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Abstract: Many pathologies can be identified by evaluating differences raised in the physical
parameters of involved tissues. In a Magnetic Resonance Imaging (MRI) framework,
spin-lattice T1 and spin-spin T2 relaxation time parameters play a major role in such an
identification. In this manuscript, a theoretical study related to the evaluation of the
achievable performances in the estimation of relaxation times in MRI is proposed. After
a discussion about the considered acquisition model, an analysis on the ideal imaging
acquisition parameters in the case of spin echo sequences, i.e., echo and repetition times,
is conducted. In particular, the aim of the manuscript consists in providing an empirical rule
for optimal imaging parameter identification with respect to the tissues under investigation.
Theoretical results are validated on different datasets in order to show the effectiveness of
the presented study and of the proposed methodology.
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1. Introduction

Relaxation times define the rate of spin magnetic equilibrium recovery in nuclear magnetic resonance
(NMR) [1,2]. For each tissue, several relaxation times can be defined. Besides, the main interest is in
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the evaluation of two of them: the spin-lattice and the spin-spin relaxation times, commonly referred to
as T1 and T2, respectively. Such time constants, together with the hydrogen nuclei abundance, ρ, define
the behavior of the signal generated by each resolution element.

It is largely known that the knowledge of relaxation times can provide interesting information about
imaged tissues. Concerning the medical diagnostic field, many pathologies have been found to involve
a significant variation of the relaxation time constants more than a variation of ρ, such as Alzheimer’s
disease [3], Parkinson’s disease [4] and cancer [5,6]. The evaluation of the tissue relaxation times can be
considered an excellent tool for improving clinical diagnosis.

Classic approaches for retrieving relaxation parameter maps of imaged tissue slices propose the
estimation of T1 and T2 separately. In particular, the “gold standard” for spin-lattice relaxation time
T1 estimation exploits inversion recovery (IR) sequences [7,8]. However, this approach is too slow for
in vivo clinical applications. Different evolutions have been proposed in the literature. In particular, the
exploitation of spoiled gradient-recalled echo (SPGR) sequences has shown interesting results [9,10].
With respect to spin-spin relaxation time T2 estimation, a widely used imaging sequence is the spin echo
(SE) [11,12].

The magnitude of the acquired signal is typically used for relaxation parameter estimation [12–15].
Within this framework, the exponential curve fitting via the least squares (LS) algorithm is the commonly
adopted estimator [11,13]. Although being very easy to be implemented and not computationally heavy,
it has the disadvantage of producing biased estimations [11,16]. The alternative consists in using a
maximum likelihood estimator (MLE) [12]. The MLE is asymptotically unbiased and optimal, but the
function to be maximized, which is related to the statistical distribution of the MRI amplitude data, is
computationally heavy, as it contains the Bessel function [17].

Recently, new approaches based on the complex decomposition of acquired data have been
proposed [10,18]. The exploitation of the complex model leads to a main advantage concerning the
estimation: due to the circular Gaussian distribution of the complex noise, the LS-based estimator
coincides with the MLE and is asymptotically unbiased and optimal.

While much effort has been directed to improving the estimation procedures, only a little effort
has been directed to the choice of the optimal imaging parameter selection (i.e., the optimal choice
of the MRI scanner imaging parameters). In particular, in [19], the ideal repetition times have been
investigated in the case of saturation recovery spin-lattice measurements at 4.7 T, while in [20], the
optimization of T2 measurements in the case of bi-exponential systems is considered. Following the
approach proposed by [15], within this paper we investigate the possibility of finding the optimal imaging
parameter configuration for relaxation time estimation. As an alternative to [15], we investigate the
optimal configuration not only for the T2 time estimation, but for the joint T2 and T1 estimation.

Since the SE sequence-based model allows the simultaneous estimation of both spin-spin and
spin-lattice relaxation times, we focus our attention on this imaging sequence. In any case, the theoretical
study reported in the following could be easily adapted to different imaging sequences. Considering an
SE sequence [2], the two imaging parameters involved in the acquisition procedure are the repetition
time, TR, and the echo time, TE . We briefly recall that these two parameters allow the scanner to
differently interact with tissues characterized by different T1 and T2 values. By exploiting different TR
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and TE combinations, it is possible to emphasize the effect of one tissue intrinsic parameter with respect
to others, obtaining the well-known ρ-weighted, T1-weighted or T2-weighted images.

