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Abstract: Color camera characterization, mapping outputs from the camera sensors to an
independent color space, such as XY Z, is an important step in the camera processing
pipeline. Until now, this procedure has been primarily solved by using a 3 × 3 matrix
obtained via a least-squares optimization. In this paper, we propose to use the spherical
sampling method, recently published by Finlayson et al., to perform a perceptual color
characterization. In particular, we search for the 3× 3 matrix that minimizes three different
perceptual errors, one pixel based and two spatially based. For the pixel-based case,
we minimize the CIE ∆E error, while for the spatial-based case, we minimize both the
S-CIELAB error and the CID error measure. Our results demonstrate an improvement of
approximately 3% for the ∆E error, 7% for the S-CIELAB error and 13% for the CID
error measures.

Keywords: color characterization; perceptual correction; camera sensor response

1. Introduction

At first glance, it would seem that for a camera to accurately capture colors matching our perception,
the color triplets obtained by the camera sensor(s) should correspond to the cone responses of the human
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visual system. However, this is never the case, as Figure 1 shows, and since the spectral sensitivities of
sensor and cones are different, the responses must also be different.

Figure 1. Spectral sensitivities of: (a) the three types of cones in a human eye; and (b) a
typical digital camera.

(a) (b)

There are several reasons for this difference, like the fact that it is difficult to tune the spectral response
of the pigments or dyes of the color filter arrays and that having spectral sensitivities with a large amount
of overlap (as in the responses of medium and long wavelength cones) would not be practical from a
signal-to-noise point of view [1]. However, while emulating cone responses is not practical for image
capture, it is essential in the subsequent processing of the image signal: the stimulus the scene would
have produced in the human visual system must be estimated as accurately as possible [1]. This is why
we must be able to transform the (R,G,B) values of the sensor into (X, Y, Z) tristimulus values, i.e.,
go from RGB into CIE XY Z, which we recall is a color space that uses the color-matching functions
x̄, ȳ, z̄ of a standard observer, obtained from perceptual color-matching experiments.

We can transform (R,G,B) into (X, Y, Z) by imposing the Luther–Ives condition [2]: that the sensor
response curves are a linear combination of the color matching functions. Manufacturing processes and
the properties of the materials used make it difficult to adjust at will the sensor response curves, and
the Luther–Ives condition is usually not met in practice [3]. Despite this fact, a three-channel camera
with three arbitrary sensor response curves is able to estimate the tristimulus values of an object as long
as the object’s spectral reflections are always composed of three principal components and they do not
change steeply with respect to wavelength [3]. This implies that with a linear transformation, we can
go from the observed (R,G,B) triplet to its corresponding (X, Y, Z) tristimulus value, and this process
is called color characterization. We must point out that the transform itself could also be a non-linear
mapping [4,5].

While the non-linear approach generally uses more parameters and, hence, has greater potential to
reduce error, the linear approach remains very popular. This is due to two key advantages: (1) with
linear methods scaling the RGB responses results in a direct scaling of XY Z values; and (2) linear
methods preserve the hue-planes of the input RGB image [6].

A standard way for camera manufacturers to perform color characterization is the following [3]:
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(1) Build a set of n test patches of representative or important colors.
(2) Under controlled conditions, with a known illuminant (e.g., D65), measure the tristimulus values

of the patches with a tristimulus colorimeter, obtaining (Xi, Yi, Zi), 1 ≤ i ≤ n.
(3) Under the same conditions, use the camera to measure the (R,G,B) values of the patches,

obtaining (Ri, Gi, Bi), 1 ≤ i ≤ n.
(4) A linear transformation, a 3×3 matrix called the colorimetric matrix, gives an estimated tristimulus

value (X̂i, Ŷi, Ẑi) from (Ri, Gi, Bi). This matrix is computed so as to minimize the total visual
color difference J , which is a weighted sum of the color differences ∆E (computed, for instance,
in a CIE perceptual uniform color space) between the target tristimulus (Xi, Yi, Zi) and its estimate
(X̂i, Ŷi, Ẑi), for each patch i, 1 ≤ i ≤ n: J =

∑n
i=1wi∆E(Xi, Yi, Zi, X̂i, Ŷi, Ẑi), where wi

are the weights for the different patches. The colorimetric matrix is usually obtained through
least-squares minimization.

In [7], it is noted that the above procedure has the problem that the white point is not preserved, i.e.,
white in RGB is not mapped to white in the CIE XY Z color space, where white in XY Z represents
the XY Z response to a perfect reflecting diffuser under a specified illuminant; an additional term can
be added to J in order to prevent this [8], and more accurate and robust techniques have also been
proposed [9].

