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Abstract: Compressive Sensing Imaging (CSI) is a new framework for image acquisition, 

which enables the simultaneous acquisition and compression of a scene. Since the 

characteristics of Compressive Sensing (CS) acquisition are very different from traditional 

image acquisition, the general image compression solution may not work well. In this 

paper, we propose an efficient lossy compression solution for CS acquisition of images by 

considering the distinctive features of the CSI. First, we design an adaptive compressive 

sensing acquisition method for images according to the sampling rate, which could achieve 

better CS reconstruction quality for the acquired image. Second, we develop a universal 

quantization for the obtained CS measurements from CS acquisition without knowing any 

a priori information about the captured image. Finally, we apply these two methods in the 

CSI system for efficient lossy compression of CS acquisition. Simulation results demonstrate 

that the proposed solution improves the rate-distortion performance by 0.4~2 dB comparing 

with current state-of-the-art, while maintaining a low computational complexity. 

Keywords: compressive sensing imaging (CSI); lossy compression; CS acquisition; 

quantization; image processing 
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1. Introduction 

Digital image acquisition and processing is a traditional research topic and has been well studied in 

the past decades. A classical imaging system often contains two steps: acquiring amounts of raw image 

data in full spatial resolution by an image-sensor, and then massively dumpling the redundancy 

information of the raw image data in a compression process. According to the Shannon-Nyquist 

sampling theorem [1], the sampling rate of image acquisition needs to be at least twice as high as the 

highest frequency of the image signal so the image can be reconstructed accurately. The cost and 

computational complexity often rises greatly with the increase of camera resolution. Thus, it cannot 

meet well the requirements for many modern applications with energy and computational resource 

limitations, such as mobile terminal imaging [2], wireless multimedia sensor networks [3,4], space image 

acquisition [5], hyperspectral imaging [6,7], etc. 

Compressive Sensing Imaging (CSI) is a new architecture for image acquisition and compression 

that has emerged in recent years, which enables acquiring and compressing a scene simultaneously [8–10]. 

Different from classical imaging solutions, CSI is able to acquire an image by measuring the scene a 

few times with a single-pixel camera [11] instead of sampling in high resolution with several million 

sensor elements, which breaks the traditional image acquisition architecture. With the lower sampling 

rate and fewer sensing elements in CSI [11], the imaging system is cheaper and less power is 

consumed. A typical CSI system mainly contains two processes, as shown in Figure 1. In the 

Compressive Sensing (CS) acquisition process, an input image is firstly measured via a measurement 

matrix Φ  in a reduced dimensionality instead of full image resolution. Then the resulting CS 

measurements are quantized into a set of codewords, and these codewords are transmitted to the 

receiver via a channel. In CS reconstruction process, the received codewords are dequantized into CS 

measurements and the image is reconstructed by a CS recovery program. 

Figure 1. The framework of a typical CSI system. (a) CS acquisition process; (b) CS 

reconstruction process. 

( )Φ

 

Great effort has been put on the development of efficient CSI systems in recent years including the 

hardware application and algorithm design. A single-shot Complementary Metal-Oxide-Semiconductor 

(CMOS) image-sensor [12] performs CS at the Analog/Digital (A/D) conversion stage. Dadkhah et al. [13] 

reviewed different hardware implementations and important practical issues of CS encoding in CMOS 



Sensors 2014, 14 23400 

 

 

sensor technologies. Chen et al. [14] solved the problem of wide-area video surveillance systems based 

on the parallel coded aperture CSI system. With all these CSI systems, the cost and complexity of 

image-sensor deployment could be well reduced and the low-complexity image/video acquisition can 

be designed by shifting the computational burden to the reconstruction process. An example is shown  

in [15] proving that CS provides great energy efficiency for sensing operations in Wireless Sensor 

Networks (WSNs). 

In practical CSI applications, CS acquisition is assumed to be implemented in some analog  

image-acquisition hardware like a single-pixel camera [11]. The acquired CS measurements are  

real-valued, which has a large amount of data for storage and transmission. Therefore, the lossy 

compression of CS measurements is required in the CS acquisition process. The design of efficient 

lossy compression of CS acquisition will raise two questions: how to adaptively sparsify the image 

signal for better CS reconstruction, and how to efficiently quantize the real-valued CS measurements. 

We analyze these two questions in the following two paragraphs. 

