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Abstract: In this study we evaluate the capabilities of three satellite sensors for assessing 

water composition and bottom depth in Lake Garda, Italy. A consistent physics-based 

processing chain was applied to Moderate Resolution Imaging Spectroradiometer 

(MODIS), Landsat-8 Operational Land Imager (OLI) and RapidEye. Images gathered on 

10 June 2014 were corrected for the atmospheric effects with the 6SV code. The computed 

remote sensing reflectance (Rrs) from MODIS and OLI were converted into water quality 

parameters by adopting a spectral inversion procedure based on a bio-optical model 

calibrated with optical properties of the lake. The same spectral inversion procedure was 

applied to RapidEye and to OLI data to map bottom depth. In situ measurements of Rrs and 

of concentrations of water quality parameters collected in five locations were used to 

evaluate the models. The bottom depth maps from OLI and RapidEye showed similar 

gradients up to 7 m (r = 0.72). The results indicate that: (1) the spatial and radiometric 
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resolutions of OLI enabled mapping water constituents and bottom properties; (2) MODIS 

was appropriate for assessing water quality in the pelagic areas at a coarser spatial 

resolution; and (3) RapidEye had the capability to retrieve bottom depth at high spatial 

resolution. Future work should evaluate the performance of the three sensors in different 

bio-optical conditions. 

Keywords: satellite remote sensing; Lake Garda; aquatic optics; remote sensing reflectance; 

fieldwork activities 

 

1. Introduction 

Since the 1980s, satellite remote sensing represents an opportunity for synoptic and multi-temporal 

viewing of water quality of lakes [1–3]. Overall, these applications require sensors which operate in 

the visible-near infrared wavelengths [4], with high radiometric sensitivity [5] and a spatial/temporal 

resolution to adequately capture the hydrological and limnological processes in the case study. As a 

result, most of the work has been more accomplished with the latest generation of ocean colour sensors 

(i.e., MODIS and MERIS) and with Thematic Mapper (TM), an Earth observing sensor of the Landsat 

program. The most common methods to retrieve water quality from these sensors have been recently 

reviewed by Odermatt et al. [6]. They provided a comprehensive overview of water constituent 

retrieval algorithms in for coastal waters and lakes, including empirical approaches and physics-based 

bio-optical models. 

The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument, onboard both Terra and 

Aqua spacecraft (a NASA-centered international Earth Observing System), provides 12 bit imagery in  

36 bands, ranging from 0.4 to 14.4 μm. MODIS is operating since 1999 (2002 for the MODIS onboard 

Aqua), viewing the entire surface of the Earth every one to two days. Within a viewing swath width of 

2330 km, MODIS acquires data at three spatial resolutions (250 m, 500 m and 1 km). In particular, the 

MODIS dataset at 1 km resolution has been utilised in many studies for assessing the concentrations of 

water quality parameters in lakes. e.g., Chang et al., Horion et al., and Hu et al. [7–9] used MODIS to 

monitor phytoplankton in Lake Okeechobee (USA), in Lake Tanganyika (East African Rift) and Lake 

Taihu (PRC) respectively; Kaba et al., and Zhang et al. [10,11] assessed suspended particulate matter 

(SPM) in Lake Tana (Ethiopia) and Lake Taihu (PRC), respectively from MODIS time-series. 

The Medium Resolution Imaging Spectrometer (MERIS) instrument provides 12 bit imagery, in  

15 bands (from 0.4 to 1.04 μm). MERIS was part of the core instrument payload of the ESA Envisat-1 

mission, which has been operating from 2002 to 2012. With a spatial resolution of 300 m, which 

therefore offered improved possibilities for monitoring of small to medium-sized lakes, the 10-years 

long record of MERIS imagery have been widely used to assess water quality in many lakes. e.g., 

Giardino et al., Odermatt et al., and Bresciani et al. [12–14] in the European peri-Alpine lakes; 

Matthews [15] in South African inland waters; Ali et al., and Binding et al. [16,17] in North  

America’s lakes. 

