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Abstract: The disruptive innovation of smartphone technology has enabled the development

of mobile sensing applications leveraged on specialized sensors embedded in the device.

These novel mobile phone applications rely on advanced sensor information processes,

which mainly involve raw data acquisition, feature extraction, data interpretation and

transmission. However, the continuous accessing of sensing resources to acquire sensor data

in smartphones is still very expensive in terms of energy, particularly due to the periodic use

of power-intensive sensors, such as the Global Positioning System (GPS) receiver. The key

underlying idea to design energy-efficient schemes is to control the duty cycle of the GPS

receiver. However, adapting the sensing rate based on dynamic context changes through a

flexible middleware has received little attention in the literature. In this paper, we propose

a novel modular middleware architecture and runtime environment to directly interface with

application programming interfaces (APIs) and embedded sensors in order to manage the

duty cycle process based on energy and context aspects. The proposed solution has been

implemented in the Android software stack. It allows continuous location tracking in a

timely manner and in a transparent way to the user. It also enables the deployment of sensing

policies to appropriately control the sampling rate based on both energy and perceived

context. We validate the proposed solution taking into account a reference location-based

service (LBS) architecture. A cloud-based storage service along with online mobility

analysis tools have been used to store and access sensed data. Experimental measurements
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demonstrate the feasibility and efficiency of our middleware, in terms of energy and

location resolution.

Keywords: context-awareness; energy-awareness; location-based services; middleware;

mobile sensing applications

1. Introduction

The disruptive innovation of smartphones, provided with specialized sensors and more powerful

computing and communication capabilities, is leading the development of cutting-edge mobile sensing

applications applied to a broad range of sectors, like healthcare, social networks, transportation, among

others [1]. It is expected that smartphones will also have on-board biometric, pressure and environmental

sensors in the future, which will fully pave the way for smarter and more personalized applications. In

any case, a common requirement of mobile phone sensing applications is that they need a client-side

middleware application running on the smartphone for reading an internal phone’s sensor and reporting

sensed data to an external storage entity (i.e., web server or mobile computing cloud) to enable either

individual or community data analysis [1]. The data sensor acquired is typically sent over the wireless

communication channel (e.g., via Wi-Fi or a cellular network) after locally performing a set of stages to

select relevant features, filter redundant information and controlling data transmission behavior through

the deployment and enforcement of low-level decision policies. At each stage, different algorithmic

solutions have been envisaged to perform learning and classification tasks, and their main requirements

depend on the application type and its impact on CPU and battery components. Innovations in

battery technology have lagged behind the processing power of mobile devices, and thus, the design

requirements of mobile sensing applications assume energy resources as the main constraint. As a matter

of fact, according to McKinsey analysis [2], in the last decade, battery capacity has only doubled, while

the processing speed of mobile phones has increased 12-fold.

In this context, energy resources are by far the most restrictive resource in smartphones nowadays.

Furthermore, with the increased mobile phone usage in people’s everyday activities, this trend is

expected to persist in the future. The design and implementation of mobile sensing applications to

reduce energy consumption and hence extend battery lifetime is of paramount importance in the mobile

computing arena, especially to efficiently support applications that demand continuous sensing, that is

highly frequent raw data acquisitions from sensors embedded in the smartphone [1]. In this regard, a

commonly-used approach to save energy is to control the actions of sensors and suspend them when

necessary. This is referred to in the literature as duty cycle adaptation, whose aim is to adjust parameters

governing the sensor reading processes to reduce energy consumption. Notice that this approach is

very attractive for mobile sensing applications that rely on location information, such as location-based

services (LBSs), where the Global Positioning System (GPS), its core enabler, can significantly drain

battery resources of smartphones if aggressive location readings are performed.

With this regard, the vast majority of previous works in the literature addressing the need of

energy-efficient solutions have been focused on proposing design guidelines and strategies for energy
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optimization. In this sense, it is widely accepted that duty cycling of, for instance, a smartphone GPS

receiver provides considerable energy efficiency (i.e., increasing the sensing interval results in energy

savings due to less use of the GPS receiver). As will be detailed later on in the paper, achieving such a

goal for current smartphones is not straightforward. In particular, in an open source smartphone platform,

like Android, the existing location application programming interfaces (APIs) only provide access to the

system location services to obtain periodic updates of the device’s geographical location. In the case of

Android, the location manager does not allow on-the-fly sensing interval adjustments, which are crucial

to efficiently control the duty cycle of the device and ultimately to reduce energy consumption.

On the other hand, we strongly believe that a middleware solution should provide a modular

framework to deploy mechanisms to properly adjust sensing intervals without jeopardizing the quality

of mobility analysis due to inappropriate resolution of location information at the GPS sensing stage.

Note that sacrificing location resolution (i.e., the poor resolution of GPS readings) might compromise

the effectiveness and credibility of location-based information systems, which mainly rely on sensing

location datasets. Therefore, a modular middleware design is needed to drive tradeoffs between

energy consumption and location resolution for location-based applications (and more likely, for all

sensor-based energy-expensive applications on smartphones).