At the CS acquisition stage, it is known that a certain degree of sparsity of the original signal is 

important for CS reconstruction. If the original signal is not sparse enough, the reconstruction quality 

will degrade due to the noise folding effect. Arias-Castro et al. [16] studied this problem in a practical 

CS system. Laska et al. [17] showed that a compressible signal could only be recovered by part of its 

important coefficients, and the remaining coefficients will cause the noise folding effect, which 

seriously degrades the reconstruction quality. In order to reduce the noise folding effect, the simple 

Discrete Cosine Transform (DCT) coefficients truncation method [18] was applied in CS-based 

image/video coding to improve its Rate-Distortion (R-D) performance. However, it does not consider 

the variation of sampling rate which is the main factor for deciding how many important DCT 

coefficients can be accurately recovered for the reconstruction of the original signal. Mansour et al. 

proposed an adaptive compressive sensing method [19], which focuses on acquiring the large 

coefficients of a compressible signal to reduce the noise folding effect. However, this method simply 

used an empirical linear model to adapt the sampling rate. 

At the CS measurements quantization stage, a general solution is to quantize the CS measurements 

with uniform scalar quantization considering the low-complexity requirements of the CSI system. 

However, it does not specifically consider the distribution characteristic of CS measurements.  

Goyal et al. [20] and Boufounos et al. [21] analyzed the quantization problem of CS measurements with a 

simple scalar quantization. The classical Probability Density Function (PDF)-based quantization [22] was 

adopted for this problem, which could exploit the distribution characteristic of the signal. Sun et al. [23] 

proposed an R-D optimized quantization for CS measurements based on the classical PDF-based 

quantization, which exploits the distribution characteristic of CS measurements. However, the direct 

implementation of PDF-based quantization will cause high computational complexity, since the PDF 

needs to be obtained in advance for CS measurements of each input image. 

The main contribution of this paper is to develop an efficient lossy compression solution for CS 

acquisition of images in the CSI system, by considering both the image signal sparsification and CS 

measurements quantization. First, we propose an adaptive compressed sensing method to make the 

image signal sparser for CS acquisition, such that the reconstruction quality can be improved by 

reducing the noise folding effect. The proposed adaptive compressive sensing method truncates the 

image coefficients to retain some large coefficients according to the sampling rate. Second, we design 
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a low-complexity universal quantization for the CS measurements by establishing a universal 

probability model without knowing any a priori information about the input image. Finally, the 

proposed adaptive compressive sensing and universal quantization methods are incorporated into the 

CSI system. Simulation results show that the proposed lossy compression solution for CS acquisition 

in the CSI improves its R-D performance and reduces its computational complexity compared with the 

conventional solution. 

The rest of the paper is organized as follows: in Section 2, an adaptive compressive sensing method 

for CS image acquisition is presented. In Section 3, a universal quantization method is introduced for 

quantization of CS measurements. Then we provide the lossy compression solution of CS acquisition 

in the CSI system with the proposed adaptive compressive sensing and universal quantization methods 

in Section 4. Simulation results are shown in Section 5. Finally, we conclude the paper in Section 6. 

2. Adaptive Compressive Sensing Method for CS Acquisition 

In traditional signal acquisition systems, the analog signals are often low-pass filtered to limit their 

bandwidth before acquisition based on the Shannon-Nyquist sampling theorem [1]. The reconstruction 

quality could be improved by reducing the aliasing effect which is caused by the unlimited bandwidth 

of the signal. In a CS acquisition system, the reconstruction quality will degrade due to the noise 

folding effect caused by lack of sparsity of the signal. We will make the image sparser for CS 

acquisition in CSI system to improve the reconstruction quality. More specifically, we sparsify the 

image by retaining only a number of large coefficients according to the sampling rate. 

2.1. Overview of Related Concepts in CS 

The Compressive Sensing (also known as Compressive Sampling, CS) theory [24,25] enables to 

directly acquire the compressed signal with a few random projections and recover the signal from the 

projections. We suppose that N∈ℜf  is a discrete signal, and denote its coefficients in the sparsifying 

basis N N×∈ℜΨ  by .N∈ℜx  Signal f  is considered to be k-sparse with respect to Ψ if and only if k 

coefficients are non-zero. According to the CS theory, we can acquire the k-sparse signal f as follows: 

with , , 1...i iy i nφ= =y =Φf f  (1)

where n∈ ℜy  (n << N) is the CS measurements and 1 2[ , ,..., ]T n N
nφ φ φ ×= ∈ℜΦ  is the measurement 

matrix that is incoherent with .Ψ  The Sampling Rate (SR) is defined as: 

/SR n N=  (2)

Supposing that Φ  and Ψ satisfy the Restricted Isometry Property (RIP) condition of order k [24], 

then the coefficients x  can be exactly recovered by solving the following optimization problem: 

1min || || s.t.
N∈ℜ

=
x

x y ΦΨx  (3)

Finally the reconstructed signal is obtained as 1−=f Ψ x   with the solution x  of Equation (3). In 

practical application, the coefficients x  are not strictly sparse but compressible. In this case, the sorted 

coefficients of x  in decreasing order often obey a power law [26]. Then x contains the most 

significant coefficients of ,x  which provides a good approximation of the signal [24,27]. Moreover, 