Given the previously mentioned motivations, we present a deeper analysis of the complex SE model
considered in [18] extended to three parameters (i.e., ρ, T1 and T2). The analysis is conducted exploiting
the Cramer–Rao lower bounds (CRLBs) [16]. Since CRLBs provide the best achievable performances
in the unbiased estimation of one or more parameters, by minimizing them with respect to the MR
scanner imaging parameters, it is possible to find the optimal acquisition configuration for the relaxation
time estimation. Practically speaking, we look for the acquisition parameters that allow achieving lower
relaxation time estimation errors. The result of the study is the introduction of a general empirical rule
for determining the optimal (with respect to CRLBs) MRI scanner parameter configuration. In particular,
the identification of these parameters in the case of several tissues has been conducted. The effectiveness
of the theoretical results and of the empirical rule is validated and verified on different datasets.

The manuscript is organized as follows: in Section 2, the acquisition model for an MRI spin echo
sequence is presented, and in Section 3, the achievable performances of the estimation are analyzed
via the CRLBs. In Section 4, the CRLB-based empirical rule for the optimal acquisition parameter
configuration is presented. Finally, validation on different datasets is presented in Section 5, and
conclusions are drawn.

2. The Model

Let us consider an MRI acquisition system using a spin echo imaging sequence. The amplitude of the
recorded complex signal after the image formation process, i.e., after the computation of the 2D Fourier
transform, is related to the tissue parameters, ρ, T1 and T2, via [2,21]:

f(θ) = ρ exp

(
−TE
T2

)(
1− exp

(
−TR
T1

))
(1)

where TE and TR are the echo and repetition time, respectively, which are two imaging parameters that
can be set in the MRI scanner, and θ = [ρ T1 T2]

T is the vector containing the tissue parameters in which
we are interested. Note that Equation (1) is valid in the case of a homogeneous imaged object. In the
case of clinical data, the presence of different hydrogen environments within each voxel has to be taken
into account. The acquisition model reported in Equation (1), which is a solution to Bloch equations,
assuming that TE is short with respect to TR, is related to the noise-free case and does not take into
account the dependency on the static magnetic field, B. Considering noise, in the complex domain, the
model becomes:

y = yR + iyI = f(θ) exp (iφ) + (nR + inI) (2)

where nR and nI are the real and imaginary parts of the noise samples, which are distributed as
independent circularly Gaussian variables [22], and φ represents the angle of the complex data [23,24].
Thus, the statistical distributions of the real and imaginary parts of the acquired signal are:

fYR(yR) =
1√
2πσ2

exp

(
−(yR − f(θ) cos(φ))2

2σ2

)

fYI (yI) =
1√
2πσ2

exp

(
−(yI − f(θ) sin(φ))2

2σ2

)
(3)
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where σ2 is the variance of real and imaginary noise components. Due to the independence of the real
and imaginary parts of noise, the joint statistical distribution of yR and yI is the product of the two
probability density functions of Equation (3).

Once N acquisitions with different TR and TE combinations have been recorded and collected in the
data vector y = [yR, yI ], with yR = [yR(1), · · · yR(N)] and yI = [yI(1), · · · yI(N)], we can derive the
likelihood function from the factorization of the Probability Density Functions (PDFs):

p(y;θ) =
N∏
k=1

(
1√
2πσ2

)2

exp

{
− [yR(k)− f(θ) cos(φ)]2

2σ2
− [yI(k)− f(θ) sin(φ)]2

2σ2

}
(4)

Starting from the likelihood function of Equation (4), the CRLBs for θ are derived and analyzed in
the following sections.

3. Cramer–Rao Lower Bounds Evaluations

In order to evaluate the performances of the optimal estimator for the model presented in
Section 2, the Cramer–Rao lower bounds have to be computed. According to Statistical Estimation
Theory [16], given an observation model, the accuracy of any estimator can be evaluated according to
its mean and its variance. In particular, in order to be optimal, an estimator needs to have its mean
equal to the value to be estimated (i.e., unbiased estimator) and to have the smallest possible variance.
CRLBs represent the lower bound of the variance of any unbiased estimator, resulting an interesting
and powerful tool for evaluating the achievable performances of a considered model. By computing
the CRLBs for different configuration of the parameters involved in the acquisition model, it is possible
to find the best parameter configuration, the one that provides the minimum values of CRLBs (i.e., the
minimum achievable variances). Considering the vector parameter θ, the minimum variance that any
unbiased estimator of parameter θi can reach is provided by the i-th diagonal element of the inverse of
matrix I [16]:

var(θ̂i) ≥
[
I−1(θ)