The longest temporal record of satellite imagery suitable for lake studies has been provided by the 

Landsat program. Landsat data have been acquired routinely for over 40-years: starting with Landsat  
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4 TM (launched in 1982) and now ongoing with the Landsat-8 Operational Land Imager (OLI), 

launched in 2013. Although TM shows lower radiometric sensitivity and larger bandwidths with 

respect to the ocean colour sensors, its spatial resolution of 30 m (combined with a revisiting time of 

16 days,) made the sensor attractive for lake studies. Verpoorter et al. [18] used Landsat imagery to 

produce a global inventory of lakes: it contains geographic and morphometric information for  

~117 million lakes with a surface area larger than 0.01 km2. Then, water quality of lakes from Landsat 

has been investigated worldwide; e.g., in Asia [19,20], in Europe [21–23], in North America [24,25], 

in Africa [26]. Retrospective analyses with Landsat imagery were performed by Dekker et al. [27] for 

benthic cover change detection in a shallow tidal Australian lake and by Lobo et al. [28] for mapping 

the total suspended solids of the Tapajós River (Brazil) from 1973 to 2013. Pahlevan et al. [29] 

observed how the improved design of OLI (with respect to the previous sensors onboard of Landsat) is 

indeed very promising for inland water studies.  

Finally, finer scale studies of aquatic remote sensing have been based on higher-spatial resolution 

satellite sensors (e.g., QuickBird, Ikonos, WorldWiew-2), although those sensors are known to have 

inferior signal to noise ratio compared to ocean colour systems [30,31] and are not completely suitable 

in aquatic remote sensing [32]. Their high spatial resolution (≥5 m) makes those systems very 

attractive in spatial heterogeneous areas. In particular, many studies [33–37] have shown how those 

sensors are suitable for mapping bottom properties and depth if in situ data for calibrating the 

algorithms are available. 

In this study, we focus on Lake Garda, a large deep Italian lake characterised by clear waters and 

coastal areas colonised by submerged macrophyte beds. Previous remote sensing studies over Lake 

Garda mostly used MERIS and Landsat TM imagery to assess water composition in the lake [23,38–40], 

while airborne imaging spectrometry was used to assess bottom depth and benthic cover [41–43]. In all 

those studies, the retrieval of water components and bottom properties was achieved with  

physics-based models, which basically enable the correction of atmospheric effects, the conversion of 

the water reflectance first into inherent optical properties (IOPs) and then into concentrations of water 

components such as chl-a, SPM and coloured dissolved organic matter (CDOM). The in-water 

physics-based models were parameterized based on a long term database of ~150 records collected 

from 2000 to date [23,43,44]. In case of optically shallow waters the approach also provides 

information on benthic substrate type and bottom depth.  

In this study we evaluated the applicability of currently available satellite sensors to retrieve water 

composition and bottom depth in Lake Garda. The objectives in this study are: (1) to investigate the 

suitability of MODIS and OLI to estimate the concentrations of water components in the pelagic areas 

of the lake; (2) to evaluate for the first time the capability of OLI and RapidEye to retrieve the bottom 

depth in shallow waters. To all imagery, we applied a consistent physics-based processing chain to 

convert the radiances measured from satellite sensors into water reflectance, inherent optical 

properties, concentrations of water constituents and bottom depth according to Bresciani et al. [42] and 

Giardino et al. [43]. The models results were evaluated with in situ data collected during the  

satellite overpasses.  
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2. Materials and Methods 

2.1. Study Area and Fieldwork Activities 

Located in the Subalpine ecoregion, Lake Garda is the largest lake in Italy, having an area of 370 km2, 

a water volume of 50 km3 and a maximum depth of 346 m. It represents an essential strategic water 

supply for agriculture, industry, energy, fishing and drinking [45]. Moreover, it is an important 

resource for recreation and tourism with its attractions of landscape, mild climate and water quality. 

According to Organisation for Economic Co-operation and Development (OECD) is classified as an 

oligo-mesotrophic lake [46]: phosphorous concentration in the epilimnium is below or around 10 µg/L, 

the average concentration of chl-a is 3 mg/m3, the Secchi disk depths vary between 4–5 m in summer 

and 15–17 m in late winter [47]. With respect to morphology the lake can be divided in two different 

areas: the largest sub-basin extended from north to southwest area, characterised by deepest bottoms, 

and the south-eastern shallower sub-basin. The northern part of the lake is characterized by mountain 

slopes mainly covered by forests or rural territories, whilst the southern part of the lake is surrounded 

by morenic and alluvial plains and low hills with a mix of urbanised and rural land use [45].  