Sensors 2014, 14 23402 

 

 

CS measurements y  will be corrupted by quantization noise [28]. Thus, the practical CS acquisition 

model in Equation (1) can be described more precisely as: 

y =Φf +e  (4)

where e  is the quantization noise bounded by a noise power ε . 
Let kT  be the indices of the largest k values of ,x  and 

kTx  be the k-sparse approximation of .x  

Candès et al. [26] and Donoho [25] stated that if Φ  and Ψ  satisfy certain RIP condition and the 

number of CS measurements is sufficient enough, that is: 

( log( / ))n O k N k≥  (5)

then k largest values of x  can be recovered stably from n CS measurements by solving the relaxed 1l  

minimization problem [21]: 

1 2min || || s.t. || || ε
N∈ℜ

− ≤
x

x ΦΨx y  (6)

The solution ∗x  to Equation (6) obeys 

1
2 0 1|| || ε || ||c

kT

C
C

k
∗ − ≤ +x x x  (7)

where 0C  and 1C  are constants. 

Equation (7) shows that the reconstruction error of x  depends on two error terms 0εC  and 

1
1|| ||c

kT

C

k
x . The first term is proportional to the noise power and the second term is proportional to 

1|| ||c
kT

x  (the 1l  norm of “tail” part of x ), which will cause the noise folding effect [17]. The first error 

term will be considered in Section 3 to reduce the reconstruction error.  
In this section, we consider the second term. Supposing the CS measurements 

kT=y ΦΨx  can be 

obtained from the k-sparse approximation 
kTx  of ,x  we recover x  with y  instead of .y  The solution 

∗x  to Equation (3) obeys 2|| || 0
kT

∗ − =x x  and: 

2 2|| || || ||c
kT

∗ − =x x x  (8)

It is shown that solving Equation (3) with CS measurements y  results in an error in Equation (8). 
The error will be the second term in Equation (7) when y  is used (without quantization). Generally, 

the 1l  norm in Equation (7) is often greater than the 2l  norm in Equation (8) for a “tail” part of the 

same compressible signal [19]. An example is shown in Figure 2, in which 1l  norm is often greater 

than 2l  norm for the DCT coefficients of 16 × 16 blocks in an image. So it is possible to achieve better 

CS reconstruction quality by recovering x  with y  obtained from sparsified coefficients .
kTx  In this 

section, we design an adaptive compressive sensing method which adaptively sparsifies the 
compressible signal for CS acquisition. 
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Figure 2. Comparison between 1l  norm and 2l  norm of DCT coefficients of 16 × 16 blocks 

in an image. (a) Lena (Figure 8a); (b) Cameraman (Figure 8b). 

(a) (b) 

2.2. Adaptive Compressive Sensing Method 

Generally, the conventional CS approach acquires all the values of the signal coefficients without 

sparsifying by truncating the small ones. If the signal is not sparse enough, it may result in poor 

reconstruction quality due to the noise folding effect, especially when the sampling rate is low. On the 

other hand, if we truncate too many values of the signal, the reconstruction quality may also degrade. 

We truncate a part of small values of the signal coefficients according to the sampling rate. To 

achieve this, we aim to find the optimal truncation point k∗  as follows: 

2
1,2, ,

arg min || ||
kT

k N
k ∗

∈
= −x x


  (9)

where 
kTx  is the CS reconstruction of sparsified coefficients 

kTx  via Equation (3) with CS 

measurements 
k

n
T= ∈ℜy ΦΨx  and .n N×∈ℜΦ  The Sampling Rate (SR) is defined in Equation (2). 

Equation (9) can be solved by searching all the truncation points, which has a high computational 

complexity. Therefore, rather than solving Equation (9), we try to establish a truncation point model to 

describe the relationship between k∗  and SR for images to reduce its computational complexity. We 

examine the performance of the CS reconstruction at different truncation points for the DCT 

coefficients of the image blocks. Different sampling rates are tested for each image. For each sampling 

rate, the optimal truncation point k∗  is obtained from Equation (9). Figure 3 shows the reconstruction 

Peak Signal-to-Noise Ratio (PSNR) (PSNR is obtained by firstly calculating the mean squared error 

(MSE) between the reconstructed signal and the original signal and then transformed to PSNR). For  

SR = 1/4, 5/8 on four test images, in which the optimal truncation point is  = 16k∗  for SR = 1/4 and 

 = 64k∗  for SR = 5/8. We can observe that the optimal truncation point for different images mainly 

depends on the sampling rate. Therefore, we first calculate k∗  (averaging the values for all test images) 
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at different sampling rates, and then fit their relationship with a quadratic polynomial function as shown 
in Figure 4, in which the model has been established as 2( ) 183.5 25.6 7.57.k SR SR SR∗ = ⋅ − ⋅ +  

Figure 3. Reconstruction PSNR for different sampling rates on four test images. (a) SR = 1/4; 

(b) SR = 5/8. 