]
ii

(5)

with I being the Fisher matrix, which is equal to:

I(θ) =


−E

[
∂2 ln p(y;θ)

∂ρ2

]
−E

[
∂2 ln p(y;θ)
∂ρ∂T1

]
−E

[
∂2 ln p(y;θ)
∂ρ∂T2

]
−E

[
∂2 ln p(y;θ)
∂ρ∂T1

]
−E

[
∂2 ln p(y;θ)

∂T 2
1

]
−E

[
∂2 ln p(y;θ)
∂T1∂T2

]
−E

[
∂2 ln p(y;θ)
∂ρ∂T2

]
−E

[
∂2 ln p(y;θ)
∂T1∂T2

]
−E

[
∂2 ln p(y;θ)

∂T 2
2

]
 (6)

where E [·] is the expected value operator.
A closed form for the second order derivatives of Equation (6) has been derived and reported in the

Appendix. The closed form greatly improves the computational accuracy of the CRLB evaluation and
decreases the computational burden of the simulations reported in the following.

In order to experimentally compute the matrix of Equation (6), Monte Carlo simulations with 105

iterations have been considered for statistical average computation.
For the following evaluations, we considered a tissue, named A, with parameters θ = [ρ T1 T2]

T =

[2.5 1600 90]T . Note that within the paper, all relaxation times are expressed in milliseconds, while
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the proton density is in percentage. The following simulations are reported and analyzed in order to
investigate CRLB dependency and behavior with respect to the signal-to-noise ratio (SNR), the number
of acquisitions and the scanner acquisition parameters.

3.1. CRLB vs. SNR

Let us start by computing CRLBs varying the noise standard deviation (i.e., the SNR). Sixteen images
have been considered, which refer to the all combinations of four TR and four TE values equally spaced
in the intervals [500, 3500] ms and [80, 350] ms, respectively. Note that the lower TE value has been
set according to the minimum echo time for the SE sequence accepted by the Philips Achieva 3.0 T, the
MR scanner we worked on, while the maximum value of TR has been set in order to limit the global
acquisition time. The CRLBs in the case of different SNRs are shown in Figure 1. As expected, the
square root of the CRLBs related to all considered parameters decreases with respect to SNR growth, i.e.,
high SNRs positively affect the estimator performances. In the considered range of SNRs, no saturation
appears. Very similar behaviors are obtained varying TR and TE combinations. Globally, it can be
stated that SNR linearly affects CRLBs, so in the following the results of each simulation can be easily
extended to any SNR configuration.

Figure 1. Square root of the Cramer–Rao lower bound (CRLB) for proton density (blue),
spin-lattice (T1) relaxation time (green) and spin-spin (T2) relaxation time (red) for different
signal-to-noise ratio values expressed in decibels (logarithmic scale). CRLB values have
been normalized for the parameter values in order to be plotted in the same graph.

3.2. CRLB vs. the Number of Acquisitions

A second case study has been conducted in order to evaluate the advantage of increasing the number
of acquisitions. Two vectors of TR and TE , of a length of NR and NE , respectively, have been generated
in the [500, 3500] ms (for TR) and [80, 350] ms (for TE) intervals. The square root of CRLBs, i.e.,
the minimum achievable standard deviations, are reported in Figure 2 for ρ, T1 and T2, respectively, for
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differentNR andNE combinations. The noise variance has been fixed in order to obtain an SNR of 16 dB
for the image with the lowest signal intensity (i.e., TR = 500 ms and TE = 80 ms). It can be noted that
the number of TR values mainly affects the achievable performances with respect to T1 estimation, while
CRLBs of ρ and T2 are dependent on the number of both TE and TR values, with a higher dependency on
echo times. The results confirm the strict connections between TR and T1 and also between TE and T2,
as expected from the exponential terms of the SE signal model (Equation (1)). However, it is interesting
to stress how the CRLB of ρ is very tightly related to TE values rather than to TR ones.

Figure 2. The square root of the CRLB of proton density ρ (a), T1 relaxation time (b) and
T2 relaxation time (c) for different numbers of acquisitions.

