
eq

ue
nc

y

 Scenario histogram
Model predicted histogram
Model pdf (scaled)

Sensors 2014, 14 2331

Figure 6. Cont.

-500 0 500 1000 1500 2000 2500 3000 3500 0
100
200
300
400
500
600
700

Sc. #7-srv kernel/KS

Delays (msecs)

Fr
eq

ue
nc

y

 Scenario histogram
Model predicted histogram
Model pdf (scaled)

-500 0 500 1000 1500 2000 2500 3000 3500 4000 0
50

100
150
200
250
300
350
400
450

Sc. #8-srv kernel/KS

Delays (msecs)

Fr
eq

ue
nc

y

 Scenario histogram
Model predicted hist.
Model pdf (scaled)

-1000 0 1000 2000 3000 4000 5000 0
100
200
300
400
500
600
700

Sc. #8-net kernel/KS

Delays (msecs)

Fr
eq

ue
nc

y

 Scenario histogram
Model predicted hist.
Model pdf (scaled)

-1000 0 1000 2000 3000 4000 5000 0
100
200
300
400
500
600
700

Sc. #8-cli kernel/KS

Delays (msecs)

Fr
eq

ue
nc

y

 Scenario histogram
Model predicted hist.
Model pdf (scaled)

42 44 46 48 50 52 54 56 58 60 0
10
20
30
40
50
60
70
80
90

100
 Sc. #18-srv kernel/KS

Delays (msecs)

Fr
eq

ue
nc

y

Scenario histogram
Model predicted hist.
Model pdf (scaled)

42 44 46 48 50 52 54 56 58 60 0
20
40
60
80

100
120
140
160
180

Sc. #18-srv with spline/KS

Delays (msecs)

Fr
eq

ue
nc

y

 Scenario histogram
Model predicted hist.
Model pdf (scaled)

300 400 500 600 700 800 900 1000 1100 1200 1300 0
20
40
60
80

100
120
140
160
180

Sc. #18-net gamma/KS

Delays (msecs)

Fr
eq

ue
nc

y

Scenario histogram
Model predicted hist.
Model pdf (scaled)

200 400 600 800 1000 1200 1400 0
20
40
60
80

100
120
140
160
180

Sc. #18-net lognormal/KS

Delays (msecs)

Fr
eq

ue
nc

y

Scenario histogram
Model predicted hist.
Model pdf (scaled)

Sensors 2014, 14 2332

Figure 6. Cont.

200 400 600 800 1000 1200 1400 0
20
40
60
80

100
120
140
160
180

Sc. #18-net SoG/KS

Delays (msecs)

Fr
eq

ue
nc

y

Scenario histogram
Model predicted hist.
Model pdf (scaled)

200 400 600 800 1000 1200 1400 0
20
40
60
80

100
120
140
160
180

Sc. #18-net kernel/KS

Delays (msecs)

Fr
eq

ue
nc

y

Scenario histogram
Model predicted hist.
Model pdf (scaled)

200 400 600 800 1000 1200 1400 0
20
40
60
80

100
120
140
160
180

Sc. #18-net spline/KS

Delays (msecs)

Fr
eq

ue
nc

y

Scenario histogram
Model predicted hist.
Model pdf (scaled)

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
x 10 4

0
20
40
60
80

100
120
140

Sc. #18-cli lognormal/KS

Delays (msecs)

Fr
eq

ue
nc

y

Scenario histogram
Model predicted hist.
Model pdf (scaled)

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
x 10 4

0
20
40
60
80

100
120
140

Sc. #18-cli SoG/KS

Delays (msecs)

Fr
eq

ue
nc

y

Scenario histogram
Model predicted hist.
Model pdf (scaled)

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
x 10 4

0
20
40
60
80

100
120
140

Sc. #18-cli kernel/CHI

Delays (msecs)

Fr
eq

ue
nc

y

Scenario histogram
Model predicted hist.
Model pdf (scaled)

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
x 10 4

0
20
40
60
80

100
120
140

Sc. #18-cli kernel/KS

Delays (msecs)

Fr
eq

ue
nc

y

Scenario histogram
Model predicted hist.
Model pdf (scaled)

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
x 10 4

0
20
40
60
80

100
120
140

Sc. #18-cli spline/KS

Delays (msecs)

Fr
eq

ue
nc

y

Scenario histogram
Model predicted hist.
Model pdf (scaled)

Sensors 2014, 14 2333

4. Processing Delays for the Detection of Regimes and Bursts

We have shown in Section 3 the great influence of the non-linearities of the delay signal, especially
abrupt changes, in the possibility of modeling these delays with both unimodal and multimodal
marginal pdfs, even when they are split into their most relevant additive components. We explore now
the effects of detecting and ruling out such abrupt characteristics. In Section 4.1 we explain a method
specifically designed for this work due to its accurateness/complexity trade-off, able to detect abrupt
changes in the signal and therefore separate the temporal sequence into parts that do not contain those
non-linearities. This method cannot guarantee, however, that the resulting segments pass the
hypothesis test, only that they should be separately modeled. Section 4.2 presents its results when
applied to the delays of our scenarios. Section 4.3 complements the change detection analysis through
the use of a previously presented algorithm for segmentation of the signal [23] that, on the one hand, is
much more involved computationally (thus, without the inclusion of especial techniques for improving
computational efficiency it does not satisfies our requirement for low computational cost), but, on the
other hand, tries to find only segments of the signal that can be explained by the model at hand. The
results of this method are gathered in a table that serves as a near-optimal segmentation of the signal
for the goal of modeling it with each probability distribution. Finally, Section 4.4 completes our
analyses through the use of another two statistic tools, Q-Q graphs and probability difference graphs,
which serve to draw additional conclusions on our modeling problem.