(a) (b) 

Figure 4. Empirical truncation point model. 

 

Once k∗  is obtained, an optimal truncation indices 
k

T ∗  can be determined. Then x  could be 

truncated with .
k

T ∗ Here, we define a truncating matrix as: 

Diag( ) N N×= ∈ℜW w  (10)

where: 

1

1,
[ ,..., ,..., ] , , 1...

0,
T k

ci N i

k

i T
w w w w i N

i T
∗

∗

∈
= = = ∈

w  (11)

Then the truncated coefficients can be calculated as: 
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T
k∗

=x Wx  (12)

The 
*k

Tx  in Equation (12) is the truncated coefficients from .x  In the CS acquisition process, we 

can acquire 
*k

Tx  instead of x  to reduce the reconstructed error. At the reconstruction stage, we recover 

the coefficients from the CS measurements T ,
k∗

=y ΦΨx  which could be solved as follows: 

1min || || s.t.
N∈ℜx

x ΦΨx = y  (13)

The solution of Equation (13) is the reconstructed coefficients from the CS measurements 

.=y ΦΨWx  

3. Proposed Universal Quantization for CS Measurements 

In practical CSI system, the real-valued CS measurements 1[ ,..., ,..., ]T
i ny y y=y     obtained in  

Section 2 need to be further quantized to codewords 1, , ,[ , ..., , ..., ]T
Q Q i Q n Qy y y=y     for processing and 

transmission, which can be described as: 

, ( ), 1...i Q iy Q y i n= =   (14)

where Q is the quantization function. The efficient CS measurements quantization is an important part 

of the lossy compression for CS acquisition, which reduces the reconstruction error in Equation (7) as 

mentioned in Section 2. In this section, we proposed a universal quantization method for the  
CS measurements of any input image. For simplicity, we use iy  and y instead of iy  and y  in this 

section, respectively. 

3.1. Universal Probability Modeling for CS Measurements 

We first model the probability distribution of CS measurements, as it is related with the 

quantization design. Generally, we assume that the values of measurement matrix 

1[ ,..., ,..., ] , 1...T n N
i n i nφ φ φ ×= ∈ℜ =Φ  are a Gaussian distribution with zero mean and variance 1/ n  [26,29]. 

Then it is easy to know that , 1...i iy i nφ= =x  is also a Gaussian distribution when the dimension N  of 

the signal N∈ℜx  is very large according to the Central Limit Theorem. That is 2~ (0, )iy σΝ  [17], 

where the variance 2σ  is related with CS measurements. Its Probability Density Function (PDF) is: 

2

2

2N(0, )

1
( ) exp

22

y
f yσ σσ π

 
= − 

 
 (15)

The histogram of CS measurements from test images Lena and Cameraman are depicted in Figure 5, 

together with the fitted curve of 2~ N(0, )y σ , where 2σ  is the variance of CS measurements. It is 

shown that the CS measurement obeys Gaussian distribution well. In practical CSI system, the CS 

measurements are within the range max max[ , ],y y−  where maxy  is the maximal value of all CS 

measurements. The probability fraction that outside the range is often very small as shown in Figure 5. 

Thus we only consider the range max max[ , ]y y−  in Equation (15). Although the real maxy  is unknown in 

the modeling procedure, it can be approximated by maxy d σ≈ ⋅  instead, where d  is an empirical 

parameter ranging from 3 to 5 [30]. We firstly divide the range [ , ]d dσ σ− ⋅ ⋅  into max
max 2RM =  equal 
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intervals, where max 10R >  is a predefined large quantization rate (bits per CS measurement) for  

high-resolution approximation. Since the size max -1/ 2Rd σΔ = ⋅  of the interval is small, the 

approximation error is bounded by / 2.Δ  Thus the probability kF  that y  will be contained in the k-th 

max( 1,2,..., )k M=  interval can be approximated as follows: 

2

max

( )N(0, )

2
( )

-1 2

( )

1
exp

2 22

k k

k

R

F f y

yd

σ

σπ

≈ ⋅ Δ

 
= ⋅ −  

 

 (16)

where 2
( ) ~ N(0, )ky σ  is the center point of k-th interval. 

Let ( ) ( )' / ,k ky y σ=  then we know that ( )' ~ (0,1).ky N  Then Equation (16) can be rewritten as: 

max N(0,1) ( ) max1
( ' ), 1,2...,

2k kR

d
F f y k M−= ⋅ =  (17)

where N (0,1) ( )( ' )kf y  is the standard Gaussian distribution. 