(a) (b) (c)

3.3. CRLB vs. TR and TE Values

As a further case study, an evaluation of CRLBs with respect to TR and TE values with a fixed
number of acquisition has been performed. Four acquisitions have been considered, corresponding to
all the combinations of TR = [TR(1), TR(2)] and TE = [TE(1), TE(2)]. CRLBs have been computed
while varying TR(1) and TE(2) and considering TR(2) = 3, 500 ms and TE(1) = 80 ms, again in the
case of tissue A parameters. Results are reported in Figures 3. Figure 4a shows that the ρ estimation
would prefer low TR(1) and high TE(2) values. The behaviors of CRLBs for T1 and T2 differ remarkably
from Figure 4a, as it can be noticed that the estimation of T1 is almost unresponsive with respect to TE(2)
values, as far as T2 estimation with respect to TR(1). In particular, for the estimation of T1, the ideal
TR(1) is as low as possible, while the ideal TE(2) for the estimation of T2 is between 150 and 250 ms.
For this experiment, a second dataset has also been considered: the same simulation has been conducted
in the case of a second tissue, named B, with parameters θ = [ρ T1 T2]

T = [2.8 1800 60]T , in order
to know if the results of Figure 3 are always valid or if they are highly dependent on the considered
tissue. The results are reported in Figure 4. It can be noticed that the lower regions remain in the same
position, although being increased in value, but for CRLBs of ρ and T2, the ideal TE(2) range reduces to
[130, 180] ms. This is mainly due to the lower T2 value of tissue B with respect to tissue A. Thus, it can
be concluded that the general trend is confirmed, although the position of the global minimum is strictly
related to the considered tissue. These two simulations show that the choice of optimal parameters is
strictly dependent on the relaxation times of the imaged tissues. In the next section, we investigate the
possibility of finding a rule for ideal imaging parameter identification.
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Figure 3. The square root of the CRLB of proton density ρ (a), T1 relaxation time (b) and
T2 relaxation time (c) for different combinations of TR and TE values in the case of ρ = 2.5,
T1 = 1, 600 ms and T2 = 90 ms.

(a) (b) (c)

Figure 4. The square root of the CRLB of proton density ρ (a), T1 relaxation time (b) and
T2 relaxation time (c) for different combinations of TR and TE values in the case of ρ = 2.8,
T1 = 1, 800 ms and T2 = 60 ms.

(a) (b) (c)

4. Optimal Parameter Configuration

After the evaluation of ρ, T1 and T2 CRLB behaviors, an analysis dedicated to the computation of
optimal TR and TE combinations is presented. In the following, it will be shown that a proper imaging
configuration can greatly improve the performances with respect to such a choice. In particular, the aim
of this section is to identify the ideal imaging parameters with respect to imaged tissues.

Let us show how the optimal imaging parameters can be determined. Initially, we have focused on
the minimization of T2 CRLB, which consist in finding TE values that minimize the element (3, 3) of
the inverse of the Fisher matrix, I(θ), of Equation (6) for different spin-spin relaxation times T2. The
optimization has been performed by searching the three optimal TE values in the [82, 350] ms range for
a fixed value of TR. The evaluation has been done varying the tissue T2 relaxation times in the [20, 200]

ms range, obtaining the results shown in Figure 5. Some considerations can be drawn:
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• there is no TE value combination that is simultaneously ideal for tissues with different spin-spin
relaxation times. As a consequence, we can only find the TE combination that is ideal for a
specific tissue;
• by analyzing Figure 5, it can be noticed that the lowest TE value of the ideal configuration is

always equal to the lower bound of the considered variability range, which, in our case, was fixed
to 82 ms. As stated before, this value is the minimum echo time for the SE sequence accepted by
the Philips Achieva 3.0 T, the MR scanner we worked on;
• the two higher TE values, which are the red and the green lines of Figure 5, practically coincide.

This can be explained considering that we are interested in the estimation of relaxation times,
i.e., of decay rates. In order to achieve such a goal, it is crucial that the measurement of the
signal decrease, i.e., the ratio of the signal acquired in two different echo times. Therefore,
instead of values TE , it is only important the difference between them. A third echo time, TE(3),
equal to TE(2), allows us to compute twice the signal decay, which is the quantity in which we
are interested;
• the red and the green lines of Figure 5 show a clear trend: their values grow linearly when

increasing T2. In particular, we found that the distance with the blue line (i.e., lowest TE , 82 ms)
is a little bit bigger than the value of the considered spin-spin relaxation time, T2. For example, in
the case of T2 = 100 ms, the ideal echo times were TE = [83, 197, 205] ms; the last two values
are approximately 110% of (TE(1) + T2). By considering the other simulated T2 values, we found
that this coefficient is 110%±10%. Within this range, the CRLB of T2 can be considered constant.

