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Abstract: Delayed fluorescence (DF) from photosystem II (PSII) of plants can  

be potentially used as a biosensor for the detection of plant physiological status  

and environmental changes. It has been analyzed mainly in the time domain.  

Frequency-domain analysis through Fourier transform allows viewing a signal from 

another angle, but the usefulness of DF spectra has not been well studied. In this work, 

experiments were conducted to show the differences and similarities in DF spectra of 

different plants with short pulse excitation. The DF spectra show low-pass characteristics 

with first-order attenuation of high frequencies. The results also show that the low-frequency 

components differ while the high-frequency components are similar. These may imply the 

potential usefulness of Fourier spectra of DF to analyze photoelectron transport in plants 

and classify samples. 
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1. Introduction 

In photosynthesis, a photon can excite an electron of a chlorophyll molecule in photosystem II 

(PSII) to a higher energy level. When the higher-energy-level electron returns the ground state, a new 

photon is produced. This new photon is the commonly called prompt chlorophyll a fluorescence (PF) 

OPEN ACCESS



Sensors 2014, 14 23621 

 

 

of PSII [1–4]. Its lifetime is usually longer (in the order of pico- or nanoseconds). The excited electron 

can also be transferred along the electron transport chain of PSII and finally be used for photochemical 

reactions. Chemical reactions are usually reversible; therefore, the electron can be potentially 

transferred back. When it is transferred back, it may result in a chlorophyll a molecule (e.g., P680 or 

PSII antenna chlorophyll molecules) in the excited state. This excited chlorophyll molecule is also 

capable of emitting chlorophyll fluorescence. It takes time for the electrons on the electron transport 

chain of PSII to transfer back to produce chlorophyll fluorescence. This type of chlorophyll a 

fluorescence is thus commonly referred to as delayed fluorescence (DF, also known as delayed light, 

delayed luminescence or DL) because it has a much longer lifetime (minutes or even hours) [5]. In this 

work, DF refers to delayed chlorophyll a fluorescence from PSII of plant leaves for conciseness. The 

emission of DF from PSII of plant leaves represents a backflow of energy captured for photosynthetic 

activities [6–8]. Anything that affects photosynthesis can be potentially reflected in DF emitted from 

PSII [9–11]. It is thus DF can be potentially used as a universal biosensor to sense plant physiological 

status and environmental changes. The usefulness of DF from PSII for various applications has been 

summarized by Guo and Tan [12], which include assessment or detection of photosynthesis rate, plant 

circadian, plant senescence, nutrients, salt stress, chilling stress, heat stress, drought stress, acid rain, 

herbicide, metal pollution, and aquatic ecosystems. An attempt to analyze DF in the frequency domain 

can be found in Guo and Tan [13]; however, DF from PSII has been mainly analyzed in the time 

domain [12,14–16]. 

Analyzing a signal in the frequency domain through Fourier transform (FT) allows viewing the  

signal from a different angle [17–20]. The usefulness of DF spectra in DF analysis, however, has not 

been well studied. It is not clear what differences and similarities may exist in the DF spectra of 

different plants, and it is not known whether the DF spectra are useful in revealing the PSII kinetic 

behavior as affected by chemical and other stresses and in sensing plant physiological status and 

environmental changes. 

In this work, we show whether DF spectra are useful in indicating some basic kinetic characteristics 

of photo-electron transduction in plants and the effect of a chemical stress. Experiments were 

conducted to measure and compare the DF spectra of different plants or of the same plant but at varied 

levels of herbicide stress. Samples used included both trees and vegetables. Deserved to mention, DF 

emission is light intensity and duration dependent. While the electron transport activities of PSII can 

be modeled as linear model structure with short pulse excitation [21], strong light will trigger complex 

nonlinear processes in the electron transport system. The complexities induced by strong light bring a 

lot of difficulty to interpret and compare DF from different samples. On another side, the complex 

nonlinear processes are not necessary for comparison between samples. For simplification, this work 

focuses on the DF excited by short pulse, which is not sufficient to saturate the system. The excitation 

light is the same for all the samples, which makes the DF spectra comparable between samples. 
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2. Measurements 

To test the usefulness of Fourier spectra of DF, DF from different varieties of plants or the same 

variety of plants but with different levels of chemical stress was measured, including two tree species, 

three vegetable species, and garden bean leaves with three levels of herbicide stress. For the two tree 

species, DF from magnolia and Schefflera arboricola was measured. The magnolia tree grew naturally 

on the campus of the University of Missouri. The Schefflera plants were grown in a hallway with large 

windows. Sunlight could shine on the plants in the afternoon. Regular irrigation was applied to the 

Schefflera plants. The environmental temperature of the hallway was 25 °C. 