To perform an assessment of water constituents and bottom retrievals from multi-resolution satellite 

sensors with the use of match-ups with in situ data, a field campaign was conducted on 10 June 2014. 

A total of 5 investigated stations, distributed in the southern part of Lake Garda (Figure 1), nearby the 

Sirmione Peninsula extending for about 4 km into the lake. The field campaign focused in the southern 

part of Lake Garda as it encompasses pelagic waters as well as and a gentle gradient in bottom  

depth [42]. At each station, Secchi disk (SD) was measured and an integrated water samples between 

the surface and the SD were collected using a Van Dorn water sampler. Water transparency in the 

pelagic waters (Stations 2, 3 and 4, Figure 1) was high as the SD depths were equal to 8 m; in station 1 

SD was 7 m, which is close to the bottom depth, while in station 5 the bottom was visible and a depth 

of 3 m was measured. 

Figure 1. The southern part of Lake Garda (northern Italy) imaged from the Landsat-8 OLI 

sensor on 10 June 2014 with location of in situ stations distributed close the peninsula of 

Sirmione. The grey-line shows the 7 m bathymetry and the yellow box identifies the study 

area for bathymetric retrieval. 
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Water was filtered in situ for subsequent laboratory analysis. chl-a concentrations extracted with 

acetone were determined via spectrophotometric method [48]. SPM concentrations were determined 

gravimetrically [49]. CDOM was determined as the absorption coefficient of CDOM (acdom(λ)) at  

440 nm according to Kirk [50]. The absorption spectra of phytoplankton aph(λ) and non-algal-particle 

anap(λ) were also determined as follows. The absorption spectra of particles ap(λ) retained onto the 

GF/F filters were measured using a laboratory spectrophotometer [51]. The filters were then treated 

with cold acetone (90%) to extract pigments and the absorption spectra of non-algal-particle anap(λ) of 

these bleached filters were measured. The absorption spectrum of phytoplankton aph(λ) was derived by 

subtracting anap(λ) from ap(λ) spectra. In all stations a HydroScat-6 backscattering sensor (HOBILabs, 

Tucson, AZ, USA) was used to estimate the backscattering coefficient of the particles (bbp(λ)) [52] at 

442, 488, 510, 550, 620 and 676 nm. In all stations (expect station 5, cf. Figure 1), remote sensing 

reflectance (Rrs) values above surface were also measured with a WISP-3 spectroradiometer  

(Water Insight, Wageningen, The Netherlands) in the optical range of 400–800 nm. 

2.2. Satellite Image Processing 

Synchronous to fieldwork activities satellite images from MODIS, OLI and RapidEye (Table 1) 

were acquired for 10 June 2014. In order to assess water quality parameters from the radiances 

measured at satellite levels the physically based approach described by Cracknell et al. [52] was 

adopted. In this approach the concentrations of water constituents (e.g., chl-a, SPM and CDOM) are 

related to the bulk inherent optical properties (IOPs, i.e., absorption and back-scattering coefficients) 

via the specific inherent optical properties (SIOPs). The IOPs of the water column are then related to 

the apparent optical properties (e.g., Rrs) and hence to the top-of-atmosphere radiance. These relations 

are described by the radiative transfer (RT) theory and can be implemented in RT numerical models 

such as HydroLight-Ecolight [53] and Modtran [54] for in-water (including the bottom in case of 

shallow waters) and in-atmosphere components, respectively. To determine the water constituents 

from satellite data, analytical methods based on simplification of RT models can be used [5].  

Table 1. Summary of satellite data acquisitions used in this study. The number of bands 

refers to those used in this study. 

Satellite Data Access UTC Pixel Size (m) Number of Bands NEΔRrs(Δ)E

Aqua MODIS Ocean Colour 1 12:50 1000 9 0.018% 
Landsat 8 OLI GLOVIS 2 10:04 30 5 0.010% 

RapidEye 3 (Choma) EOLI-SA 3 11:13 5 5 0.221% 
1 oceancolor.gsfc.nasa.gov; 2 glovis.usgs.gov/; 3 earth.esa.int/EOLi/EOLi.html. 