Figure 5. TE values that minimize the CRLB of T2 for tissues with different spin-spin
relaxation times, T2. Three values have been considered: the blue line is for the lowest TE
value, the red line for the highest one and green for the intermediate one.

From these simulations, we can derive an empirical rule for the optimal TE selection: the lower one
should be fixed to the minimum value accepted by the MR scanner, while the other values should to be
set in the range of 100%–120% of the value of (TE(1) + T2), considering the T2 of the tissue in which
we are interested.
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A similar evaluation has been conducted for the minimization of T1 CRLB varying MRI scanner
repetition times TR, with a fixed value of TE; the results are shown in Figure 6. The higher TR value
is fixed to the right edge of the considered variability range, which we set equal to 4, 000 ms. The
intermediate and low TRs have similar values, which, starting from 500 ms in the case of tissue with
T1 = 700 ms, grow almost linearly up to 1, 400 ms for tissues with higher T1 (about 3, 000 ms). It is
hard to determine an empirical rule in this case; anyway, we can say that a choice of around 1, 000 ms
for TR(1) and TR(2) will fit a wide class of tissues, i.e., those with 1, 200 < T1 < 2, 000 ms.

Figure 6. TR values that minimize the CRLB of T1 for tissues with different spin-lattice
relaxation times, T1. Three values have been considered: the red line is for the highest TR
value, the blue line for the lowest one and green for the intermediate one.

Concluding this section, one more evaluation has been conducted. Instead of optimizing TR and TE
values separately, a joint minimization has been done. Nine acquisitions have been considered, related to
three repetition and three echo times. Among the three values, the lower and the higher have been fixed
to the search range bounds, so only the intermediate TE and TR values were variable. Results are shown
in Figure 7, respectively. It is evident from the figure that TE values can be considered independent from
T1, as far as TR from T2, proving the correctness of the separate optimization of the echo and repetition
times. In particular, from Figure 7a, we can state that tissues with equal T2, but very different T1 values
share the same three optimal echo times for T2 estimation, and vice versa. That said, the behaviors of
Figures 5 and 6, i.e., the minimization, one parameter at a time, are confirmed.

In order to easily apply the obtained results, the ideal acquisition parameters for different tissues
have been computed exploiting CRLB minimization in the case of a 1.5 T and a 3 T MRI scanner. The
results are shown in Tables 1 and 2 for T1 and T2, respectively. According to the results reported in
Figure 7, the minimizations have been computed independently for spin-lattice and spin-spin relaxation
time estimation. Tissue relaxation times have been simulated according to reference values present in
the literature [25], which are reported in Table 3.

In Table 4, optimal echo times in the case of gray matter T2 estimation for different minimum TE are
reported. It can be noticed that the lower optimal echo time is always the minimum and that the empirical
rule is confirmed.
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Figure 7. Optimal TE(2) (a) and TR(2) (b) values considering nine acquisitions in the case
of tissues with different T1 and T2 relaxation times. It can be noticed that the TE(2) value
is substantially independent from tissue spin-lattice relaxation time T1, as far as TR(2) from
spin-spin relaxation time T2.

(a) (b)

Table 1. Optimal repetition times, TR, for T1 estimation in case of different tissues and
numbers of acquisitions at 1.5 T and 3 T.

Tissue
1.5T 3T

2 images 3 images 4 images 2 images 3 images 4 images

liver 490; 4000 490; 510; 4,000 380; 490; 510; 4,000 650; 4,000 570; 650; 4,000 570; 570; 650; 4,000

skeletal muscle 720; 4,000 720; 720; 4,000 680; 720; 720; 4,000 1,090; 4,000 990; 1,090; 4,000 870; 990; 1,090; 4,000

heart 840; 4,000 770; 840; 4,000 770; 790; 840; 4,000 1,060; 4,000 910; 1,060; 4,000 770; 910; 1,060; 4,000

kidney 570; 4,000 430; 570; 4,000 430; 460; 570; 4,000 910; 4,000 790; 910; 4,000 750; 790; 910; 4,000