4.1. Efficient Abrupt Change Detection

Our approach to detect abrupt changes in the signal efficiently is based on identifying outliers.
Although the precise definition of outlier is quite subjective, in our context it will be any value that is
not likely to be produced by the model we have constructed up to that time: in that way we will use
sequences of consecutive outliers to define abrupt changes in the underlying distribution, and thus, to
separate near-stationary sequences of delays.

The literature in outlier detection is extensive (see for example [44,45]). In principle we are interested
in detecting them when using both parametrical and non-parametrical models. Some outlier detection
approaches could be used for that because they do not impose any particular probabilistic model for
the data, for instance those that are based on clustering techniques [46,47], i.e., on considering outliers
those values that form small clusters separated from the main data; other approaches search for values
that may be consistent with the global set of data but are not with their local neighborhoods,
called spatial outliers [48]. Unfortunately, these distribution-independent techniques are usually
computationally involved. Some of them are based on local distance measures, and usually designed to
manage high-dimensional spaces efficiently in data-mining [49–51]. This presents another problem:
they require large sets of data—long sequences of delays—which is not typically possible in our
framework and the kind of scenarios found in this work. In summary, due to the lack of existing
methods that are both efficient and able to deal with small samples in a non-parametrical setting, we
have focused our analysis firstly on providing a solution for parametrical models only, and secondly,
based on the obtained results, on deciding whether further research on non-parametrical approaches is

Sensors 2014, 14 2334

worth. As explained later on, we report here good results with a basic method that works only with
parametrical models, thus we have left for future work the study of non-parametrical ones.

The method we propose for detecting abrupt changes with low computational cost is based on the
basic probability theory idea of calculating the probability that a value has not been drawn from a
known model, or, in our case, that it lies in an “outlier-region” defined to be in the right-tail of the
current model (by a given significance level α). The adaptation of this basic confidence interval
approach to our parametrical models has provided an efficient change detection procedure that has
good results even with short sequences of delays. It is described in the following.

We gather first a sequence of 40 delay values (called blind period) to make an initial, minimally
suitable model of the data, using 20 delays for the fitting and 20 for the test. From that point on, each
new delay value is considered as an outlier or not depending on the following. A fitting of the collected
delays with the chosen parametrical distribution is found out, as before, with the MLE. This estimation
also provides 95% confidence intervals for the parameters of the model (this is the reason why our
method only works with parametrical distributions). The range of delay values that determines if the
new delay is classified as an outlier or not is delimited then by the estimated offset of the distribution
on the left and a bound xα on the right. This xα, in turn, is calculated by finding the x-axis value of the
chosen distribution that satisfies the predefined significance level:

1 ()acdf x x α− = = (1)

We solve the above equation for xα, thus xα becomes a function of α and of the estimated parameters
of the distribution, which have several possible values if we use the 95% confidence interval obtained
in their estimation. In order to get a value of xα that produces as much outlier detection as possible (i.e.,
minimizes xα), we have to select values for that available set of distribution parameters. The ones that
accomplish this can be picked up by studying analytically the minimum of the equation for xα, as it is
summarised in Table 6: there we have shown bi-parametrical distributions, because the fitting process
estimates firstly the offset (without 95% confidence interval) and, through a bi-parametrical fitting tool
of Matlab, the rest of the parameters and their 95% confidence intervals. Exceptionally, for the case of
the lognormal distribution, we also have the asymptotic variance of the offset [52], and thus, a 95%
confidence interval for that parameter too.

Table 6. Confidence interval parameter selection that minimizes xα depending on each
parametrical distribution assumption.

Distribution
(bi-parametrical; the
offset has no 95% c.i.)

Parameters provided
by estimation, with

95% c.i.
xα

Confidence interval
parameter selection *

that minimizes xα
(; ,)Erlang x α β aL, aU, bL, bU 1 ((1)(1)!/ (),)incb a a aγ α− − − Γ aL, bL
(; ,)Gamma x α β aL, aU, bL, bU 1 ((1)(1)!/ (),)inc k k kµγ α− − − Γ aL, bL

(; ,)Lognormal x µ σ µL, µU, σL, σU 2eµ βσ−
0, ,
0, ,

L L

L L

if
β µ σ
β µ σ
≤

 >

(; ,)Weibull x k λ kL, kU, λL, λU 1/(ln ()) kλ α− λL, kU
(;)Exponential x λ λL, λU ln()λ α− λL

* (2(1))erfcinvβ α= − , where erfcinv is the inverse of the complementary error function. 1
incγ − is the gamma

incomplete inverse function.

Sensors 2014, 14 2335

If the new delay value lies outside the calculated range, it should be treated as an outlier.
If this situation persists for five to forty consecutive outliers, all of them are discarded from the
scenario as a burst. Forty consecutive outliers indicate a change of regime. If that occurs, these forty
delays will be included in the beginning of the new regime, i.e., in a new blind period. Finally,
isolated—singleton—outliers will be treated as part of the current distribution, but if the consecutive
number of outliers is higher than one and less than five, these outliers will be discarded.