In this study a consistent physics-based processing chain [42,43,55] was applied to MODIS, OLI 

and RapidEye imagery to enable multi sensor comparisons where the results depend only on the sensor 

characterisitics (e.g., spatial, spectral, radiometric resolutions, Table 1). 

In particular; the vector version of the Second Simulation of the Satellite Signal in the Solar 

Spectrum (6SV) code [56,57] was adopted to correct the images for the atmospheric effects. The 6SV 

(version 1) code is a basic RT code; based on the method of successive orders of scatterings 

approximations and capable of accounting for radiation polarization. An input parameter allows 
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activating atmospheric correction mode. In this case; the ground is considered to be Lambertian; and as 

the atmospheric conditions are known; the code retrieves the atmospherically corrected reflectance 

value that will produce the radiance entered as input. The 6SV was executed by an Interactive Data 

Language (IDL) tool that uses IDL widgets as graphical user interface. Therefore; input data for the 

6SV runs were the level 1 satellite radiances achieved from metadata attached to imagery files. The 

level 1 radiances for OLI data were adjusted using spectral gains suggested by Pahlevan et al. [29]. For 

all images 6SV was run with a mid-latitude summer climate model; an aerosol model suitable for the Lake 

Garda region and a horizontal visibility of 20 km (±2; depending on the image acquisition time); the latter 

derived from in situ measurements of the aerosol optical thickness. The 6SV-derived atmospherically 

corrected reflectances were then converted into Rrs (in sr−1 units) above water dividing by π.  

For each scene the environmental noise-equivalent remote sensing reflectance differences 

NEΔRrs(Δ)E, was computed according to Wettle et al. [58] to assess the overall sensitivity of the scene 

signals (depending on sensor, atmosphere and water system) for detecting reflectance changes. Table 1 

shows the spectrally-averaged lower level of noise computed on homogenous subsets of pelagic 

waters. For OLI and MODIS scenes comparable and rather low values of NEΔRrs(Δ)E were found. This 

confirms the findings by Pahlevan et al. [29] of high SNR for OLI, whilst the slightly higher value of 

MODIS is lower than assessed by Hu et al. [59] for open ocean waters, as in the Lake Garda image 

spatial variability in the signal may also be originated by adjacent lands. The RapidEye image has a 

higher value of NEΔRrs(Δ)E which is explained by the lower radiometric sensitivity of the sensor and 

the higher spatial resolution. 

To determine water constituents and bottom depths from satellite-derived Rrs, the spectral inversion 

procedure implemented in Bio-Optical Model Based tool for Estimating water quality and bottom 

properties from Remote sensing images (BOMBER) [55] was used. BOMBER is a software package 

programmed in IDL and uses IDL widgets as graphical user interface. Using semi-analytical models 

for optically deep and optically shallow waters, BOMBER simultaneously retrieves the optical 

properties of water column and bottom from remotely sensed imagery [55]. The parameterisation of 

the bio-optical model implemented in BOMBER was based on a comprehensive dataset of 

concentrations and SIOPs of Lake Garda waters [42,43,60]. 

In this study, the discrimination between shallow and deep water was established at 7 m 

bathymetry. The value is comparable to data gathered from fieldwork activities where an average SD 

depth of 8 m was measured in bathymetries deeper than 7 m (cf. Figure 1). Moreover, the 7 m depth is 

also comparable to highest depth at which BOMBER has been used [42,43] to produce reliable 

estimates of bottom depth in the study area.  

The spatial and radiometric resolutions of the sensors where assessed to establish whether the 

inversion was performed in optically deep and/or in optically shallow waters. As suggested by  

Dekker et al. [21], sensors NEΔRrs(Δ)E were used to assess suitability to accurately retrieve water 

constituents. According to the low NEΔRrs(Δ)E values OLI and MODIS Rrs data were spectrally inverted 

to assess the concentrations of water quality parameters. The RapidEye radiometric sensitivity 

(NEΔRrs(Δ)E = 0.221%) is not suitable for mapping small variations of water constituents that occur in the 

study area [21]. MODIS was not deemed suitable for the shallow waters analysis as due to the coarse 

spatial resolution the shallow waters occur mostly in the land-water mixed pixels. RapidEye was 

considered suitable for mapping shallow waters as the fine spatial resolution allows the bottom depth 
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of southern Lake Garda to be mapped at a high resolution. Based on the resolutions of the three 

sensors, the retrieval of water quality parameters in optically deep waters was performed only on 

MODIS and OLI while BOMBER was run for optically shallow waters for OLI and RapidEye to 

retrieve bottom depths. 