cartilage 760; 4,000 690; 760; 4,000 630; 690; 760; 4,000 880; 4,000 770; 880; 4,000 770; 780; 880; 4,000

white matter 690; 4,000 690; 710; 4,000 640; 690; 710; 4,000 850; 4,000 780; 850; 4,000 730; 780; 850; 4,000

gray matter 920; 4000 840; 920; 4000 800; 840; 920; 4,000 1,150; 4,000 980; 1,150; 4,000 910; 980; 1,150; 4,000

optic nerve 960; 4,000 960; 1,060; 4,000 960; 1,060; 1,100; 4,000 970; 4,000 910; 970; 4,000 910; 970; 1,030; 4,000

spinal cord 600; 4,000 550; 600; 4,000 450; 550; 600; 4,000 760; 4,000 660; 760; 4,000 660; 700; 760; 4,000

blood 1,120; 4,000 840; 1,120; 4,000 830; 840; 1,120; 4,000 1,120; 4,000 1,040; 1,120; 4,000 1,030; 1,040; 1,120; 4,000

Note that the usefulness of a proper TR and TE selection, besides the lower estimation variance,
consists also in reducing the acquisition time. In order to make such an advantage evident, Table 5
reports the achievable performance in the case of 16 images (4 TR and 4 TE values) when moving from
equally spaced to optimized acquisition parameters. In particular, the last column of Table 5 shows that
12 acquisitions, with properly chosen parameters, can lead to better results with respect to 16 equally
spaced images, while definitely reducing the global acquisition time.
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Table 2. Optimal echo times TE for T2 estimation in case of different tissues and numbers
of acquisitions at 1.5 T and 3 T.

Tissue
1.5T 3T

2 images 3 images 4 images 2 images 3 images 4 images

liver 82; 134 82; 134; 138 82; 134; 138; 146 82; 134 82; 134; 134 82; 134; 134; 142

skeletal muscle 82; 130 82; 130; 138 82; 130; 138; 1;400 82; 132 82; 132; 144 82; 132; 144; 146

heart 82; 124 82; 124; 134 82; 124; 134; 136 82; 132 82; 132; 140 82; 132; 140; 148

kidney 82; 158 82; 158; 168 82; 158; 168; 188 82; 144 82; 144; 154 82; 144; 154; 164

cartilage 82; 116 82; 116; 116 82; 116; 116; 122 82; 114 82; 112; 114 82; 112; 114; 120

white matter 82; 162 82; 162; 188 82; 162; 188; 208 82; 162 82; 162; 178 82; 162; 178; 214

gray matter 82; 210 82; 210; 244 82; 210; 244; 280 82; 192 82; 192; 218 82; 192; 218; 240

optic nerve 82; 192 82; 192; 222 82; 192; 222; 250 82; 168 82; 168; 196 82; 168; 196; 240

spinal cord 82; 160 82; 160; 192 82; 160; 192; 208 82; 174 82; 174; 190 82; 174; 190; 212

blood 82; 516 82; 516; 558 82; 516; 558; 620 82; 436 82; 436; 562 82; 436; 562; 588

Table 3. Mean spin-lattice and spin-spin relaxation times for the considered tissues at 1.5 T
and 3 T.

Tissue
1.5T 3T

T1 T2 T1 T2

liver 576 46 818 42

skeletal muscle 1,008 44 1,412 50

heart 1,030 40 1,471 47

kidney 690 55 1,194 56

cartilage 1,038 44 1,156 43

white matter 884 72 1,084 69

gray matter 1,124 95 1,820 99

optic nerve 815 77 1,083 78

spinal cord 745 74 993 78

blood 1,441 290 1,932 275

Table 4. Optimal echo times for T2 estimation of gray matter for acquisitions at 1.5 T in the
case of different minimum TE values.

2 images 3 images 4 images

minimum TE = 82 ms 82, 210 82, 210, 244 82, 210, 244, 280

minimum TE = 50 ms 50, 182 50, 182, 212 50, 182, 212, 234

minimum TE = 20 ms 20, 158 20, 158, 180 20, 158, 180, 210

Table 5. CRLBs for equally and optimally spaced TR and TE values.