4.2. Results for Processed Delays

In Table 7 we show how the confidence interval method explained before produces better fits than
the splitting of delays (recall Table 5) in all parametrical models. This method, with these parametrical
distributions, explains well classes A and B (it does not reject the null hypothesis of the tests),
especially when we use the lognormal, including the mostly deterministic scenario #13 corresponding
to the Arduino system. As it already happened with split data, erlang suffers both from split and
change detection, which, along with their intrinsic reduction in the size of the sample, are procedures
that call for more flexible models (remember that one of the parameters of the erlang is forced to be a
natural number; the gamma, which is a generalization of the erlang, does not have that limitation).
Notice that our previous categorisation {A, B, C} is reflected in these final results: scenarios of class B
(they have no trend) are all explained by the methods, even with models that have low rate of success
with the data of other classes, while classes A and C are more problematic (but the lognormal is able to
model many scenarios from class A, whose trends are successfully reduced by the confidence interval
method). It is observed again that the χ2 test provides less model adjustments than the K-S due to its
sensitivity to the reduction of sample size produced by both splitting and change detection methods.

Table 7. Comparative table of non-rejected scenarios for unprocessed (U), split (S) and
confidence interval method (C) with parametrical distributions (unprocessed and split
values are copied from tables 4 and 5 respectively).

Exponential

(p-Value)
Erlang

(p-Value)
Gamma

(p-Value)
Lognormal
(p-Value)

Weibull
(p-Value)

χ2
(U)

- - - - -

KS
(U)

-
#3A/B2(0.03)
#18B1(0.06)

11.1%

#18B1(0.08)
5.6%

#2B1(0.07)
#18B1(0.03)

11.1%

#3A/B2(0.03)
5.6%

χ2
(S)

- - - - -

KS
(S)

- -
#18netB1(0.05)

4.8%

#4netB2(0.04)
#5cliB2(0.03)

#18cliB1(0.06)
#18netB1(0.07)

19%

-

χ2
(C)

- - -
#17A(0.17)

0.7%
-

Sensors 2014, 14 2336

Table 7. Cont.

Exponential

(p-value)
Erlang

(p-value)
Gamma
(p-value)

Lognormal
(p-value)

Weibull
(p-value)

KS
(C)

#4B2(0.19)
#5B2(0.47)

1.4%

#5B2(2;0.09)
5.1%

#4B2(0.45)
#5B2(2;0.32)
#18B1(0.15)

10.7%

#1A(14;0.27)
#3A/B2(2;0.35)

#4B2(2;0.30)
#5B2(2;0.44)
#7B2(4;0.28)

#8C(0.57)
#9A(3;0.30)
#13C(4;0.08)
#16B2(0.10)

#17A(14;0.44)
#18B1(9;0.50)

23.5%

#5B2(0.42)
#17A(0.17)

6%

Figure 7 illustrates the results for the scenarios that have been modeled successfully. On the top plot
of each figure we have drawn the models found for the different segments (regimes) that have been
separated by the confidence interval method. Bursts and outliers are marked with black asterisks.

Figure 7. Plots of the detection of outliers, bursts and regime changes by our method of
confidence intervals (CI) with different parametrical distributions. Black asterisks
correspond to the detected bursts and outliers. All the models successfully found for the
regimes detected by the algorithm (red lines over the green-marked segments) are depicted
with the same aspect ratio in order to provide a fair comparison of their shapes. The delays
below them have been stretched accordingly.

r. 1 r. 2 r. 3 r. 4 r. 5 r. 6 r. 7 r. 8 r. 9 r. 10 r. 11 r. 12 r. 13 r. 14 r. 15 r. 16 r. 17 r. 18

CI-method result on Sc. #1 with lognormal/KS

r. 1 r. 2 r. 3

CI-method result on Sc. #3 with lognormal/KS

Sensors 2014, 14 2337

Figure 7. Cont.

r. 1 r. 2

CI-method result on Sc. #4 with exponential/KS

r. 1 r. 2

CI-method result on Sc. #4 with gamma/KS

r. 1 r. 2

CI-method result on Sc. #4 with lognormal/KS

r. 1 r. 2

CI-method result on Sc. #5 with exponential/KS

Sensors 2014, 14 2338

Figure 7. Cont.

r. 1 r. 2

CI-method result on Sc. #5 with erlang/KS

r. 1 r. 2

CI-method result on Sc. #5 with gamma/KS

r. 1 r. 2

CI-method result on Sc. #5 with lognormal/KS

r. 1 r. 2

CI-method result on Sc. #5 with weibull/KS

Sensors 2014, 14 2339

Figure 7. Cont.

r. 1 r. 2 r. 3 r. 4 r. 5 r. 6 r. 7 r. 8

CI-method result on Sc. #7 with lognormal/KS

r. 1 r. 2 r. 3 r. 4 r. 5 r. 6 r. 7

CI-method result on Sc. #8 with lognormal/KS

r. 1 r. 2 r. 3 r. 4 r. 5

CI-method result on Sc. #9 with lognormal/KS

r. 1 r. 2 r. 3 r. 4 r. 5 r. 6 r. 7 r. 8 r. 9 r. 10 r. 11 r. 12 r. 13 r. 14 r. 15 r. 16 r. 17 r. 18 r. 19 r. 20 r. 21 r. 22

CI-method result on Sc. #13 with lognormal/KS

r. 1 r. 2 r. 3 r. 4

CI-method result on Sc. #16 with lognormal/KS

Sensors 2014, 14 2340

Figure 7. Cont.

r. 1 r. 2 r. 3 r. 4 r. 5 r. 6 r. 7 r. 8 r. 9 r. 10 r. 11 r. 12 r. 13 r. 14 r. 15 r. 16

CI-method result on Sc. #17 with lognormal/CHI

r. 1 r. 2 r. 3 r. 4 r. 5 r. 6 r. 7 r. 8 r. 9 r. 10 r. 11 r. 12 r. 13 r. 14 r. 15 r. 16

CI-method result on Sc. #17 with lognormal/KS

r. 1

CI-method result on Sc. #17 with weibull/KS

r. 1

CI-method result on Sc. #18 with gamma/KS

r. 1 r. 2 r. 3 r. 4 r. 5 r. 6 r. 7 r. 8 r. 9 r. 10 r. 11 r. 12 r. 13 r. 14

CI-method result on Sc. #18 with lognormal/KS

Sensors 2014, 14 2341

4.3. Near-Optimal Abrupt Change Detection

In this section we include the results obtained when we use a different change detection algorithm,
reported elsewhere as the stateless algorithm [23], to separate the delay sequence into almost stationary
segments. The algorithm, that we will call here the near-optimal method, relies in executing the
complete hypothesis testing each time a new delay value is gathered from the system, which makes its
computational burden much higher than the one of the method introduced in Section 4.1. Therefore,
this one is included here more as a limit of the results that any detection algorithm can provide with
our marginal distribution approach than as an alternative to be implemented in very low computational
power system.