3. Results and Discussion 

3.1. Optically Deep Waters 

The optically deep waters considered within this study were investigated with OLI and MODIS 

sensors and in situ data gathered from the three more pelagic stations (i.e., 2, 3 and 4, cf. Figure 1). 

Widely stable water components conditions were encountered with generally low values of 

concentrations of water constituents. The measured average values in stations 2, 3 and 4 (cf. Figure 1) 

were 1.01 mg/m3 (±0.32), 0.52 g/m3 (±0.13) and 0.03/m (±0.02), for chl-a, SPM and CDOM, 

respectively. The total absorption and backscattering coefficients of particles were also indicating the 

transparency of water. For instance, at 442 nm, ap and bbp were respectively equal to 0.0633 m−1 

(±0.0200/m) and to 0.013/m (±0.0003). The SIOPs gathered on 10 June 2014 (Table 2 and Figure 2) 

were consistent with long term SIOPs mean values [42,43]. In particular, the small differences between 

the spectra of specific absorption of phytoplankton may reflect the low concentrations of chl-a 

compared to long term dataset (ranging between 2.3 and 4.0 mg/m3 [47]). 

Reliable estimations of water components within such a limited variation range depend on the 

accuracy and consistency of the parameterization of physics-based processing chain, and it can be 

assessed with the optical closure between modelled and measured Rrs spectra [5]. Six forward runs of 

the bio-optical model implemented in BOMBER were performed with all the relevant information 

gathered from in situ observations. In particular, three runs (one for each station) were performed with 

concentrations of chl-a, SPM and CDOM and SIOPs gathered on 10 June 2014 (Table 2 and Figure 2); 

three other runs (one for each station) were performed with the concentrations of chl-a, SPM and 

CDOM measured on 10 June 2014 and the long term SIOPs (Table 2 [42–44] and Figure 2). The 

modelled Rrs spectra were compared to the Rrs spectra derived from WISP-3 and atmospherically 

corrected satellite images respectively. As the change of variation of Rrs spectra between the three 

stations was very limited, the plot shows the average values only. For MODIS, only the Rrs spectrum 

corresponding to the most pelagic station (i.e., station 3, cf. Figure 1) was plotted because, for  

stations 2 and 4, MODIS data were contaminated by the signal coming from the adjacent lands.  

A feature that, the coarser spatial resolution sensors, already showed in Lake Garda data [40,60]. 

Table 2. SIOPs data used in the bio-optical modelling relative to long term mean values 

data and field measurements gathered on 10 June 2014. 

Coefficient 10 June 2014 Long Term 

Spectral slope coefficient of the exponential CDOM absorption (nm−1) curve 0.025  0.021  
Specific absorption of NAP at 440 nm (m2/g) 0.031  0.050  

Spectral slope coefficient of the exponential NAP absorption (nm−1) curve 0.012  0.012  
Specific backscattering coefficient of SPM at 555 nm (m2/g) 0.0082 0.0071 

Backscattering exponent of the power-law SPM curve 0.64 0.76 
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Figure 3 shows the convergence between modelled and measured Rrs spectra. Overall, the spectra 

all converge, in particular from 440 to 650 nm where the maximum difference (0.004 sr−1) is between 

MODIS and WISP-3. For the modelled spectra, a small difference in using the long term SIOPs and 

the SIOPs gathered on 10 June 2014 was observed, reflecting the small differences between the two 

SIOP sets (Table 2 and Figure 2). The comparison with WISP-3 showed a better closure by using the 

Rrs spectra modelled with the SIOPs measured on 10 June 2014, the comparison with 6SV-derived OLI 

and MODIS spectra instead showed a better closure by using the Rrs spectra modelled with the long 

term SIOPs. The Rrs divergence was slightly higher for MODIS: in the first channel with a drop and at 

longer wavelengths with an increase of the signal, probably due to adjacency effects which was 

anyway present in the most pelagic station.  