Tissue CRLB: 16 images CRLB: 16 images Improvement CRLB: 12 images Improvement
parameter Equispaced Optimized (%) Optimized (%)

ρ 0.1562 0.1291 17.34% 0.1506 3.58%

T1 3144 1483 52.83% 1.960 37.66%

T2 2.708 1.808 33.23% 2.144 20.83%
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5. Numerical Experiments

Within this section, some numerical results are shown in order to validate the advantage of the optimal
selection of the imaging parameters according to the previously reported theoretical studies. A tissue
with parameters [ρ T1 T2] = [5.5 775 44.5] has been considered. Three noisy datasets (SNR = 30 dB)
have been simulated, each one composed of four acquisitions. The parameters of Dataset 1 have been
chosen according to the results of Figures 5 and 6 in order to optimize the estimation for the considered
tissue. Datasets 2 and 3 have been generated with non-ideal parameters. The dataset characteristics are
summarized in Table 6.

Table 6. Acquisition parameters: three datasets composed of four images.

Repetition Times (s) Echo Times (ms) SNR (dB)

Dataset 1 0.55, 4.0 80, 140 30

Dataset 2 0.75, 4.0 80, 170 30

Dataset 3 0.90, 4.0 80, 200 30

To asses and validate the CRLB studies, the estimation of the relaxation times has been implemented
via Monte Carlo simulation. In particular, a maximum likelihood estimator (MLE) has been set up in
the complex domain. Considering that the noise is circularly Gaussian distributed, MLE corresponds
to a non-linear least squares (NLLS) estimator [18]. It is important to note that the previously reported
theoretical studies about the optimal selection of the imaging parameters are valid for any unbiased
estimator, since CRLBs are related only to the acquisition model. Among different estimators, NLLS
has been chosen thanks to its low computational times and complexity. We recall that the choice of the
optimal estimator is not the aim of this paper.

Table 7. Estimator performances: three datasets composed of four images.

Parameter True Value
Dataset 1 Dataset 2 Dataset 3

Mean Variance Mean Variance Mean Variance

ρ̂ 5.5 5.52 0.20 5.58 0.47 5.79 2.56

T̂1 775 776.1 1662 776.5 2615 776.5 3, 566

T̂2 44.5 44.54 3.58 44.49 7.95 44.32 20.82

The NLLS estimator for the ρ, T1 and T2 parameters has been implemented on the three datasets. A
quantitative analysis of the results, in terms of estimation means and variances, has been reported in
Table 7. By analyzing it, it is possible to infer that the estimator means are very close, while
variances significantly vary from one dataset to the other. In particular, the smallest variances
are obtained in the case of Dataset 1. This fully agrees with the theoretical studies reported in
Section 4; as a matter of fact, Dataset 1 has been generated by using the previously developed optimal TE
and TR parameter selection for the considered relaxation times. It is evident that choosing a non-ideal
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imaging parameters configuration can lead to very inaccurate results. For example, the T2 estimator
variance of Dataset 3 is approximately six times larger than the one of Dataset 1. In order to visualize
such results, the normalized standard deviations of ρ, T1 and T2 in the case of Datasets 1, 2 and 3 are
reported in Figure 8.

Figure 8. Square root of the CRLB for proton density (blue), spin-lattice (T1) relaxation
time (green) and spin-spin (T2) relaxation time (red) for the dataset with different acquisition
parameters. CRLBs values have been normalized for the parameter values in order to be
plotted in the same graph.

The higher achievable accuracy in the case of optimal imaging parameters selection can also be
inferred from the empirical probability density functions of the estimators, reported in Figure 9. In
each image, the blue, the green and the red curves refer to Datasets 1, 2 and 3 of Table 6. As expected,
most of the presented estimators follow a Gaussian distribution, with a different width. Blue curves
obtained using Dataset 1, characterized by the optimal TR/TE values for the simulated tissue, are always
the narrowest (smallest variances). Moving to curves obtained from Datasets 2 and 3, the estimation
error becomes larger. Moreover, in the case of the ρ estimator, the results start showing a bias in the case
of Dataset 3, i.e., the one with the worst acquisition parameters, and the empirical PDF does not look
like a Gaussian function any more.

Figure 9. The empirical probability density function of the ρ (a), T1 (b) and T2 (c) estimators
in the case of Dataset 1 (blue line), Dataset 2 (green line) and Dataset 3 (red line). The true
values are ρ = 5.5, T1 = 775 and T2 = 44.5, respectively.