The algorithm is quite intuitive. Essentially, it firstly makes up a regime of a minimum size (we use
40 in this work to be in the same conditions as the confidence interval method); when such a minimal
regime is collected, it uses the hypothesis test: a rejection moves that regime one delay value on—i.e.,
we request new sensory data and obtain a new delay measurement—forgetting the oldest delay value
of the current regime, while a non-rejection makes the algorithm to try to enlarge the regime with the
next delay values, until one is added that makes the test to reject it; when such an enlarged regime is
finally rejected, its longest non-rejected portion is kept as a definitive regime of the scenario. It is clear
that with this algorithm it is very likely to obtain segments of the signal that can be explained
statistically by the model at hand, since they are constructed specifically for that purpose.
The algorithm does not find such segments when the scenario is not compatible with
the model.

The results are shown in Table 8. Notice how the pattern already found with the confidence interval
method, and even with unprocessed scenarios or split delays, appears here again: the lognormal model
is the most successful one (although in this case all the others have a very good behaviour as well),
both in the number of scenarios explained successfully and in the goodness of the models obtained,
i.e., the p-values.

4.4. Additional Analysis of Processed Delays

Apart from assessing the fitting of parametrical and non-parametrical models with hypothesis tests,
we have also analysed in this work, with other statistical tools, the modeling results when using the
confidence interval method: Quantile-Quantile plots and Probability Difference Graphs. They
complete our statistical study of the problem, providing additional conclusions that are explained in
the following:

Quantile-Quantile (Q-Q) plot. The quantile-quantile (Q-Q) plot is a graph of the input (observed)
data values against the theoretical (fitted) distribution quantiles. Both axes of this graph are in units of
the input data set. Q-Q plots can be used to determine, qualitatively, the goodness-of-fit of the models,
but also other interesting questions such as how heavy their right tails are, which has consequences
when used for predicting future time delays: a model that has heavier tail (greater area in the right tail)
than the data that it is modeling will report a smaller probability of closing the sensory loop before the
given time requirement than actually exists. That will produce pesimistic predictions, i.e., longer
expected delays, which can be useful in teleoperation [53]: in the case that there is no model good

Sensors 2014, 14 2342

enough for representing the data tightly at all quantiles, it should be better to be pessimistic, i.e., to
work with the model that has heavier tail.

Table 8. Results obtained with the near-optimal change detection algorithm. The items
marked in bold have the best p-value of their corresponding row, i.e., they are the best
models found for that scenario.

Exponential

(p-Value)
Erlang

(p-Value)
Gamma

(p-Value)
Lognormal
(p-Value)

Weibull
(p-Value)

χ2 - - - - -

KS

#1A(14;0.08)
#2B1(4;0.06)

#3A/B2(11;0.04)
#4B2(6;0.06)
#5B2(3;0.51)
#6B2(10;0.08)
#7B2(10;0.03)
#8C(12;0.12)
#9A(22;0.04)

#10B1(15;0.07)
#11C(12;0.04)
#12A(12;0.06)

-
#14C(0.03)

#15A(12;0.04)
#16B2(13;0.05)
#17A(12;0.12)
#18B1(9;0.03)

85.5%

#1A(15;0.07)
#2B1(6;0.11)

#3A/B2(11;0.04)
#4B2(8;0.24)
#5B2(4;0.20)

#6B2(10;0.19)
#7B2(12;0.06)
#8C(13;0.12)
#9A(26;0.05)

#10B1(15;0.05)
#11C(13;0.09)
#12A(12;0.071)

#13C(0.038)
#14C(4;0.03)

#15A(17;0.04)
#16B2(14;0.13)
#17A(13;0.14)
#18B1(12;0.09)

78%

#1A(12;0.04)
#2B1(10;0.06)

#3A/B2(8;0.03)
#4B2(4;0.07)
#5B2(2;0.04)
#6B2(11;0.07)
#7B2(10;0.10)
#8C(13;0.14)
#9A(21;0.04)
#10B1(9;0.05)
#11C(13;0.05)

#12A(10;0.069)
#13C(10;0.039)
#14C(7;0.03)

#15A(13;0.04)
#16B2(15;0.06)
#17A(12;0.07)
#18B1(3;0.05)

89.7%

#1A(11;0.07)
#2B1(2;0.15)

#3A/B2(2;0.12)
#4B2(4;0.10)
#5B2(0.03)

#6B2(10;0.05)
#7B2(7;0.20)

#8C(12;0.168)
#9A(20;0.11)

#10B1(11;0.09)
#11C(14;0.06)
#12A(11;0.05)
#13C(18;0.035)
#14C(10;0.03)
#15A(12;0.04)
#16B2(11;0.04)
#17A(2;0.18)
#18B1(2;0.06)

92.9%

#1A(15;0.07)
#2B1(14;0.12)