Figure 5. CS measurements histogram and the fitted curve. (a) Lena 256 × 256 (SR = 0.5); 

(b) Cameraman 256 × 256 (SR = 0.7). 

(a) (b) 

It is shown in Equation (17) that kF  has no relationship with the acquired CS measurements or 

image. It can be immediately calculated from the standard Gaussian distribution. Then the discrete 

probability model of the CS measurements can be obtained in advance without knowing any 

information about the input image. This benefits the low-complexity quantization design. 

3.2. Universal Quantization Design 

Based on the universal probability model kF  Equation (17) derived above, we then implement the 

traditional PDF-based quantization [22] to optimize the R-D performance. However, this optimization 

problem has a higher computational complexity than other simple solutions, such as uniform 

quantization, etc. We aim to design an efficient look-up table based on the PDF-based quantization, 

such that the practical quantization of CS measurement can be achieved by a simple mapping operation. 
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From quantization theory [22], the PDF-optimized quantization can be obtained by solving the 

following optimization problem: 

min ( )
Q

y Q y−  (18)

The solution of Equation (18) is as follows [22]: 
1/3

1/3

( )
( )

( ') '

f y
y

f y dy
λ =


y

y

 (19)

where ( )f yy  is the PDF of the source ,y  and ( )yλ  is the function to determine the number of the 

quantization levels. Integrating ( )yλ  gives the fraction of the quantization reproduction levels. We 

equally divide the range [ , ]y d dσ σ∈ − ⋅ ⋅  into max
max 2RM =  intervals max -1/ 2Rd σΔ = ⋅ . Denoting ( )ky  

to be the center point of k-th max( 1,2,..., )k M=  interval, then the fraction kλ  of the quantization 

reproduction levels in the k-th interval can be approximated as follows: 

2

2
max

( )

1/3

( )N(0, )

1/3

( )N(0, )

( )

( )

( )

k k

k

kM

y

f y

f y

σ

σ

λ λ

< >

≈ ⋅ Δ

 ⋅ Δ =
 ⋅ Δ 

 (20)

Substituting Equation (20) with Equation (17), we can derive: 

max

1/3

max1/3
, 1,2...,k

k
kM

F
k M

F
λ

< >

≈ =


 (21)

Then the cumulative fraction KΓ  of the quantization reproduction levels from the first interval to 

the k-th interval can be calculated as follows: 

max1
, 1,2...,

k K

K kk
K Mλ=

=
Γ = =  (22)

Since KΓ  is only related to universal probability model kF  which can be calculated by Equation (17) 

in advance, the designed quantization can be implemented efficiently as follows. For a given target 
quantization bits R max(1 )R R< ≤ , the 2RM =  quantization cells can be mapped from the max

max 2RM =  

intervals via a mapping table, as shown in Figure 6. The interval index iK  in Figure 6b, which 

represents the rightmost interval for the i-th (1 )i M≤ ≤  quantization cell in Figure 6a is obtained  

as follows: 

1,2,...,
arg mini K
K M

i
K

M∈

 = Γ − 
 

 (23)

Note that the interval index iK  (1 )i M≤ ≤  of R bits quantization is universal for the CS 

measurements of any input images. When quantizing a CS measurement y  with the real value of maxy  

from specific image at the encoder, it is firstly quantized to an interval iK  in Figure 6b, and then it is 

mapped to the i-th quantization cell in Figure 6a. Then the output codeword i is transmitted to the 

decoder via a channel. At the decoder, the quantization reproduction value ŷ  of the received 

quantization cell i can be reconstructed as follows: 
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( ) 1 maxˆ ( ) / 2 , 1,...,i i iy K K y i M−= + ⋅Δ − =  (24)

It is known that, the universal probability model kF  and kλ  in Equations (17) and (21) can be 

calculated in advance without knowing any information about the input image. Thus the cumulative 

fraction KΓ  can be calculated in advance. Then the designed quantization is only related with the 

maximum value of the CS measurements maxy  and so is the de-quantization in Equation (24). 

Therefore, for quantizing the real-valued CS measurements from an input image, maxy  is firstly 

obtained, then the quantization cell with given target bits R  can be obtained easily via a linear 

mapping operation. The computational complexity of this quantization method is low, compared with 

classical PDF-optimized quantization, which has to first estimate the PDF and then calculate the 

quantization function in Equation (18) for each input image. 

Figure 6. Quantization mapping table for the given target bits R. (a) Quantization cells;  

(b) Quantization intervals. 