Figure 2. The specific absorption spectra of phytoplankton of Lake Garda. 
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Figure 3. Optical closure on 10 June 2014 in optically deep waters. The Rrs spectra above 

water are the average value for three stations (i.e., 2, 3 and 4, cf. Figure 1), except for 

MODIS where the spectra corresponding to station 3 is plotted. The thin continuous lines 

are the spectra simulated with the bio-optical model implemented in BOMBER from the 

concentrations of chl-a, SPM and CDOM measured on 10 June 2014 together with both 

the long term SIOPs (cyan line) and the SIOPs measured on 10 June 2014 (blue line).  
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Based on the optical closure analysis we decided to apply BOMBER: (1) with a parameterisation 

based on the long term SIOPs (the SIOPs measured on 10 June 2014 were used to validate the  

satellite-inferred estimation); and (2) in case of MODIS, only for the pixel matching station 3 and by 

excluding in the inversion process the first and the last two bands (i.e., using the 443–675 nm  

spectral range). 

3.2. Optically Shallow Waters 

The optically shallow waters considered in this study were investigated with OLI and RapidEye 

sensors and in situ data gathered from the two coastal stations (cf. Figure 1): station 1 where SD depth 

was comparable to the 7-m bathymetry and station 5, where bottom depth was 3 m. 

Similarly as for the deeper stations, clear water conditions were encountered. The average 

concentrations for the two stations for chl-a, SPM and CDOM were 0.74 mg/m3 (±0.13), 0.74 g/m3 

(±0.09) and 0.05 m−1 (±0.03), respectively. The absorption coefficient of particle ap at 440 nm and the 

backscattering coefficient of particles bbp at 442 nm, were respectively equal to 0.0703 m−1  

(±0.0190 m−1) and to 0.018 m−1 (±0.0015). 

The optical closure in optically shallow waters (Figure 4) was evaluated based on two forward runs 

of the bio-optical model implemented in BOMBER, with the concentrations of chl-a, SPM and CDOM 

gathered on 10 June 2014 and the long term SIOPs. The runs were also calibrated with bottom depths 

measured on 10 June 2014 and bottom albedo based on long term data [42]. The two modelled Rrs 

spectra were compared to the Rrs spectra derived from WISP-3 (for station 1 only) and satellite images, 

respectively. In both stations the closure was good, both in terms of magnitude and spectral shapes. 

Only RapidEye in station 1 was diverging because the station is close to optically deep waters and the 

sensor noise do not allow smaller signals to be detected [43,61]. 

Figure 4. Optical closure on 10 June 2014 in optically shallow waters. The Rrs spectra 

above water are plotted for two stations at different depth (station 1 at 7 m and station 5 at 

3 m). The thin continuous lines are the spectra simulated with the bio-optical model 

implemented in BOMBER with the concentrations of chl-a, SPM and CDOM and bottom 

depth measured on 10 June 2014 and the long term SIOPs and bottom albedo. 
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Based on the optical closure analysis, the BOMBER was considered suitable for inverting the Rrs 

spectra measured from OLI and Rapid Eye. Following previous studies [62,63] and due to the 

homogenous conditions of water constituents measured in situ, BOMBER was run by keeping constant 

the concentrations of chl-a, SPM and CDOM.  

3.3. Validation and Mapping 

The results produced by applying BOMBER to satellite images, previously corrected for the 

atmospheric effects with the 6SV code, were compared to the match-ups with in situ data. Table 3 

shows the average values (for the three stations in optically deep waters except for MODIS with results 

for station 3 only), for the concentrations of chl-a, SPM and CDOM. Comparable results to in situ data 

were found both from OLI and MODIS, suggesting the capability of the method to assess water quality 

in clear lake waters. 

Table 3. Average concentrations (with standard deviation) of water constitutes from in situ 

and satellite images corresponding to three pelagic stations (i.e., stations 2, 3 and 4,  

cf. Figure 1). For MODIS the estimations are relative to station 3 only. 