#3A/B2(14;0.06)
#4B2(4;0.12)
#5B2(5;0.21)
#6B2(13;0.09)
#7B2(7;0.08)
#8C(9;0.167)
#9A(14;0.12)

#10B1(11;0.03)
#11C(14;0.05)
#12A(12;0.04)

#13C(13;0.043)
#14C(12;0.05)
#15A(13;0.05)
#16B2(13;0.09)
#17A(7;0.13)

#18B1(7;0.18)
91.8%

Figure 8 represents the Q-Q plot of all scenarios that we have found where different models have
explained well the same segments of data (the only case when we can carry out a fair comparison). In
general, all scenarios are better modeled in the lower quantiles, i.e., the right tails of the distributions
are not good models of the data, which is natural because there is less delays gathered in those tails.
We can also observe that data are better modeled in scenarios #17 and #18 than in scenarios #4 and #5,
but note that this is only a qualitative appreciation: all the depicted cases have passed the hypothesis
test, therefore they are all statistically good as models of the data.

In that figure we see that Q-Q plots for scenarios #17 and #18 fit quite well the data. In contrast,
scenarios #4 and #5 are arced, or “S” shaped, indicating worse models (although still within the
acceptance of the hypothesis test). Also, all models there become more dispersed than the data in the
highest quantiles, i.e., in the right tails. In particular, the lognormal is the most heavy tailed model, and
exponential/gamma the less heavy tailed. In these scenarios, where the models do not fit the data as
well as in others, the lognormal distribution would predict less probability to close the sensory loop in
a shorter time than the actual one, therefore being more conservative for doing control than the others.

Sensors 2014, 14 2343

As explained before, being conservative is an interesting quality in our problem, since it facilitates to
satisfy strict safety requirements with higher probability.

Figure 8. Q-Q plots for those regimes obtained by the confidence interval method where
more than one parametrical model explains successfully the data obtaining their best
p-values. The abscissas correspond to the data quantiles, while the ordinates are the models.

8200 8300 8400 8500 8600 8700 8800 8900 9000

8200

8300

8400

8500

8600

8700

8800

8900

9000

X Quantiles

Y
 Q

ua
nt

ile
s

Sc #4 (best detected regimes only)

y=x
exponential
gamma
lognormal

7.8 8 8.2 8.4 8.6 8.8 9 9.2 9.4 9.6

x 10
4

7.6

7.7

7.8

7.9

8

8.1

8.2

8.3

8.4

8.5

8.6
x 10

4

X Quantiles

Y
 Q

ua
nt

ile
s

Sc #5 (best detected regimes only)

y=x
exponential
erlang
gamma
lognormal
weibull

1430 1440 1450 1460 1470 1480 1490 1500 1510 1520

1420

1440

1460

1480

1500

1520

X Quantiles

Y
 Q

ua
nt

ile
s

Sc #17 (best detected regimes only)

y=x
lognormal
weibull

400 450 500 550 600 650 700 750

400

450

500

550

600

650

700

750

800

850

900

X Quantiles

Y
 Q

ua
nt

ile
s

Sc #18 (best detected regimes only)

y=x
gamma
lognormal

Probability Difference Graph (PDG). The probability difference graph (Figure 9) is a plot of the
difference between an empirical cumulative distribution function (cdf) and a theoretical cdf. This
graph can be used to put in order the theoretical distributions in case we have to choose a model, since
it yields a qualitative measure of distance between them. It also provides a general, qualitative
indication of their goodness to fit the data: the closest to the zero horizontal, the better the fitting.
Although all PDGs are for models that have been successful in modeling scenarios (according to the
hypothesis test, reflected here in the small values of the curves in the ordinate axis), we can observe in
the figure that in some cases the modeling has been better than in others. As happened in the Q-Q
plots, scenario #4 has produced the worse fittings, which is reflected in the pronounced belly of all
model curves around the middle of the delay values: if they are used for prediction they will be
conservative in that area, which could be an interesting property as explained before. In that particular
scenario, the gamma distribution seems slightly better than the other two, but their difference is rather
small. In scenario #5 we obtain a pdf farther from zero when the erlang model is chosen as null

Sensors 2014, 14 2344

hypothesis. In scenario #17 the lognormal has been better than the weibull. In scenario #18 the
lognormal is also better for higher values of the delays, which is important in prediction.

Figure 9. PDGs for those regimes obtained by the confidence interval method where more
than one parametrical model explain successfully the data obtaining their best p-values.

8200 8300 8400 8500 8600 8700 8800 8900 9000

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Sc #4 (best detected regimes only)

exponential
gamma
lognormal

7.8 8 8.2 8.4 8.6 8.8 9 9.2 9.4 9.6

x 10
4

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Sc #5 (best detected regimes only)

exponential
erlang
gamma
lognormal
weibull

1440 1460 1480 1500 1520

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Sc #17 (best detected regimes only)

lognormal
weibull

 450 500 550 600 650 700 750

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Sc #18 (best detected regimes only)

gamma
lognormal

5. Conclusions and Future Work

This paper has shown how the time delay of the sensory data flow for a networked telerobot system,
i.e., the time that passes since a sensor request is issued in the client until the data is received and
processed, has an interesting feature that allows us to model it in a minimalistic way: when abrupt
changes in the delay sequence are properly detected, the remaining segments are mostly stationary and
iid. Based on that result, we have presented a thorough statistical characterization of these sequences of
delays, based on both parametrical and non-parametrical probability density functions that model
marginal distributions of the delays. When applied to sequences of delays that have not been processed
for detecting those abrupt changes, they do not show as particularly useful (with the exception of some
non-parametricals), but we can improve those initial results firstly by splitting the delays into their
natural additive components and then by applying a new method to detect non-linearities such as
abrupt changes of regimes, outliers or bursts. The results reported in this paper can be summarised,
qualitatively, as follows:

Sensors 2014, 14 2345

● Unprocessed scenarios can only be reasonably well modelled with non-parametrical distributions.
However, their use must be carefully considered, since they are more computational involved
and prone to overfitting, i.e., they model too well the already gathered delays at the expense of
not modeling so well the delays to come just afterwards.