 

4. Lossy Compression Solution for CS Acquisition with the Proposed Methods 

We incorporate the proposed Adaptive Compressive Sensing (ACS) and universal quantization 

methods into the CS acquisition process of CSI system to verify its lossy compression performance, as 

shown in Figure 7.  

Figure 7. The framework of the CSI system with the proposed methods. (a) CS acquisition 

process with the proposed methods; (b) CS reconstruction process. 

k
T ∗

y = ΦΗf
f

′f 'y

( )ΦΗ

qy

qy

 

21 3

maxymaxy−
1K iK

i M1( )a

y

( )b

( )MK

maxM
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We design the ACS module for CS acquisition, which adaptively sparsifies the input image by 

truncating image coefficients in Figure 7a. In order to truncate the coefficients, ACS module requires 

optimal truncation indices Tk* to form a truncating parameter in Equation (10), so we design a support 

estimation module to estimate Tk* with truncation point model before acquisition in Figure 7a. After 

ACS module gets the estimated Tk* from support estimation module, the coefficients of the input image 

is then truncated and acquired. The resulting CS measurements are quantized by the proposed 

universal quantization module.  
The procedure of this CSI system can be described as follows: denoting the image as ,f  the optimal 

truncation indices Tk* of f  is first estimated by support estimation module. We build the truncating 

matrix W  according to Equations (10) and (11) with Tk* and generate a matrix TH = Ψ WΨ  in ACS 
module to truncate the coefficients of the image. The CS measurements y = ΦΗf  are quantized into 
codewords qy  by universal quantization module. At the decoder, qy  are de-quantized to 'y  by  

de-quantization module and finally 'f  is reconstructed. 
In practical application, we further consider the following two aspects to reduce the computational 

complexity. Firstly, we calculate the truncation point model in Equation (9) in advance for images 

which is stored and used by support estimation module. Secondly, the optimal truncation indices Tk* of 

the coefficients can be approximately obtained from the partially acquired CS measurements at the 

sampling rate SR = 0.1 with [31]. In this paper, we use the first k lowest frequency indices of DCT 

coefficients of the image in the zig-zag order. 

5. Simulation Results and Analysis 

We verify the performance of the proposed solution for CS acquisition in CSI system in the 

following three aspects: (a) the proposed ACS method; (b) the proposed universal quantization method; 

(c) the R–D performance of the lossy compression for CS acquisition with proposed ACS and 

universal quantization methods. Twelve grayscale images of 256 × 256 resolution with different spatial 

characteristics are used for simulation as shown in Figure 8.  

Figure 8. Gray scale test images. (a) Lena; (b) Cameraman; (c) Boats. (d) Peppers;  

(e) Goldhill; (f) Bank; (g) House; (h) Baboon; (i) Fingerprint; (j) Jetplane; (k) Lake; (l) Pirate. 
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In the simulation, the images are first normalized to unit 2l  norm and then divided into 16 × 16 blocks. 

The values of the measurement matrix Φ  are Gaussian distributed with zero mean and unit variance. 

We choose Discrete Cosine Transform (DCT) matrix as sparsifying basis .Ψ  The CS scheme is 

performed over all blocks using the same measurement matrix Φ  [32]. The standard 1l  minimization 

program [33] is used as the CS recovery algorithm. We measure the reconstruction performance in 

terms of a Peak Noise-to-Signal Ratio (PSNR) between the reconstructed and original images. All 

simulations were implemented using MATLAB R2011b and carried out on a computer with dual core 

CPU at 2.4 GHz and 2 GB RAM. 

5.1. Performance of Proposed ACS Method 

We compare the proposed ACS method (denoted “Proposed”) with two methods: (a) traditional  

CS method without adaptive technique (denoted “Baseline”); (b) the solution in [19] (denoted  

“Method [19]”). The simulation results are shown in Table 1. Our method achieves an average of 

3.21~3.63 dB PSNR gain comparing to other solutions at SR = 1/4, and 3.37~3.87 dB PSNR gain at  

SR = 5/8.  

Table 1. PSNR (dB) comparison between the proposed method, baseline and Method [19]. 

Sampling Rate  Methods Lena Cameraman Boats Peppers Average 

SR = 1/4 

Baseline  24.05 19.90 24.32 23.22 22.87 

Method [19] 24.49 20.33 24.63 23.71 23.29 

Proposed 27.64 23.17 28.29 26.91 26.50 

SR = 5/8 
Baseline  30.84 26.66 34.10 31.33 30.73 
Method [19] 31.34 27.14 24.54 31.91 31.23 
Proposed 34.50 30.29 38.42 35.18 34.60 

Figures 9 and 10 show the subjective quality of the reconstructed images for Boats and Cameraman 

at SR = 1/4 and SR = 5/8. We can see that our method provides superior visual quality of recovered 

images compared to other solutions. 