In this context, in our previous work [3], we analyzed the main requirements for developing an

energy-aware middleware for the support of location-based mobile applications with cloud computing

interaction. In our attempts to fulfill the energy-efficient design requirements of mobile sensing

applications, in this paper, we extend our previous work by proposing a novel middleware architecture

that tracks the spatio-temporal evolution of users’ positions to adapt the GPS sampling rate driven by

user context-awareness in order to reduce energy consumption. The proposed middleware has been

implemented between the application layer and the location manager in the Android software stack. It

allows continuous location tracking in a timely manner and in a transparent way for the user. Basically,

a service starts listening to location updates for some time interval and turns off after some elapsed

time, removing all callbacks to the location manager. Then, the on and off times are re-scheduled

dynamically depending on the way the user moves (e.g., speed, changes of speed, etc.), on energy

resources availability and the target of the application that would enforce the context-aware energy

savings approach proposed in this paper. In the following, we summarize the main contributions of

our work:

• The key contribution of our work is the design of a novel mobile phone middleware architecture

that provides support for the deployment of energy-efficient handling and transmission policies

for sensor information streams via a novel lightweight API. Our middleware is highly modular. It

is implemented on the Android platform, and it consists of three main building blocks: dynamic

scheduler, mobility profiler and batch transmission. Each of these modules can be modified in

isolation without affecting others, whereas high-level application-dependent sensing policies can

be deployed and enforced easily in the middleware architecture.

• We highlight the existing research work done so far in the field and take a step forward by providing

direct interfacing with the mobile phone’ APIs and embedded sensors to enable effective duty

cycle control based on observed context changes in the user situation. This latter idea is referred
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to as context-awareness, that is the dynamic adaptation of mobile phone sensing applications’

configuration parameters according to the sensing surrounding context.

• We validate the proposed middleware solution assuming location as the key user context

information considered in prominent sensing applications [4]. This information has been pivotal

to developing predictive models of human behavior [5], which can be taken into account in other

potential systems in the future. The adaptive location sensing mechanisms that control the duty

cycle process to save energy are mainly based on location knowledge, and they are particularly

tailored to fulfill the requirements of LBSs.

• Lastly, unlike most of the existing work in the literature, we integrate the proposed client-side

middleware solution into a large-scale mobile phone sensing system that allows for continuous

location tracking in a timely manner and in a transparent way for the user, maintaining a

compromise with location resolution. As mentioned earlier, an LBS scenario is used to

demonstrate the effectiveness of our middleware solution to efficiently collect sensor data and to

fulfill data resolution requirements. However, our platform can be exploited in other applications

that need to discover and take advantage of contextual information. We have conducted extensive

experiments to evaluate the functionality of our middleware solution in Android smartphones using

different test sets.

We strongly believe that the ideas presented in this work may encourage application developers

to design energy-efficient applications in other application domains that require systemic sensing

information from smartphones’ sensors. The rest of the paper is organized as follows. Section 2

provides a summary of the related work. Then, we describe in Section 3 the current location sensing

mechanisms in smartphones. Section 4 details the proposed middleware architecture for energy-efficient

sampling and transmission of data sensor streams. In Section 5, we introduce a reference location-based

mobility service framework in which the proposed solution is holistically validated. Section 6 presents

experimental results to evaluate the benefits of our scheme. Then, mobility information quality is

analyzed in Section 7, and finally, in Section 8, conclusions are drawn and future research directions

are exposed.

2. Related Work

Location-based technology can be classified into two groups depending on the source of the signal

to identify the location of users: terrestrial network-based methods based on various types of network

measurements and satellite-based methods. The work presented in this paper falls into the second group,

as the middleware exploits information acquired from GPS technology. Related work on the areas of this

paper are provided hereafter.

Work by van der Spek et al. [6] developed a process and database architecture for collecting data on

pedestrian movement, focusing on three European city centers. The authors made it evident that GPS

offers a widely useable instrument to collect invaluable spatial-temporal data on different scales and in

different settings, adding new layers of knowledge to urban studies. The authors highlight the use of

GPS as a worldwide applicable sensor technique to collect spatial-temporal data and quantitative and

qualitative information and its potential to carry out research in favor of urban planning and design. An
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application of the use of data acquired through location-based services is presented by van Lammeren et al. [7].

The authors present the Spatio-Temporal in-situ Experiences as Data (STEAD) approach for interpreting

data to sense cultural-historic facts and anecdotes in landscapes, providing information about what

has been sensed by whom, where and when, information that is exploited to define zones of interest.

However, the critical aspects that have a direct impact on energy-efficient handling and transmission of

sensor information streams is dismissed.

Different proposals for LBSs in the literature have taken into account energy constraints. For instance,

in [8], a study on minimizing the power consumption of LBSs on mobile phones is presented. Different

categories of LBSs are identified and grouped by service running time and power consumption. From a

study of how existing LBSs consume power, the authors drew some conclusions: such services consume

considerably more power than other mobile phone services; to save power, the GPS should be off as

much as possible; and LBSs should try to reduce the amount of data transmitted to an external consumer.

In relation to this, the authors in [9] identified four factors that lead to energy consumption in mobile

devices: static use of the location sensing mechanism, absence of the use of other sensors, lack of

cooperation among applications and ignoring the battery level while sensing. Then, they proposed

a location-sensing framework to improve energy efficiency as design principles on Android-based

smartphones. At a higher level of abstraction, in [10], the authors utilize the location-time history of the

user along with the user’s past velocity to adaptively turn on GPS only when the estimated uncertainty

exceeds a predefined threshold. Additionally, the authors propose user movement as estimated by

accelerometer signal processing to save energy for further usage.

The authors in [11] present the SenseLess application to perform energy-efficient mobile sensing.

The proposed application makes use of less power-hungry sensors (e.g., accelerometer) as a means to

augment location change detection in LBSs. SenseLess is able to detect when a user is not moving, and

then, it stops sensing the GPS position to save energy. It makes use of a GPS sensor, and when no GPS

signal is detected, it resorts to Wi-Fi technology to acquire location information. The authors argue that

compared to a GPS-only approach, the SenseLess application is able to reduce energy consumption by

more than 58% when determining the user’s location and maintaining the accuracy of the sensed data.

This approach, however, does not consider the resolution of locations, which is of paramount importance

for LBSs, as it is directly related to the quality of information.