● Even when scenarios are unprocessed, the lognormal model performs better or equal than
other parametrical ones. The kernel model is clearly better than the others in the case of
non-parametrical models.

● If splitting the delays into three natural components (server + network + client delays) is
possible, the performance of the lognormal model increases appreciably, while other
parametrical models do not do so well. The kernel model also increases remarkably its
performance with respect to other non-parametrical models, reaching near 70% of scenarios
being explained. Therefore, kernel model could be the choice in that situation (again
considering carefully the overfitting problem).

● Our simple confidence interval method for detecting abrupt changes in the delay sequence (only
applicable to parametrical models) increases the performance of the lognormal as in the case of
splitting the delays, but, in addition, it widens the applicability of the model, being able to
explain scenarios of classes A, B and C (unlike in the splitting delays case). When there are
relevant limitations in the computational cost available to execute on-line the change detection
procedure, this method along with the lognormal should be the choice in general applications of
the marginal modeling approach.

● As shown in the Q-Q plots, when using the confidence interval method, exponential and gamma
models do not provide as good results as the lognormal, and in complicated scenarios that
cannot be modeled well anyway, the latter could be a reasonable choice since it provides more
conservative (pessimistic) estimates of the delays, which can serve to guarantee better the time
requirements of the system.

● The chi-squared hypothesis test is not as good to detect whether a model explains well the data
as the Kolmogorov-Smirnov test, mainly due to its sensitivity to short samples.

In this paper we have also identified intuitive categories of scenarios that cover most existing
combinations of features that can appear in these sequences of delays (classes A, B and C). Just to link
very briefly this classification to the actual results of our analyses, according to Section 3.3, when the
scenarios are not processed for change detection, some scenarios from class B can be explained by
parametrical models, which agrees with the fact that no abrupt changes with long lasting different
regimes are present (Table 4); however the same models are not able to explain the rest of scenarios,
which leads to a not very good utility of the unprocessing approach (this does not change even when
delays are split into three additive components—network, server, client—, as shown in Table 5, which
demonstrates that the features of the total delay signal are present in all of them, although the number
of scenarios of class B that can be explained now is greater). Table 7 shows the modeling results when
abrupt change detection is included through our confidence interval algorithm: then, classes B1 and B2
can be explained, as well as class A because the algorithm detects the accumulation of smooth trend
fluctuation during certain time as an abrupt change at the end of that time, making the total fluctuation
in each of these parts of the signal much smaller than in the original unprocessed scenario. Class C is

Sensors 2014, 14 2346

more difficult to model, but the lognormal is able to explain some of those scenarios as well, including
a largely deterministic one (scenario #13), included in our study to test the limits of stochasticity in
our approach.

In the future we plan to analyse further this characterization problem (in particular, to devise new
computationally efficient change detection algorithms that approach better the results of the
near-optimal procedure explained in Section 4.3), and also to use these results to implement on-line
dynamic estimators of the time delay, which will be the basis for a control of the sensor density that
allows us to control in turn the networked telerobot in real-time as optimally as possible. In such
environment, we will also develop methods for using more than one modeling procedure concurrently,
aimed at guaranteeing the system performance in the minority of cases where the iid assumption
cannot be satisfied.

Acknowledgments

This work is supported by the Junta de Andalucía and the European Union (FEDER) through the
research project P08-TIC-04282. We also wish to thank the anonymous reviewers of this paper for
their insightful comments, which have served to make the original manuscript clearer, better structured
and more precise, and Raúl Ruiz-Sarmiento, Eduardo Carletti and Ángel Martínez-Tenor for providing
the data of some of the scenarios.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Jia, S.; Hada, Y.; Gang, Y.; Takase, K. Distributed Telecare Robotic Systems Using CORBA as a
Communication Architecture. In Proceedings of the IEEE International Conference on Robotics &
Automation, Washington, DC, USA, 11–15 May 2002.

2. Cavusoglu, M.C.; Williams, W.; Tendick, F.; Sastry, S.S. Robotics for telesurgery: Second
generation berkeley/UCSF laparoscopic telesurgical workstation and looking towards the future
applications. Ind. Robot 2003, 30, 22–29.

3. Whitcomb, L. Underwater Robotics: Out of the Research Laboratory and into the Field. In
Proceedings of the IEEE International Conference on Robotics & Automation, Washington, DC,
USA, 24–28 April 2000.

4. Tsumaki, Y.; Goshozono, T.; Abe, K.; Uchiyama, M.; Koeppe, R.; Hirzinger, G. Verification of an
Advanced Space Teleoperation System Using Internet. In Proceedings of the IEEE International
Conference on Intelligent Robot Systems, Takamatsu, Japan, 30 October–5 November 2000.

5. Siciliano, B.; Khatib, O. Springer Handbook of Robotics; Springer: Berlin, Germany, 2008.
6. Burns, A.; Wellings, A. Real-Time Systems and Programming Languages: Ada, Real-Time Java

and C/Real-Time POSIX; Addison-Wesley: Wokingham, UK, 2009.
7. Wang, Y.; Vuran, M.C.; Goddard, S. Cross-layer analysis of the End-to-End delay distribution in

wireless sensor networks. IEEE/ACM Trans. Netw. 2012, 20, 305–318.