Data Source chl-a (mg/m3) SPM (g/m3) CDOM (m−1) 

In situ 1.01 (±0.32) 0.52 (±0.13) 0.03 (±0.02) 
OLI 1.04 (±0.10) 0.69 (±0.08) 0.02 (±0.004) 

MODIS 0.83 0.41 0.01 

Figure 5. Bottom depth variation from RapidEye (left) and OLI (right) in the southern 

part of Lake Garda surrounding the Sirmione peninsula (cf. Figure 1). 
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Figure 5 shows the bottom depth maps retrieved from OLI and RapidEye, for waters within the 7-m 

isobath defined by a nautical chart from 1980. The Pearson correlation coefficient r of the two maps 

(with RapidEye image resampled according to the spatial resolution of OLI for a total of 5953 samples) 

was 0.72. The mapped bottom depths from both OLI and RapidEye reached 8 m, which is acceptable 

by considering that water level of Lake Garda can change of 1.1 m depending on water use and weather 

conditions [42]. In correspondence of stations 1 and 5, mapped bottom depths from OLI and RapidEye 

were comparable to in situ observations. In particular, for station 1 (cf. Figure 1), where the SD was 7 m 
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and close to bottom OLI and RapidEye were 6.78 m and 7.10 m, respectively; for station 5, the bottom 

depth from in situ, RapidEye and OLI was 3 m, 3.2 m and 3.8 m, respectively. 

4. Conclusions 

A physics-based approach which allows the concentration of water constituents and bottom depth 

from satellite images to be retrieved has been applied in southern Lake Garda (northern Italy). The 

method included the correction for the atmospheric effects with the radiative transfer 6SV  

code [56,57], the evaluation of the environmental noise-equivalent remote sensing reflectance 

differences NEΔ Rrs(Δ)E according to [58] and the use of the BOMBER tool [55] for estimating the 

water related products. The images were acquired on 10 June 2014 from MODIS, OLI and RapidEye 

sensors. During the satellite overpasses fieldwork activities were conducted to gather data for applying 

the 6SV code, testing the parameterisation of bio-optical model implemented in BOMBER and 

examining the imagery-derived products.  

Very clear water conditions (SD = 8 m) were observed during the image acquisition date with rather 

low concentrations of water constituents for the season (chl-a = 1.0 mg/m3; SPM = 0.52 g/m3 and 

CDOM = 0.03 m−1). The NEΔ Rrs(Δ)E analyses suggested that only MODIS and OLI were suitable for 

assessing such low variation of concentrations. Overall, the results of optical closure showed the good 

agreement between the 6SV-derived and in situ measured Rrs spectra, with highest divergence in the 

first MODIS band and in the last two RapidEye channels. The results also showed how MODIS was 

suitable for investigating the most pelagic station only and consequently not adapted to coastal areas 

and bathymetric investigations. A set of forward runs of the bio-optical model implemented in 

BOMBER suggested using the long term SIOPs for estimating both water constituents in the optically 

deep waters and bottom depths in the shallow waters surrounding the peninsula of Sirmione. The 

BOMBER-derived products showed good match-ups with in situ data. OLI and MODIS provided  

chl-a, SPM and CDOM data within the range of in situ measurements; the bottom depth maps from 

OLI and RapidEye were comparable between them (r = 0.72) and similar to field observations.  

This study indicates that the three sensors used have suitable characteristics to support 

environmental monitoring in Lake Garda. In particular MODIS was appropriate for assessing water 

quality constituents in the pelagic areas of Lake Garda. By adopting the calibration proposed by 

Pahlevan et al. [29], OLI was deemed suitable for both optically deep and shallow waters applications 

as both the spatial and radiometric resolutions enabled a full physics based inversion. Although 

RapidEye is not specifically designed for aquatic application the study indicated this imagery 

capability to reproduce lake bottom depth variation.  

To confirm the results of this exploratory study, future work should evaluate the performance of the 

three sensors in different bio-optical conditions. Furthermore, MODIS daily measurements could be 

used to support of environmental reporting in as demonstrated by Bresciani et al. [14] with MERIS 

data for European perialpine lakes. To achieve this, a quantitative assessment based on an extended 

match-up analysis using the long term records should be performed both on the method adopted in this 

study and on MODIS standard product suites.  
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