The work in [12] proposes a continuous sensing engine for smartphone applications that requires

continuous monitoring of human activities and context. It develops different sensing, processing and

classification pipelines for three smartphone sensors (accelerometer, microphone and GPS). Similar

to [11], motion context change is detected using the accelerometer, and then the GPS sampling rate

is adjusted, taking into account the combination of mobility detection, sensing duration and remaining

energy budget. Additionally, it adapts the duty cycle when any of these factors change. Focusing on the

GPS sampling mechanism, the authors in [12] propose an adaptive sampling schedule based on a Markov

decision process that aims to estimate the GPS sampling schedule to minimize a given location error

requirement. However, the applicability of this approach to other applications is not straightforward, as

new pipelines need to be constructed according to specific requirements.

In [13], Global-Sense (G-Sense) is described as a middleware with an architecture that integrates

wireless sensor networks, both static and mobile, with LBS support and monitoring of vital human
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signs. G-Sense includes mechanisms to reduce the amount of generated and transmitted data without

compromising the application requirements. As an example, the GPS reading frequency can be adapted

depending on the detection of user movement: if the user stops in a place, the frequency slows down;

otherwise, it is increased to guarantee user tracking. G-Sense considers the computation and power

constraints present in the wireless nodes and defines strategies to solve them.

Although it is clear that increasing the GPS sampling rate involves more samples per time unit and,

thus, more energy consumption, adapting the sensing rate based on dynamic context changes through

an efficient middleware architecture has received relatively little attention in the research literature. In

this problem, it is very hard to efficiently and appropriately identify a context change that, in turn, could

control (reduce/increase) the sampling rate. It is worth noting that, if by chance, it is determined that

a user is not moving and then the GPS sampling rate is decreased, a poor location resolution would be

achieved, and this would have a negative impact on the credibility of a given location-based service.

Based on previous research, the aims of this work are to provide: (1) a more integrated solution for

on-device energy-awareness by designing a middleware solution to enable adaptive sampling and data

transmission derived from user mobility contexts; and (2) a framework that goes beyond traditional LBSs

that mostly provide personalized services by exploiting user’s geographic location and average traveled

distances or services limited to tracking the mobility of mobile entities.

3. Location Sensing Mechanisms in Smartphones

Today’s smartphones support multiple location-sensing mechanisms, which make use of embedded

GPS sensor information, as well as information from cellular networks (e.g., [14,15]) to get the assisting

data from the Internet. For instance, in the Android OS, the location manager provides access to the

system location services to obtain periodic updates of the device’s geographical location through two

different alternatives: GPS_PROVIDER and NETWORK_PROVIDER. In the former service, location

is determined using satellites, whereas in the second case, location is retrieved based on availability

of cell towers and Wi-Fi access points. In any case, it is important to note that the location manager

approximation error can be quite large when using NETWORK_PROVIDER, and there is no guarantee

that the user is inside the detected coordinates’ round (and the round radius is less than the error). The

reason is that the provider detects only the closest existing network node, but not the user’s location. This

also happens if the device connects to the Internet through Wi-Fi and it does not have a subscriber identity

module (SIM) card on it. Additionally, GPS is the best technology for location accuracy; however, it

has a drawback in that it could require up to two minutes to fix the position (i.e., time to first fix)

in non-appropriate signal conditions (for instance, near windows in an indoor environment). In any

case, the provided accuracy of GPS (between 1–50 m) is quite acceptable in comparison with other

alternatives: network-based (100–5000 m) and Wi-Fi (25–200 m) [16].

In addition, it is also possible to acquire location information through mobile operators’ access

networks using the location-based IP technology referred to as the Open Mobile Alliance (OMA) secure

user plane location (SUPL) architecture [17]. SUPL has become extensively popular in recent years,

because of its capability to use existing protocols and an opportunity for third party providers to support

Assisted GPS (A-GPS), which combines satellite-based technology and ground-based approaches. It
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constitutes an alternative network and protocol architecture for mobile operators to promptly transfer

location information throughout cellular networks and, therefore, to reduce the time response of the GPS

technology. As mentioned above, SUPL is intended to be used along with A-GPS. Android OS already

supports SUPL-specific mobile data connection in the connectivity manager (TYPE_MOBILE_SUPL).

In this work, we consider an LBS scenario that is based on GPS technology. We analyze the

performance of our proposed middleware architecture in terms of the effective adaptation of sensor

reading processes to achieve energy savings and the required location resolution. From experimental

evaluations, we estimate the location error obtained from all collected datasets and validate the

effectiveness of the middleware solution to deploy efficient sensing mechanisms to reduce energy costs

in continuous location sensing applications.

4. Green Context-Aware Middleware

Despite the advances provided by hardware manufacturers and operating system vendors, continuous

accessing of sensing resources in mobile devices to support location- and context-aware applications

and services is still expensive in terms of energy [18]. Because of the potential benefits, embedding

energy-awareness in the design, in the device and the protocols of the networks is highly desirable.

Notice that although current location API methods in Android give access to the system location services,

they do not support dynamic adaptation of sensing parameters on-the-fly. Recall that GPS handling

facilities in Android are mainly applications working on the foreground that require few location updates,

and the configuration parameters are set statically. Thus, this work offers an efficient solution to

adapt sensing rate and energy-aware transmission within a novel green context-aware middleware. The

middleware architecture has been designed to provide support to a wide range of LBSs using different

location-sensing methods, like the ones presented in the previous section. In other words, our proposed

middleware solution is not linked to a specific and unique location provider or to a specific technology

to acquire location updates. This means that a smartphone running our proposed middleware solution

can be configured to connect with a given location provider or mobile operator using a location-based IP

technology, such as the OMA SUPL architecture [17].