Sensors 2014, 14 2347

8. Wang, X.; Schulzrinne, H. Comparison of adaptive internet multimedia applications. IEICE Trans.
Commun. E82-B 1999, 806–818.

9. Liu, P.X.; Meng, M.Q.H.; Gu, J.; Yang, S.X.; Hu, C. Control and Data Transmission for Internet
Robotics. In Proceedings of the IEEE International Conference on Robotics & Automation,
Taipei, Taiwan, 14–19 September 2003.

10. Alt, G.H.; Lages, W.F. Networked Robot Control with Delay Compensation. In Proceedings of
the Fifth Real-Time Linux Workshop, Valencia, Spain, 9–11 November 2003.

11. Imer, O.C.; Yksel, S.; Basar, T. Optimal control of LTI systems over unreliable communication
links. Automatica 2006, 42, 1429–1439.

12. Kim, W.; Ji, K.; Ambike, A. Networked real-time control strategy dealing with stochastic time
delays and packet losses. J. Dyn. Syst. Meas. Control 2006, 128, 681–685.

13. Tipsuwan, Y.; Chow, M. Control methodologies in networked control systems. J. Control Pract.
2003, 11, 1099–1111.

14. Gibbon J.F.; Little, T.D.C. The use of network delay estimation for multimedia data retrieval.
IEEE J. Sel. Areas Commun. 1996, 14, 1376–1387.

15. YouTube. How YouTube Works—Computerphile. Available online: http://www.youtube.com/
watch?v=OqQk7kLuaK4 (accessed on 2 December 2013).

16. Yensen, T.; Lariviere, J.P.; Lambadaris, I.; Goubran, R.A. HMM delay prediction technique for
VoIP. IEEE Transa. Multimed. 2003, 5, 444–457.

17. Lozoya Gámez, R.C.; Martí, P.; Velasco, M.; Fuertes, J.M. Wireless Network Delay Estimation
for Time-Sensitive Applications; Research Report ESAII-RR-06-12, 2006. Available online:
http://esaii.upc.edu/people/pmarti/nde_06.pdf (accessed on 25 October 2013).

18. Deng, K.; Moore, A.W.; Nechyba, M.C. Learning to Recognize Time Series: Combining ARMA
Models with Memory-Based Learning. In Proceedings of the IEEE International Symposium on
Computational Intelligence in Robotics and Automation, Monterey, California, USA, 10–11 July
1997.

19. Feng, H.; Shu, Y. Study on Network Traffic Prediction Techniques. In Proceedings of the
International Conference on Wireless Communications, Networking and Mobile Computing,
Wuham, China, September 23–26 2005.

20. Li, A.; He, S.; Qin, Z. Real-Time Segmenting Time Series Data. In Web Technologies and
Applications. APWeb 2003; Zhou, X., Zhang, Y., Orlowska, M.E., Eds.; Springer-Verlag: Berlin
Heidelberg, Germany, 2003; Lecture Notes in Computer Science 2642, pp. 178–186.

21. De Buen Remiro, V. Modelación Masiva X-ARIMA. Available online: https://www.tol-project.org/
svn/tolp/OfficialTolArchiveNetwork/ArimaTools/doc/Modelacion%20X-ARIMA%20masiva/
Modelacion%20X-ARIMA%20masiva.pdf (accessed on 25 October 2013).

22. Gago-Benítez, A.; Fernández-Madrigal, J.A. Log-Normal Modeling of Non-Linear Sequences of
Delays with Classical Change Detection Methods. In Proceedings of the International Workshop
on Applied Probability (IWAP’2012), Jerusalem, Israel, 11–14 June 2012.

23. Gago-Benítez, A.; Fernández-Madrigal, J.A.; Cruz-Martín, A. Log-logistic modelling of sensory
flow delays in networked telerobots. IEEE Sens. 2013, 13, 2944–2953.

http://www.youtube.com/watch?v=OqQk7kLuaK4�
http://www.youtube.com/watch?v=OqQk7kLuaK4�
http://esaii.upc.edu/people/pmarti/nde_06.pdf�

Sensors 2014, 14 2348

24. González-Jiménez, J.; Galindo, C.; Ruiz-Sarmiento, J.R. Technical Improvements of the Giraffe
Telepresence Robot based on User’s Evaluation. In Proceedings of the 21st IEEE International
Symposium on Robot and Human Interactive Communication (2012 IEEE RO-MAN), Paris,
France, 9–13 September 2012.

25. Submarine Cable Map 2013. Available online: http://submarine-cable-map-2013.telegeography.com
(accessed on 2 December 2013).

26. Giraff. Available online: http://www.giraff.org (accessed on 2 December 2013).
27. González, J.; Galindo, C.; Blanco, J.L.; Fernández-Madrigal, J.A.; Arévalo, V.; Moreno, F.A.

SANCHO, a Fair Host Robot. A Description. In Proceedings of the IEEE International
Conference on Mechatronics, Málaga, Spain, 14–17 April 2009.

28. Surveyor Corporation. Available online: http://www.surveyor.com (accessed on 19 September 2013).
29. Arduino Homepage. Available online: http://arduino.cc (accessed on 2 December 2013).
30. Fernández-Madrigal, J.A.; Galindo, C.; González, J.; Cruz-Martín, E.; Cruz-Martín, A. A software

engineering approach for the development of heterogeneous robotic applications. J. Robot.
Comput.-Integr. Manuf. 2008, 24, 150–166.

31. Darie, C.; Brinzarea, B.; Chereches-Tosa, F.; Bucicia, M. AJAX and PHP: Building Responsive
Web Applications; Packt Publishing: Birmingham, UK, 2006.