For the vegetable species, leaves of lettuce, spinach, and garden bean plants were used. The garden 

bean plants were grown in pots (10-cm height and 9-cm diameter) indoors under fluorescent lighting 

(12:12-h on-off cycle) and in constant room temperature of 25 °C. Water was regularly applied to 

irrigate the plants. The lettuce and spinach plants were obtained from a local store. Because the effect and 

mechanism of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) on plant photosynthesis is well known, 

DCMU was used as the test chemical stress in this research. Garden bean leaves were submerged in an 

80-µM DCMU solution for 0, 15, and 60 min to give varied chemical stress levels. 

A red LED with peak emission at 680 nm (L680-06AU, Marubeni, Santa Clara, CA, USA) was 

used to excite the samples. The excitation light was delivered through an 8-mm liquid light guide 

(77628, Oriel, Irvine, CA, USA). The DF photons were fed into a channel multiplier tube (CMT, 

MH1373P, PerkinElmer,Waltham, MA, USA) through another liquid guide. The output pulses of CMT 

were recorded with a gated photon counter/multiscaler card (PMS-400, Becker & Hickl GmbH, Berlin, 

Germany). The sampling frequency was set at 100 Hz and the total sampling time was 2 min. A 

diagram and detailed explanation of the experimental setup can be found in Guo and Tan [22]. For each 

species or stress level, five samples were measured. Samples were dark-adapted 30 min and excited 

with a 0.5-s illumination pulse. The illumination intensity and pulse width were experimentally 

determined so that they did not saturate the system. 

3. Results 

3.1. DF Spectra of Tree Samples 

Differences in samples such as age and orientation may affect the intensity of DF. Since the overall 

DF intensity does not affect shape of the DF spectrum, each DF response was normalized by its 

maximum value before further analysis. 

Figure 1 shows the normalized DF from magnolia and Schefflera samples in the time domain and 

Figure 2 shows the DF spectra of the two tree species. Figure 2 reveals that the DF frequency 

characteristics of the two tree species differ mainly in the low-frequency range (<1 Hz). The curves 

overlap at high frequencies (>1 Hz). 
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Figure 1. DF from magnolia and Schefflera leaves following the 0.5-s excitation light in 

the time domain. 

 

Figure 2. DF spectra for magnolia and Schefflera samples. 

 

To ensure that the similarity in high-frequency characteristics was not due to common background 

noise, background noise was measured when a sample was present. The magnolia DF and background 

spectra are shown in Figure 3. It is evident that the spectra bear little resemblance. The sample DF 

shows typical low-pass characteristics while the background signal gives a flat spectrum, which 

indicates a white noise. 

Figure 3. Comparison of DF and background spectra. 
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3.2. DF Spectra of Vegetable Samples 

Figure 4 shows the DF spectra of lettuce and spinach samples. Similar to the two tree species, the 

two spectra show low-pass characteristics and they are different in the low-frequency range (<0.3 Hz) 

but similar in the high-frequency range (>0.3 Hz). 

Figure 4. DF spectra of lettuce and spinach samples. 

 

3.3. Herbicide Effect on DF Spectra 

Figure 5 shows the DF spectra of garden bean leaves after they were submerged in an 80-µM 

DCMU solution for 0, 15, and 60 min. Again, the spectra are similar in the high-frequency range  

(>0.04 Hz) but different in the low-frequency range (<0.04 Hz). It is interesting to note that the 

bifurcating frequency of 0.04 Hz is much lower than that (1 Hz) for the two trees and that (0.3 Hz) for 

the vegetables. 

Figure 5. DF spectra of garden bean leaves at different herbicide binding times (a) Full 

computed spectra; (b) Zoom-in to show differences. 

4. Discussion 

In photosynthesis, a photon captured by PSII antennas may excite a chlorophyll molecule (Chl or 

P680) and carried forward for photochemical reactions by an electron transport chain of pheophytin 

(Pheo), plastoquinone A (QA), plastoquinone B (QB), and subsequent steps as depicted in Figure 6. 
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There is a chance of reverse reaction for each step [23,24] and DF emission results from reverse 

reactions [6–8]. As such, the DF spectra are a manifestation of the photochemical reaction kinetics 

involved in DF emission. 

Figure 6. Early stages of the PSII photoelectron transport chain. 

 

The reaction kinetics can be modeled at different levels of complexity. By lumping the fast 

reactions involving P680 and Pheo, Guo et al., modeled the early stages of the photoelectron transport 

kinetics with a 5th-order linear model as follows when excitation light is not so strong that saturates 

the system [21]. 
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where x1 through x5 are state variables representing the redox status combinations of QA and QB, A is 

the system matrix, k1 through k5 are reaction rate constants, and u is the intensity of illumination. DF 

emission is given by: 

)( 53126 xxxkkDF ++=  (3)

where k6 is an overall gain factor. 