Figure 1. Middleware architecture for context-aware and energy-efficient sampling and

transmission of data sensor streams.

Figure 1 shows the conceived middleware architecture for energy-efficient handling and transmission

of sensor streams that provide a runtime environment for applications through an API [3]. The



Sensors 2014, 14 23680

core components of the middleware are the dynamic scheduler, the mobility profiler and the batch

transmission module that, in cooperation with the mobile operating system, interact with the mobile

sensors for energy control purposes. These components are highly modular, so that component

functionality can be modified in isolation without affecting the others. On top of this layer, high-level

application-dependent policies for energy-aware location and transmission can be defined and inserted.

4.1. Dynamic Scheduler

The dynamic scheduler component of the middleware allows to simplify the sensor reading processes

in the mobile device. In Section 4.5, we describe an implementation of the middleware on an

Android operating system in an attempt to solve the problem of the lack of proper and flexible

mechanisms that can limit the energy consumption due to uncontrolled location sensing Android

applications that otherwise would retrieve GPS data continuously. Sensor access is simplified by

providing a single software layer that enables agile development of mobile applications that require one

to specify parameters to low-level energy-efficient rate-adaptive duty-cycling for GPS-based positioning,

i.e., dynamic adaptation of sensing parameters. The periodic sensing interval of the dynamic scheduler

can be selected to be flexible based on the granularity and energy consumption requirements given by

the location sensing application. Under different scenarios, this layer can be used as a low-level enabler

for further energy savings, as developers are able to request controlled location updates according to

established location resolution and energy trade-offs.

4.2. Mobility Profiler

For continuous location monitoring, periodic duty-cycling of GPS is not appropriate, as this embedded

sensor could deplete the battery in a few hours [3]. Thus, an energy-efficient usage of GPS is required,

taking advantage of individual mobility patterns. The mobility profiler’s main goal is to estimate/predict

the system state and user mobility from GPS data streams to dynamically schedule position updates

to minimize power consumption with some tolerance in position accuracy. The context states, e.g.,

static or moving fast, can be used as a basis to define high-level policies that group together a number

of techniques to further reduce energy consumption according to specific applications constraints and

mobility scenarios. By knowing the user mobility state and transitions, GPS updates can be rescheduled

at specific times and trigger location readings according to some policies; for instance, sampling at a

coarse grain when the user is rather stationary and raising the sampling rate gradually according to the

estimated user speed. The mobility profiler in our middleware provides good hints of user mobility from

GPS logs, so as to adaptively change the location sampling rate according to a policy.

4.3. Batch Transmission

The batch transmission module is the key enabler of energy-awareness. It reduces the communication

energy overheads introduced by the transmission of GPS data to a remote system through the wireless

media. This module caches position fixes locally, and then, it selectively transmits packed subsets of

GPS location streams driven by an adaptive duty cycle set by the mobility profiler and an energy budget.
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Moreover, this is a key element that allows finding trade-offs between the relevance of the GPS data and

the energy cost of transmitting such information through wireless access.

4.4. Energy-Aware Policies

A policy might be seen as a set of coupled techniques that can define energy-efficient rate-adaptive

GPS sampling and transmission batches according to user mobility context. Together, the energy-aware

policies module and the mobility profiler decide the sensor sampling rate based on the energy budget,

the mobility pattern and the purpose of the mobile application for which the context-aware energy saving

approach is applied. The mobility profiler’s main role is to estimate and predict typical mobility patterns

from GPS data streams to determine a system state (static, moving fast, moving slow, etc.), which, in

turn, is used by the policy-based modules to adapt dynamically the sensor sampling rate and the batch

transmission. In this sense, other developers can build domain-specific location-based applications that

use ad hoc policies relying on the facilities provided by the mobility profiler and dynamic scheduler

service. The domain-specific knowledge to improve energy consumption can be linked to the middleware

through the energy-aware policy-based modules.

Taking into account Figure 2, in the following, we explain the behavior of the key components of the

middleware’s functionality. The mobility profiler identifies the user mobility context, and it reschedules

GPS invocations at specific times to enable the dynamic scheduler to adapt the interval sensing period.

These features are particularly relevant in low mobility contexts (e.g., Context1), where significant energy

savings can be achieved by increasing the time between two consecutive GPS invocations whenever

possible. As will be shown later on in the paper, we validate the effectiveness of the dynamic scheduler in

terms of energy savings by implementing three different policies; however, our middleware architecture

is not restricted to these three energy-aware policies to control the adaptation of sensing parameters, as

other policies can be configured to fulfill the requirements of the target application that would make use

of the context-aware energy saving solution proposed in this paper.

Figure 2. Conceptual view of the dynamic adaptation of sensing parameters and batch

transmission.

Context0

F0 F1 F2 F3

The batch transmission of location data optimizes the use of energy resources in the device as a

set of GPS samples that can be packed and transmitted through the wireless network. For instance,

in Figure 2, a batch transmission size of three GPS readings is graphically shown. The integration

of the aforementioned components results in different spacing for batch transmissions. The larger

the sampling rate, the shorter the transmission spacing. All components of the location-based service
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framework, including the energy-efficient context-aware mobile application presented in this paper, have

been designed and implemented as open source components. All of them can be made available to the

interested readers and practitioners upon request.

4.5. Middleware Deployment on Android

The proposed middleware has been implemented in Android to enable the dynamic management

of location resources and access control to assist continuous monitoring and long running proactive

location-based services. In our proposal, the middleware provides a power management layer, in

between the application layer and the location API layer in the Android software stack, as shown in

Figure 1. Developers will request location updates through the middleware instead of requesting it

directly from the underneath location API. Recall that the Android SDK provides a dedicated API for

location information that is designed in a generic way, such that the same API can be used to retrieve

location information from different localization techniques by using the location provider that uses the

GPS receiver embedded in the device or the network facilities to get a location estimate. However, the

Android built-in API is not intended for continuous location monitoring as a background service with

a variable duty cycle. A well-known problem with near-constant-rate duty cycling is that it does not

take into account the rate by which the user location actually changes or whether or not the user motion

is uniform.