(a) (b) (c)
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Finally, one further simulation is presented. Signals from two different tissues have been simulated,
with parameters [ρ T1 T2] = [5 700 68] (spinal cord) and [ρ T1 T2] = [5 1190 115] (gray matter). Two
datasets composed of four acquisitions have been generated, with parameters reported in Table 8. Taking
into account the developed procedure, Dataset 1 parameters represent the ideal configuration for the first
tissue, while Dataset 2 is the ideal for the second one.

The empirical probability density functions for T1 and T2 estimators have been computed for both
datasets and are shown in Figures 10, respectively. Once again, The results validate the theoretical study
of Section 4. Estimation based on Dataset 1 (red line) shows lower variance in the case of spinal cord, i.e.,
the tissue with the lowest relaxation times (the left peaks of Figures 10). Considering gray matter, Dataset
2 (blue line) -based estimation gives better results, although the improvement of the T1 estimator is not
pronounced. Once again, the result highlights the need of properly tuning the acquisition parameters.

Table 8. Acquisition parameters in the case of two tissues; the datasets are composed of
four images.

Repetition Times (s) Echo Times (ms) SNR (dB)

Dataset 1 0.55 4.0 82, 160 26

Dataset 2 0.80, 4.0 82, 250 26

Figure 10. The empirical probability density function of the T1 (a) and T2 (b) estimators
in the case of Dataset 1 (blue line) and Dataset 2 (red line). Dataset 1 (blue line) imaging
parameters are ideal for tissues with lower T1 and T2. On the contrary, Dataset 2 (red line) is
ideal for the tissue with higher relaxation times.

(a) (b)

6. Conclusions

Within this paper, an analysis on the spin echo signal model in MR imaging has been addressed. In
particular, Cramer–Rao lower bounds for relaxation time estimation in the case of a complex Gaussian
acquisition model have been evaluated. Several CRLB-based evaluations have been presented in order to
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investigate the possibility of finding the optimal, in terms of reconstruction accuracy, imaging parameter
configuration for the estimation of T1 and T2 maps. According to these theoretical studies, an empirical
rule together with the identification of the optimal imaging parameter combination (echo and repetition
times) in case of different tissues (different T1 and T2) has been proposed. Moreover, the optimal
acquisition parameters for several tissues have been computed for both 1.5 T and 3 T acquisitions. The
theoretical results have been numerically validated on different datasets. It should be underlined that
such optimal parameters are independent from the implemented estimators, as CRLBs only depend on
the signal model. Once the data have been acquired, different estimators proposed in the literature can
be applied. It is important to underline that the theoretical studies reported within the paper can be easily
adapted to different imaging sequences.

Appendix

From [16], CRLBs may also be expressed in a slightly different form with respect to Equation (6). In
particular, it yields:

− E
[
∂2 ln p(y;θ)

∂θ2

]
= E

[(
∂ ln p(y;θ)

∂θ

)2
]

(7)

From Equation (4), the log-likelihood function related to N complex acquisitions is:

log[p(y;θ)]=−N log(2πσ2)− 1

2σ2

N∑
k=1

[
f 2(θ)+y2R(k)+y

2
I (k)−2f(θ)yR(k) cos(φ)−2f(θ)yI(k) sin(φ)

]
where subscript k refers to k-th acquisition, i.e., the MRI scan with parameters TR(k), TE(k).
The partial derivatives can be computed as:

∂ ln p(y;θ)

∂ρ
= − 1

2σ2

N∑
k=1

[
∂f 2(θ)

∂ρ
− 2

∂f(θ)

∂ρ
(yR(k) cos(φ) + yI(k) sin(φ))

]
∂ ln p(y;θ)

∂T1
= − 1

2σ2

N∑
k=1

[
∂f 2(θ)

∂T1
− 2

∂f(θ)

∂T1
(yR(k) cos(φ) + yI(k) sin(φ))

]
∂ ln p(y;θ)

∂T2
= − 1

2σ2

N∑
k=1

[
∂f 2(θ)

∂T2
− 2

∂f(θ)

∂T2
(yR(k) cos(φ) + yI(k) sin(φ))

]
where the first order derivatives are:
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∂f 2(θ)

∂T2
= 2ρ2

TE
T 2
2

exp

(
−2TE
T2

)[
1− exp

(
TR
T1

)]2
In order to compute the expected value of Equation (7), Monte Carlo simulations have to

be implemented.
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