Figure 9. Subjective quality comparison on image Boats at SR = 1/4. (a) Proposed;  

(b) Method [19]; (c) Baseline. 

 
(a) (b) (c) 
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Figure 10. Subjective quality comparison on image Cameraman at SR = 5/8. (a) Proposed; 

(b) Method [19]; (c) Baseline. 

 
(a) (b) (c) 

5.2. Performance of Proposed Universal Quantization Method 

The proposed universal quantization is compared to the uniform quantization and classical  

PDF-based quantization at fixed rate (without entropy coding). We empirically set 4.5d =  in  

Equation (17) for simulation. The quantization bits R is ranging from 2 to 8. The results are shown in 

Table 2 and Figure 11. Figures 12 and 13 show the subjective comparisons of these three methods. It is 

shown that the performance of our method is comparable with that of PDF-based quantization. Note 

that, the probability model in our method is established in advance without knowing any information 

about input image, while the probability model in PDF-based quantization needs to be calculated for 

each input image. 

Table 2. The PSNR (dB) gains over “uniform quantization” at SR = 0.7. 

Images 

R = 3 R = 5 

PDF-Based 
Quantization 

Universal 
Quantization 

PDF-Based 
Quantization 

Universal 
Quantization 

Lena 4.06 3.95 1.98 1.79 
Cameraman 3.87 3.97 1.57 1.56 

Boats 4.51 4.23 2.68 2.25 
Pepper 4.20 4.18 3.02 2.93 

Goldhill 5.58 4.89 3.62 3.22 
Bank 4.91 4.00 2.59 1.57 
House 5.32 4.63 3.36 3.56 

Baboon 5.28 4.48 1.84 1.87 
Fingerprint 4.74 4.06 2.22 2.07 

Jetplane 6.63 5.07 3.63 3.55 
Lake 3.22 4.08 1.77 1.61 
Pirate 6.31 5.24 4.46 3.42 

Average 4.89 4.40 2.70 2.45 
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Figure 11. R-D performance for three methods after CS reconstruction. (SR = 0.7).  

(a) Lena; (b) Cameraman; (c) Boats; (d) Peppers. 

(a) (b) 

(c) (d) 

Figure 12. Subjective comparison (PSNR) of portions of Bank (SR = 0.7, R = 5) after CS 

reconstruction. (a) no quantization (26.73 dB); (b) uniform quantization (23.34 dB);  

(c) PDF-based quantization (24.91 dB); (d) universal quantization (24.90 dB). 

(a) (b) (c) (d) 
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Figure 13. Subjective comparison (PSNR) of portions of Lena (SR = 0.7, R = 5) after  

CS reconstruction. (a) no quantization (27.92 dB); (b) uniform quantization (24.34 dB);  

(c) PDF-based quantization (26.32 dB); (d) universal quantization (26.13 dB). 

(a) (b) (c) (d) 

We further verify the computational complexity of the proposed universal quantization. Our method 

only requires a simple look-up table operation for CS measurements compression. In contrast,  

PDF-based quantization has to estimate the PDF for the CS measurements of each input image first 

and then calculate the quantization. Both of these two procedures have high computational complexity. 

The simulation times (with MATLAB) and theoretical complexity of universal quantization, uniform 

quantization, and PDF-based quantization are listed in Table 3. It is shown that the simulation time of 

the universal quantization is much lower than that of PDF-based quantization. Moreover, the 

computational complexity of the PDF-based quantization increases rapidly with the increase of the 

image resolution. By comparison, the computational complexity of the proposed universal quantization 

has no relation with the resolution of the input image. Comparing with uniform quantization, the 

simulation time of the universal quantization is a little high due to the look-up table operation; 

however, the R-D performance of the universal quantization is much better. 

Table 3. Complexity comparison of three methods (R = 5, SR = 0.5). 

Methods 
Theoretical  
Complexity 

Simulation Time (ms) 

Baboon  
128 × 128 

Bank  
256 × 256 

Cameraman 
512 × 512 

PDF-based Quantization ( )O n  1314 4517 20174 
Uniform Quantization (1)O  0.02 0.02 0.02 
Universal Quantization (1)O  2.84 2.89 2.88 

5.3. R-D performance of the Lossy Compression Solution of CS Acquisition 

We evaluate the R-D performance of the proposed lossy compression solution of CS acquisition in 

CSI, which incorporates both the proposed ACS and universal quantization methods. We first examine 

the performance of the proposed CSI system in Figure 7 (denoted “Proposed”) and compare it with 

that of the traditional CSI system in Figure 1 (denoted “Baseline”), which uses the uniform 

quantization. The CS measurements are directly quantized without entropy coding. The sampling rate 

is SR =1/4, 3/8 and quantization bits R = 4, 5. Table 4 shows the results for eleven images. It is shown 

that the proposed solution increases the PSNR by 1.4 dB on average comparing to Baseline for  

SR = 3/8 and R = 5, and 1.0 dB for SR = 1/4 and R = 4. Moreover, we found that the PSNR gain for 
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Bank is higher than that for Baboon, possibly because there are more texture details in Baboon 

(corresponding to more high frequency components), which is truncated by the ACS method. 