DF is only practically measureable after the excitation light is turned off; thus measured DF as 

shown in Figure 1 is an initial condition response and the initial conditions are the values of the state 

variables at the end of illumination ([x10, x20, …, xn0]T). For a pulse illumination of constant intensity u, 

DF can be expressed as [13,25,26] 
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where [ϕ1, ϕ2, …, ϕn] is a constant vector and [λ1, λ2, …, λn] is the eigenvalue vector of A. For a given 

constant u, the two vectors are entirely determined by the k values (k1 through k6). After optimization 

of the k values, the model was found capable of capturing the kinetic behaviors in measured DF under 

varied conditions [21]. 

Fourier transform of Equation (4) gives the DF spectrum as: 

1

1
( )

2

n

DF j
j j

S f
i f=

= φ
−λ + π  (5)

where 1−=i  is the imaginary unit. 

Equation (5) shows that the DF spectrum can be expressed as a weighted sum of polynomial 

fractions in f. While this is not surprising as Equation (5) is generally true for any linear system, the 

expression allows several points to be made from the measured DF spectra presented earlier. 

• The measurement results indicate that the DF spectra for different plants and DCMU levels 

have similar low-pass characteristics and differ only at low frequencies. Figure 7 plots all the 

measured DF spectra together and shows the convergence of the spectra beyond approximately 

1 Hz. The eigenvalues (λj, j = 1, 2, …, n) in Equation (5) indicate the frequency at which each 

pole or mode begins to influence the shape of the spectrum. The spectral convergence thus 

means that the eigenvalues involved in shaping the DF kinetics are less than 1 Hz based on the 

measurements made. Although the 1 Hz value may not be general and more experiments are 

needed, the low-pass nature plus an eigenvalue upper bound supports Guo and Tan [16] and 

Guo et al. [21] in that the early stages of the PSII electron transport chain can be modeled with 

low-order models. Additionally, a measurement frequency greater than 50–100 Hz is not 

necessary to capture the system kinetics. 

• The spectra beyond 1 Hz in Figure 7 are straight lines descending at 20 dB per decade. This 

means that when the fractions in Equation (5) are summed up, the order of the denominator 

polynomial is higher than that of the numerator by one. This indicates that though there are 

variations and differences in the low-frequency behavior, the high-frequency components are 

attenuated in a first-order fashion. 

• The photoelectron transport apparatus described by Equations (1)–(3) is physically a chain  

as depicted in Figure 6. Photoelectrons are relayed forward or backward along the chain.  

A photoelectron that has penetrated more deeply along the chain will need to jump more links, 

on a probability basis, and thus experience more time constants (or eigenvalues) of the kinetics 

to resurface as a DF photon. This sequential nature of the chain is not explicit in equations such as 

Equations (1)–(3) but can be eloquently represented in kinetic Monte Carlo simulation as shown 

in Guo and Tan [11]. As a result, earlier links primarily affect the high-frequency behavior while 

the whole links mainly contribute to the low-frequency kinetics. The spectra convergence at 

high frequencies shown in Figure 7 thus imply that the front links may be similar for the  

samples tested and the differences are chiefly in the down-stream links. To develop  

low-order models to represent the low-frequency behaviors, it is thus reasonable to lump or neglect 

the contributions by the early links as done in Guo and Tan [16] and Guo et al. [21]. 
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• The observation above is further supported by the chemical stress tests performed in this work. 

DCMU interrupts photoelectron transport by binding to the QB sites. It alters a downstream link 

of the chain and thus should affect the low-frequency kinetics. Application of DCMU only 

affected the spectra below 0.04 Hz (Figure 5), much lower than the frequencies below which the 

sample species differed. Moreover, the longer the submerging time is, the more QB sites are 

disabled and thus the less low-frequency components there should be, which is exactly what 

Figure 5 shows. 

• The explainable differences and similarities in the DF FT spectrum from different samples 

suggest that the DF FT spectrum can be used as a biosensor to evaluate plant physiology and 

environmental stress. The proposed technique can be a complementary method for DF signal 

analysis in the time domain. 

Figure 7. DF spectra of all the measured tree and vegetable plants. 

 

5. Conclusions 

In sum, this work shows similarities and differences in the DF spectra of different plants with or 

without herbicide stress. The similarities and differences are as expected and explainable. All measured 

spectra exhibited low-pass characteristics with high frequencies attenuated at 20 dB per decade. Earlier 

links in the photoelectron transport chain contribute to high-frequency characteristics, which were similar, 

while the whole links influence the low-frequency range, which differed. The results support the use of 

low-order models that focus on the states of plastoquinones. DF spectra thus may provide a potentially 

alternative and useful way to analyze photoelectron transport in plants and classify samples. Measurement 

of more plant species under different stresses and light intensity is warranted in future research. 
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