The rationale behind the proposed middleware for smartphones, particularly for Android devices, is

as follows. The explicit power management strategy to maximally conserve energy employed in modern

smartphones based on an aggressive sleeping policy to suspend the whole system after a short period of

user inactivity, has led to a considerable burden on developers by delegating the responsibility to keep the

system on to execute a time-sensitive task [19]. Furthermore, application developers are also expected

to perform the power management of individual components, such as the GPS, to ensure that when a

change in its operating state is needed or scheduled, the smartphone can be woken up, even if it is in a

low-power suspend state.

The middleware provides the ability to dynamically register and unregister location updates and to

adjust the duration between two consecutive location updates on the fly by taking advantage of Android

system facilities. On the one hand, to support background services under the aggressive sleeping

policy, the Linux kernel power manager in Android, along with hardware support, provides a high-level

mechanism, called wakelock, for preventing a smartphone from fully suspending. See the online Android

developer guide for other two additional mechanisms, suspend notifiers and hardware wakeups, to keep

the system from suspending or to wake it up [19]. Wakelocks are special objects with two associated

APIs calls, acquire, the smartphone cannot be suspended, release, to allow the OS to turn on with the

sleeping policy [20]. Both API calls can be used after initialization by both kernel-space and user-space

programs. On the other hand, timers and alarms in the Android framework are system mechanisms used

for waking up the smartphone from the suspended state to support services that should run at fixed time

intervals. In this sense, taking advantage of such systems facilities, the middleware is able to schedule

and set an alarm with the user-specified time specification by using an initialization API for a location
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request. Internally, the middleware maintains the registered alarm time and executes a call back function

after a software timer fires to handle the location update.

We therefore designed and implemented APIs in order for mobile sensing applications to utilize the

services of the proposed adaptive sampling scheme. As the proposed middleware is implemented in

Java, it would be easily ported to different systems. Basically, the middleware will expose two additional

parameters that users can determine when requesting location updates: time to specify when to sense and

the maximum time allowed for location acquisition. The latter works as follows. When a new sensing

request from an application arrives, the middleware will push the request to the Android location layer

to turn on the GPS device and wait for the response of the GPS. When location information is reported

or the maximum acquisition time is reached, the layer will automatically unregister the listener to stop

requesting the location and schedule another one according to the scheduling module. The policies

module controls the interval between consecutive samples at runtime based on the predictability of the

user’s mobility by specifying the time for sensing, registering and implementing a listener interface with

the adaptive sensing service encapsulated as a JAR (Java ARchive) file. Policies can be defined by users

according to application requirements.

5. Reference Architecture of LBSs

In this section, we describe a reference architecture to validate the main concepts developed in this

paper. We describe a system architecture that allows one to transmit and store large amounts of sensed

data for LBSs. This system architecture, referred to as the location-based mobility service framework,

consists of three main parts, as is graphically shown in Figure 3: (1) mobile devices running the

middleware for energy-efficient handling and transmission of sensor information; (2) a cloud-based

virtual storage service; and (3) a mobility information analysis and service configuration part. The

elements of the three parts of the reference architecture are described hereafter.

Figure 3. Location-based mobility service framework.
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5.1. Mobile Devices

The mobile devices considered in this framework are smartphones that provide interfaces to take

measurements from the embedded sensors, like GPS, proximity, accelerometer, etc. For instance,

smartphones with the Android OS would support the development of mobile phone sensing applications;

however, the framework is not restricted to such an operating system.

The green context-aware mobile application relies on a middleware architecture that enables the

management of energy consumption based on low-level adaptive GPS reading and transmission schemes.

GPS captures are sent to the cloud-based virtual storage server through the wireless access network

infrastructure (3G/Wi-Fi). It is assumed that smartphones should have access to the Internet through a

wireless operator network or through Wi-Fi access points. This way, the application can send the location

data of the smartphone to the cloud-based virtual storage system on user mobility from anywhere.

5.2. Cloud-Based Virtual Storage Service

The cloud-based virtual storage server is a cloud database service in which location information is

stored temporarily. The cloud service is adopted in our framework due to its flexibility to store data from

different mobile sources, availability, lightweight requirements and practicality. However, a cloud-based

approach is not widely recognized as the most appropriate alternative or as long-term storage due to

privacy issues (i.e., the collection of raw data information may compromise users’ privacy). In this

regard, access to the online database is granted by parameters deployed in the mobile application, namely

the application makes use of the assigned port, the server IP address, and the authentication means

(username and password) to access the database. A cloud-based storage is considered due to its potential

to store a large-scale number of sensing applications concurrently to support ubiquitous individual and

community context analysis for emerging LBS. It is worth noting that concerns about cloud storage,

regarding reliability and security (see [21,22]), are out of the scope of this work.

The cloud database has a table to store the location information (identified as Location). It is used

to store and to identify the latitude and longitude coordinates (expressed in sexagesimal degrees from

–90 to +90 and from –180 to +180, respectively) from the mobile application, one running in each

smartphone. It also stores the time at which the location points are acquired in the smartphone (in

YYYY-MM-DD_HH:MM:SS format) and its MAC address. MAC addresses are used to appropriately

identify the devices.

The cloud database includes also a table for capacity control. This is included in the system, because

the total storage space of the database is a function of the capacity offered by the cloud service provider

and also because storage resources are always limited. In order to control the storage capacity, a log of

the date and the number of bytes sent by each smartphone’s application are stored.