32. Song, D.; Goldberg, K.; Chong, N.Y. Networked Telerobots. In Handbook of Robotics; Siciliano, B.,
Khatib, O., Eds.; Springer: Berlin, Germany, 2008.

33. Goldberg, K.; Siegwart, R. Beyond Webcams. An Introduction to Online Robots; The MIT Press:
Boston, MA, USA, 2002.

34. Internet Devices. Available online: http://ford.ieor.berkeley.edu/ir/ (accessed on 2 December 2013).
35. Box, G.; Jenkins, G. Time Series Analysis: Forecasting and Control; Holden-Day: San Francisco,

CA, USA, 1976.
36. D’Agostino, R.B.; Stephens, M.A. Goodness-of-fit Techniques; Marcel Dekker, Inc.: New York,

NY, USA, 1986.
37. Jacobsson, K.; Hjalmarsson, H.; Niels Möller, N.; Johansson, K.H. Round-Trip Time Estimation

in Communication Networks using Adaptive Kalman Filtering; Reglermöte 2004: Gothenburg,
Sweden, 2004.

38. Cao, J.; Cleveland, W.S.; Lin, D.; Sun, D.X. Internet Traffic Tends Toward Poisson and
Independent as the Load Increases. In NonLinear Estimation and Classification; Springer: New
York, NY, USA, 2002.

39. Walpole, R.E.; Myers, R.H.; Myers, S.L.; Ye, K.E. Probability and Statistics for Engineers and
Scientists, 9th ed.; Pearson: Cranbury, NJ, USA, 2011.

40. Antoniou, I.; Ivanov, V.V.; Zrelov, P.V. On the log-normal distribution of network traffic. J. Phys.
D: Nonlinear Phenom. 2002, 167, 72–85.

41. Wasserman, L. All of Statistics: A Concise Course in Statistical Inference; Springer: New York,
NY, USA, 2003.

42. House, D.H. Spline Curves. Available online: http://people.cs.clemson.edu/~dhouse/courses/405/
notes/splines.pdf (accessed on 19 September 2013).

43. The MathWorks, Inc., Curve Fitting Toolbox 3.0. Available online: http://www.mathworks.com/
products/curvefitting (accessed on 19 September 2013).

http://submarine-cable-map-2013.telegeography.com/�
http://www.giraff.org/�
http://www.surveyor.com/�
http://arduino.cc/�
http://ford.ieor.berkeley.edu/ir/�
http://www.mathworks.com/products/curvefitting�
http://www.mathworks.com/products/curvefitting�

Sensors 2014, 14 2349

44. Barnett, V.; Lewis, T. Outliers in Statistical Data; John Wiley & Sons: San Francisco, California,
USA, 1994.

45. Ben-Gal, I. Outlier Detection. In Data Mining and Knowledge Discovery Handbook: A Complete
Guide for Practitioners and Researchers; Kluwer Academic Publishers: Berlin, Germany, 2005;
pp. 131–146.

46. Ng, R.T.; Han, J. Efficient and Effective Clustering Methods for Spatial Data Mining. In
Proceedings of the Very Large Data Bases Conference, Zurich, Switzerland, 11–15 September
1994.

47. Acuna, E.; Rodriguez, C.A. Meta Analysis Study of Outlier Detection Methods in Classification.
Technical paper, Department of Mathematics, University of Puerto Rico at Mayaguez. Available
online: http://academic.uprm.edu/eacuna/paperout.pdf (accessed on 25 October 2013).

48. Lu, C.; Chen, D.; Kou, Y. Algorithms for Spatial Outlier Detection. In Proceedings of the 3rd
IEEE International Conference on Data-Mining (ICDM’03), Melbourne, FL, USA, 19–22
November 2003.

49. Knorr, E; Ng, R. Algorithms for Mining Distance-Based Outliers in Large Datasets. In
Proceedings of the 24th International Conference Very Large Data Bases (VLDB), New York,
NY, USA, 24–27 August 1998.

50. Knorr, E; Ng, R; Tucakov, V. Distance-based outliers: Algorithms and applications. VLDB J.
2000, 8, 237–253.

51. Bay, S.D.; Schwabacher, M. Mining Distance-Based Outliers in Near Linear Time with
Randomization and a Simple Pruning Rule. In Proceedings of the 9th ACM-SIGKDD Conference
on Knowledge Discovery and Data Mining, Washington, DC, USA, 24-27 August 2003.

52. Cohen, A.; Whitten, B. Estimation in the three-parameter lognormal distribution. J. Am. Stat. Assoc.
1980, 75, 399–404.

53. Andreu, D.; Fraisse, P.; Roqueta, V.; Zapata, R. Internet Enhanced Teleoperation toward a
Remote Supervised Delay Regulator. In Proceedings of the IEEE International Conference on
Industrial Technology, Maribor, Slovenia, 10–12 December 2003.

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).

http://academic.uprm.edu/eacuna/paperout.pdf�

	1. Introduction
	2. Overview of the Experimental Setting
	3. Modeling Unprocessed Delays
	3.1. General Settings
	3.2. Results for Unprocessed Delays
	3.3. Results for Unprocessed Split Delays

	4. Processing Delays for the Detection of Regimes and Bursts
	4.1. Efficient Abrupt Change Detection
	* , where erfcinv is the inverse of the complementary error function. is the gamma incomplete inverse function.
	4.2. Results for Processed Delays
	4.3. Near-Optimal Abrupt Change Detection
	4.4. Additional Analysis of Processed Delays

	5. Conclusions and Future Work
	Acknowledgments
	Conflicts of Interest
	References