Table 4. PSNR (dB) comparison of the proposed solution and baseline solution. 

Images 
SR = 3/8, R = 5 SR = 1/4, R = 4 

Baseline Proposed Gain Baseline Proposed Gain 

Lena 24.1 25.6 +1.5 20.4 21.7 +1.3 
Cameraman 21.2 22.6 +1.3 18.1 18.7 +0.6 

Boats 24.6 26.0 +1.4 20.8 21.6 +0.8 
Peppers 23.8 25.3 +1.5 19.7 20.9 +1.2 
Goldhill 25.1 26.5 +1.4 21.1 22.4 +1.3 

Bank 21.9 23.7 +1.8 18.4 20.0 +1.6 
House 26.3 27.6 +1.3 21.6 22.9 +1.3 

Baboon 24.0 24.9 +0.9 21.3 21.7 +0.4 
Fingerprint 20.9 22.3 +1.4 17.8 18.8 +1.0 

Lake 22.9 24.4 +1.5 19.1 20.2 +1.1 
Pirate 24.6 26.1 +1.5 20.6 22.0 +1.4 

Average 23.6 25.0 +1.4 20.0 21.0 +1.0 

We then verify the performance of the proposed solution in practical compression application by 

incorporating Differential Pulse Code Modulation (DPCM) [34,35] into the proposed and baseline CSI 

systems for compression (denoted by “Proposed CSI + DPCM” and “Baseline CSI + DPCM” 

respectively). In “Proposed CSI + DPCM”, the real-valued CS measurements are compressed by 

DPCM encoder, and the reconstructed image is obtained by CS recovery. 
The R-D curve is the combination of all the best R-D points for each bit rate by searching all the 

sampling rates {1 / 8,2 / 8,3 / 8,4 / 8,5 / 8,6 / 8,7 / 8}SR =  and quantization bits {1,2,3,4,5,6,7,8,9}R =  

[36]. Figure 14 shows the results for 4 images. We can see that the “Proposed CSI + DPCM” achieves 

up to 2dB PSNR gain comparing to “Baseline CSI + DPCM” solution. We further verify the 

performance of the proposed solution by incorporating JPEG [37,38] into the proposed and baseline 

CSI systems for compression (denoted by “Proposed CSI + JPEG” and “Baseline CSI + JPEG” 

respectively). The range of real-valued CS measurements is first mapped into 8-bit range 0–255, and 

then the CS measurements are sent to JPEG. The result is shown in Figure 14. It is shown that the 

“Proposed CSI + JPEG” achieves up to 2dB PSNR gain comparing to the “Baseline CSI + JPEG”. We 

also found that the“Proposed CSI + DPCM” outperforms “Proposed CSI + JPEG”. It is possibly 

because JPEG is designed for natural image compression, whose distribution characteristic is different 

from that of the CS measurements. The subjective results are shown in Figures 15 and 16, in which the 

proposed solution achieves better visual quality than that of the baseline solution. 
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Figure 14. R-D performance comparison. (a) Lena; (b) Cameraman; (c) Boats; (d) Peppers. 

(a) (b) 

(c) (d) 

Figure 15. Reconstructed image with SR = 1/4 and R = 6. Lena: (a) Proposed CSI + DPCM 

(PSNR = 26.44 dB); (b) Baseline CSI + DPCM (PSNR = 23.78 dB); Boats: (c) Proposed 

CSI + DPCM (PSNR = 26.76 dB); (d) Baseline CSI + DPCM (PSNR = 23.92 dB). 

 
(a) (b) (c) (d) 
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Figure 16. Reconstructed image at SR = 1/4 and JPEG quality level = 1/10. Lena: (a) Proposed 

CSI + JPEG (PSNR = 23.99 dB); (b) Baseline CSI + JPEG (PSNR=23.05 dB); Boats:  

(c) Proposed CSI + JPEG (PSNR = 24.20 dB); (d) Baseline CSI + JPEG (PSNR = 23.32 dB). 

 
(a) (b) (c) (d) 

6. Conclusions 

In this paper, we have developed an ACS method and a universal quantization method for efficient 

lossy compression of CS acquisition in CSI systems. Simulation results show that the proposed 

solution achieves improved R-D performance and subjective quality of the CSI system; meanwhile, it 

has a low computational complexity. 
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