5.3. Mobility Information Analysis and Service Configuration

Mobility analysis tools are included in the reference architecture to evaluate the performance of our

middleware solution to find trade-offs between energy savings and location resolution. Moreover, the

improvement of the analysis tools presented herein is out of the scope of this work. This part of the
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framework allows us to configure mobility tools to be used in the analysis of the sensed information

provided by the mobile devices. The mobility analysis framework includes a long-term storage system

database where the overall mobility information is stored and maintained, as the cloud-based storage

described earlier is used for temporary storage. We implement a control module to manage the amount

and type of information stored in the cloud and the system database (cloud database management). This

interface is used in our experiments to coordinate which and when information is downloaded to the

system database for further use. The database downloads are carried out in three different time frames:

(i) when the cloud-based storage has reached a threshold defined by the administrator; (ii) when it is

necessary to analyze information of a specific user (or set of users) and the required information has not

been downloaded to the system database; and (iii) when the periodic time to download has reached its

limit. The preferable storage manager for the system database is MySQL, although the functionality of

the framework is not restricted to it. The system database has five tables, as detailed in Table 1.

Table 1. Tables in the system database.

Name Description

Location Synchronized with the Location table in the cloud server. It also stores the location ID,

location updates (latitude, longitude), time stamp and MAC of the mobile devices.

Device Stores information of the mobile devices registered in the system: device ID, user ID, MAC

address and the corresponding cell phone number to identify each mobile device.

User Stores data related to both the mobile entities’ users and the user of the analysis and

configuration system (analyst).

Update This table stores details concerning the last time and date when the location information of

a certain device was updated in the system database.

Level This table stores details of the access rights to the system database for analysts.

The above defined elements allow us to store and organize mobility patterns of the information

provided by the mobile devices. Once sensed data have been collected and stored, we configure query

conditions (the time and distance thresholds, and the start/end dates) for retrieving and processing

location data. Specifically, in order to process the location information stored in the system database, we

have implemented a searching strategy to mine GPS trajectories and to compute the following mobility

statistics [23]. Location points are raw location coordinates collected from the mobile devices at a given

day time. Stay points are location points that fall within time and distance thresholds. Stay regions are

sets of stay points, which, in turn, represent regions of interest for the user of a mobile entity or users of

a number of mobile entities.

We have included analysis algorithms to infer mobility patterns from the aforementioned mobility

information. These algorithms are also used to detect stay regions of mobile users based on location

information stored in the system database [23,24]. These algorithms analyze the trajectories of users and

detect zones where users have remained for some time within some distance threshold. Furthermore,

the algorithms extract additional statistics on the mobility behavior of mobile users, such as distance,

average speed and traveling time.
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We have selected stay point and stay region statistics, as they can be used further to develop

sophisticated LBSs, like alert services to the mobile users. Alerts provide support, for example, in

finding/receiving alternative paths in response to eventualities and contingencies that could be detected

by the system as a result of the correlation of other users’ mobility patterns. In this sense, alerts are the

result of online information analysis of several mobile clients of the platform. It is worth noting that

such a type of advanced location services can be deployed to exploit, for instance, the user’s location and

context-aware mobility patterns [25,26]. However, the development of specific LBSs (e.g., to proactively

build alternative roads on maps due to emergencies, etc.) is out of the scope of this work.

The pivotal element of analysis in the above framework is the location information collected by

the mobile application. The collection of such information from GPS sensors is energy expensive for

the mobile entities. In order to improve energy efficiency, this work deals with the critical nature of

regulating sensing intervals, as well as controlling the information upload streams in response to energy-

and context-aware policies, as described earlier in the presentation of our middleware solution.

6. Performance Evaluation

In this section, we present the performance of the proposed middleware architecture implemented on

Android smartphones and validated through experimental outdoor scenarios in Ciudad Victoria, Mexico.

Experimental analysis aims to demonstrate the feasibility and efficiency of the dynamic scheduler,

mobility profiler and batch transmission functionalities. We use the Samsung Galaxy III smartphone

in all of the experiments. The testing mobile application, relying on the middleware, recorded the GPS

logs, a time stamp and the battery information during the experiments that were collected and then

pushed to the cloud-storage service. In the experiments, the smartphone was fully charged to counter

the influence of the non-linear voltage decrease and turned on only the location sensor that we intended

to measure. So as to analyze the power consumption profile, the battery level was recorded periodically

and locally stored, and then, data were extracted for off-line analysis. In our experimental setup, we

have enforced three possible sensing policies in our proposed green context-aware middleware solution

to validate its effectiveness to efficiently provide support for handling and for the transmission of sensor

streams. It is worth noting that a different type of sensing policy can be easily deployed in the middleware

without the need to modify other modules, in cases when different behaviors of sensor reading and batch

transmission schemes are needed. In this regard, we assume a delay-tolerant approach for location

information processing at the mobility analysis service, and therefore, delay constraints are in this

case neglected.

6.1. Fixed Duty Cycle Policy

In this scheme, the length of the sensing interval is fixed to a predefined value, so that GPS readings

in each sensing cycle are performed regardless of the user’s context. This unaware-context policy is used

for benchmarking purposes, as we consider this as the worst-case possible situation in terms of energy

consumption. In order to limit the cost associated with this continuous reading approach, we reduce the

communication overhead by enabling batch transmissions.
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6.2. Region-Based Policy

In this policy, the sensing interval that controls GPS invocations is increased when the context of a

user is static (i.e., the user does not move farther than a certain distance threshold with respect to its

previous location). Note that increased sensing intervals are likely to result in more benefits in terms

of energy savings, but the obtained data quality might be low for short-term stay point and stay region

detection. On the other hand, remaining in a stationary state produces a reduction in the sensing interval

up to the minimum sensing value. In practice, this approach leads to less frequent location updates and

reduces energy costs, but resolution of locations cannot be guaranteed, especially if the context between

two consecutive GPS sampling points changes. We thus aim to overcome this drawback in the third

sensing policy discussed in the following.

6.3. Green Context-Aware Policy

This approach is intended to dynamically adapt sensing intervals based on context changes, while

maintaining a minimum granularity of information. As to location resolution, we assume a reference

distance to be satisfied between two consecutive sensor readings, and sensing intervals are adapted to

the observed speeds. In this policy, the sensing adaptation process performed is also restricted within a

minimum and a maximum sensing interval. In any case, context change is difficult to detect, especially

after a long period in a stationary context. Note that in such a case, sensing intervals are likely to be

adjusted to the maximum allowed value, which might result in location information loss if a transient

context change takes place in the meantime. Moreover, the false context change detection problem makes

the design of adaptive sensing mechanisms more challenging.

In this regard, the context change detection approach considered in our green context-aware policy

is two-fold. Firstly, in order to avoid false context changes, i.e., due to instantaneous speed values,

an exponentially weighted moving average (EWMA) filter, namely a low pass filter, is applied to the

observed speeds to smooth the resulting speed value. The EWMA filter is defined by Equation (1):

EWMAi = (1− α)EWMAi−1 + αVi (1)

where i ≥ 1, 0 < α < 1. EWMAi is the current estimated EWMA value; EWMAi−1 is the previous

estimated EWMA value; Vi is the current speed of the mobile user; and α is the smooth filter factor. This

approach constitutes a context-sensitive adaptation scheme, which is particularly useful in transitions

from low to high-mobility scenarios. In this case, the adaptation of sensing intervals is strongly coupled

with user speed changes, which are computed as follows. Given two location points obtained at two

consecutive time instants, denoted as L(i) and L(i − 1), we firstly estimate the distance (in meters)

between both points using the haversine formula:

a = sin2

(

∆ϕ

2

)

+ cos(ϕ1) · cos(ϕ2) · sin2

(

∆λ

2

)

(2)

where ϕ and λ are the latitude and longitude of a given location, respectively. Assuming that the radius

of the Earth is given by R, the distance between the two consecutive points is obtained as:
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dL(i),L(i−1) = R ·
(

2 · atan · 2
(√

a,
√

(1− a)
))

(3)

Along with the distance computation, we also obtain the elapsed time between the two GPS points by

subtracting the corresponding time stamps. Finally, with distance and time values, the mobile user speed

can be estimated.

On the other hand, unnecessary reductions of the sensing intervals are likely to happen due to eventual

context change false detection (i.e., inferring a change from a non-stationary state to a stationary state). In

this case, we track sensing interval adjustments performed by the dynamic scheduler during a reference

sampling window (i.e., a number of consecutive GPS samples). Taking this into account, we again

consider the EWMA value of sensing intervals and use it to upgrade the sensing intervals.

6.4. Experimental Results

Figure 4 presents the battery level versus the battery lifetime obtained as a result of the use of the

fixed duty cycle policy. We assumed fixed sensing intervals of two and four minutes, and four batch

transmission sizes: 1, 2, 8 and 32 GPS readings. Figure 4 (top) demonstrates that the poor performance

of single transmissions can be enhanced by allowing batch transmission mode. Individual transmissions

of sensor samples demands around 40% of battery resources to achieve a battery lifetime of 12 h. For

the same lifetime value, batch transmission sizes of 32 GPS readings consume only 15% of battery

resources. Packing and transmitting the GPS data in batches or bursts allow the wireless radios to operate

on a low duty cycle to better amortize the energy overheads of wireless transmissions as a result of lower

bandwidth usage and a reduction of data traffic.

Furthermore, combined batch transmissions and increased sensing intervals (e.g., 4 min), extend the

battery lifetime. As shown in Figure 4 (bottom), the battery drain reduction is very noticeable, even

for the case of individual transmissions. By comparing both figures for a battery level of 80%, the

sensing interval of four minutes and batch transmission of 32 samples are able to achieve a higher battery

lifetime (20 h) than the case of a fixed two-minute sensing interval (13 h). The major portion of energy

savings is assessed due to a more efficient header-to-payload ratio. Intuitively, energy consumption

of data transmission in mobile (radio) devices is highly dependable on the traffic pattern, that is the

larger the amount of sensing information transmitted over the wireless channel, the larger the energy

cost observed in the experiments. In any case, the batch transmission scheme is intended to limit the

cost of continuous sensing and to reduce the communication energy cost. This is achieved by packing

sensor data instead of sending all sensed (raw) data information over the wireless interface. However,

as larger batch transmission sizes are considered, transmission schemes tend to behave similarly

(e.g., eight and 32 GPS readings), implying that both approaches result in a similar header-to-payload

ratio. Notice that in both eight and 32 batch transmission experiments, the sampling rate behaves very

close to the maximum time for a GPS to lock, which, in turn, results in a GPS sensor being on most of

the time.
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Figure 4. Battery lifetime of four batch transmission schemes under different fixed sensing

intervals: (Top) two minutes; (Bottom) four minutes.

In the next set of experiments, we evaluate the performance of the batch transmission functionality

within the middleware’s dynamic scheduler along with the defined region-based scheduling policy.

Results are presented in Figure 5. We observe that small batch sizes take more advantage of this

region-based notion. This comes to the fact that sensing intervals are increased as a result of low

distance displacements. That is, the sensing interval is linearly increased (assuming steps of 2 min)

when the distance between the current GPS sample and the previous one is equal to or lower than

100 m. The minimum and maximum allowed sensing interval is set to 2 and 16 min, respectively. It is

clear that the duty cycle obtained by increasing the sensing interval brings benefits to battery resources.

However, it disregards location information granularity, which is highly desirable for enhanced analysis

of location-based services.
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Figure 5. Battery lifetime of region-based sensing policy with three batch transmission

schemes and variable readings.

In the following, we evaluate the green-context aware sensing policy and compare it to the

region-based approach. In both cases, a batch transmission of eight samples is considered, along with

the aforementioned sensing interval thresholds. From the obtained results (see Figure 6), we observe

that the proposed policy is able to achieve a 3% battery energy savings (for a lifetime of 44 h) over the

region-based approach. It is worth noting that the green context-aware policy achieves this performance

improvement by exploiting a relatively small period of time, where the user is in high-mobility scenarios

(i.e., around 5% to 10% of the total time).

Figure 6. Battery lifetime of green context-aware sensing policy with a batch size of eight

samples and variable reading intervals.

An illustrative example of the above is given in Figure 7, and we evaluate the responsiveness of

adaptive reading to context changes by analyzing sensing interval adjustments over a period of time
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of nearly six hours. This is illustrated in Figure 7 for two different sensor reading and transmission

conditions, namely through the use of the region-based policy and the green context-aware policy. The

figure also shows the instantaneous and EWMA speed values (with α = 0.125 in Equation (1)). It

can be seen that when context changes are frequently subject to user’s mobility behavior, the green

context-aware policy leads to smooth transitions between minimum and maximum sensing interval

thresholds. On the other hand, the region-based policy leads to frequent sensing intervals corrections as a

result of the bad behavior of its context change detection. Furthermore, false context change detection is

prevented in the green context-aware policy by adjusting sensing intervals, taking into account a window

history of three GPS samples.

Figure 7. Behavior of adaptive sensing intervals based on observed speeds.

7. Mobility Data Analysis

In this section, we perform the analysis of the spatial and temporal evolution of mobility trajectories

through the use of the reference mobility analysis framework. Analysis of mobility data is performed

by means of sensor data extraction from the cloud virtual storage and/or the system database. Figure 8

shows the result of location data extraction for different query predicates. For the illustrated trajectory,

query processing is executed to compute stay regions assuming three stay time thresholds (5, 10 and

15 min) and a distance threshold of 100 m. Figure 8 shows the mobility trajectory followed by the

user carrying a smartphone executing the developed mobile sensing application (green circles). As for

mobile entities, we also record location readings obtained by a GPS logger device (blue triangles), able

to continuously sample GPS location at a rate of 10 Hz. Both devices were charged by the same user at

the same time during all experiments in the covered distance (10.46 km). For the sake of clarity, only a

few samples are shown in Figure 8, as the logger was merely used to generate the reference trajectory,

but the complete collected data might be used further for a more thorough assessment of the precision of

the energy-aware policies. Given the GPS trajectory dataset, collected from the smartphone, stay points
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are firstly obtained to have a more meaningful representation of locations of a user’s stay points. Then,

by clustering the stay points, we obtain the stay regions (red location icons), which in practice can be

used as inputs to determine, for instance, location-activity correlations. In particular, to discover places

of interest in everyday life from users’ location data (referred to as mobility data statistics in Figure 3),

we use the algorithm proposed in [27]. We also observe that precise resolution of location records is

directly related to the higher quality of context and mobility data analysis.

Figure 8. Stay region detection using the location point processing algorithm under temporal

thresholds of 5, 10 and 15 min (from top to bottom) and a spatial threshold (three cases) of

100 m.
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Finally, we estimate the average location error (ALE) of the GPS dataset collected from the

smartphone. Formally, let Lsmartphone(k) and Llogger(k) be the location reported by the smartphone and

the location provided by the GPS logger device, respectively, at a given point k. Assuming T discrete

time-GPS points, the average location error can be easily computed as [28]:

ALE =
T
∑

k=1

(

Lsmartphone(k)− Llogger(k)

T

)

(4)

Following this approach, we estimate that the ALE is in the order of 20 m in the set of experiments

performed. As a step forward, it is possible to formulate an optimization problem to find the GPS

invocations that should be scheduled, such that the resulting ALE is minimized for a given energy budget.

This type of experiment, however, is out of the scope of this work and will be part of our future work.

8. Concluding Remarks and Future Work

This article has proposed a novel middleware framework for embedding context-awareness

functionalities to manage dynamic adaptation of sensing parameters and transmissions. The proposed

solution is intended to improve the battery lifetime and to maintain an accurate data information

granularity for energy-efficient location-based services. The solution builds upon the introduction

of three modular components: dynamic scheduler, mobility profiler and batch transmission. The

underlying mechanisms encompassing the designed architectural modules have been detailed. On such

a basis, high-level application-dependent policies for energy-aware location and transmission have been

implemented and validated through extensive measurements. Experimental results demonstrate the

effectiveness of our mobile phone middleware in terms of battery lifetime due to a combination of batch

transmissions and context-aware reading intervals. Furthermore, the proposed sensing approach is able

to find trade-offs between energy savings and location data granularity. To gain insight into this issue,

mining of location data is performed to highlight the impact of time thresholds on stay point and stay

region detection capabilities.

We believe that context-awareness properties, together with location information, can fully pave

the way to advanced sensing applications aimed at understanding both the individual and community

behaviors in terms of mobility patterns and daily habits. Thus, as future research directions, we

identify context prediction and context refinement based on an underlying context and energy awareness

location-based service. Finally, due to the extensible design of the proposed middleware, we also aim to

integrate multiple sensor reading processes, such as the accelerometer, in order to, for instance, detect

when a pedestrian user is not moving, and then stop the GPS reading process, as localization in such

cases is unnecessary.
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