Some cameras come with several pre-set matrices computed under different illuminations.
For instance, using the matrix for fluorescent lighting removes a noticeable green cast that would
otherwise be present if we used a matrix computed with a standard illuminant, like D65 or D50; other
pre-sets may correspond, for instance, to a “film look” (with de-saturated colors) or may give a very vivid
color palette. These pre-set matrices can also be adjusted manually, so as to achieve a certain image look,
since changing the colorimetric matrix affects hue and saturation (the white point is preserved, though,
and color matrix adjustment must not be confused with white balance). Video cameras were the first
to incorporate the possibility of modifying the colorimetric matrix, so that multiple cameras in live
broadcasts could be color matched and there appeared no color jumps when switching from one camera
to another [10].

In this paper, we propose an approach to characterization, which retains the advantages of linear
transforms, while explicitly minimizing perceived differences in perceptual color spaces. The approach
works in two stages: in the first stage, an RGB to XY Z transform is computed that minimizes
the least-squares error in the usual way; in the second stage, this transform is adjusted to reduce
a defined perceptual measure. This adjustment is done using the method of spherical sampling of
Finlayson et al. [11], which generates a set of discrete putative transforms that deviate systematically
from the first transform. We will show that choosing the best of these transforms to minimize the
perceptual error results in an improved characterization performance. Let us stress here that, to the
authors’ knowledge, this is the first time spherical sampling has been used out of the spectral sharpening
domain. This may open the door to the application of spherical sampling to further applications in
different domains.

This is valid for any kind of digital camera, be it for video or still photography, using CCD or
CMOS sensors. Our method provides camera manufacturers and also color researchers and professional
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photographers and cinematographers with a simple way to record images, whose colors are more faithful,
in a perceptual sense, to those in the real world scene where the images were taken.

2. Background

2.1. Sources of Error

The error in the characterization, i.e., the difference between the target and estimated XY Z values,
is dependent on the sensor sensitivity of the camera, the reflectance spectra of the objects in the scene
and the illuminant of the scene. In the case that the RGB sensor sensitivities are within an exact 3 × 3

transform of the XY Z color matching functions (CMFs) or, equivalently, the RGB bases and XY Z

CMFs span the same linear subspace, then the error in the characterization is guaranteed to be zero [12].
In practice, this condition is rarely met: as we mentioned, there are inherent variations in the sensor
manufacturing process, as well as conflicting design considerations, such as robustness to noise.

One approach to solving this problem would be to map RGB sensors directly to XY Z CMFs using
the linear transform T minimizing:

arg min
T
‖Sxyz − SrgbT‖2, (1)

where Sxyz denotes an m × 3 matrix of XY Z color matching functions sampled at m discrete
wavelengths, Srgb is an m× 3 matrix of camera RGB responses and T is a 3× 3 linear transform. This
can be shown to be the best approach when no other information about spectra is known (the maximum
ignorance assumption) [13]; i.e., when spectra are pure noise stimuli. However, this is not the case for
real spectra, which are both positive and smoothly varying functions of wavelength [14,15]. As such, the
structure of reflectances becomes an important factor in defining the optimal transform. For this reason,
the minimization is usually performed as:

arg min
T
‖Mxyz −MrgbT‖2, (2)

where Mxyz denotes an n× 3 matrix representing XY Z values for a set of illuminants and reflectances
and Mrgb is an n×3 matrix representing the RGB values for the same set of illuminants and reflectances.

In a world where reflectances can be described by three, or fewer, parameters in a linear model, the
characterization process is again guaranteed to result in zero error [16]. In practice, this condition is not
met: real reflectances are described by more than three parameters [17], and the characterization error
will be non-zero.

In addition to these fundamental sources of error, the imaging process will contain various sources of
noise. These factors are not considered in our coverage here.

2.2. Perceptual Error

The goal of characterization is to ensure that colors remain stable regardless of the imaging device
used. Ultimately, when considered with a display device as part of the color management pipeline, the
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captured colors should appear to be as similar to the original scene as possible. The implication for the
characterization error is that errors should reflect the perceived difference between colors.

The light entering the human eye is firstly captured by the photoreceptors and is immediately subject
to neural processing; this comes in the form of adaptation, spatial channel mixing and both pooling
and contrasting responses across receptors, even before the visual signal has left the retina. Interactions
between neurons in the visual cortex and at higher processing sites mean that relationships between
perceived colors are complex, and the color of a stimulus cannot be defined without taking into account
its spatial surrounds and context.

Some of the behavior of the human visual system can be predicted by “color appearance models”.
These perceptual models approximate the transformation from raw cone-responses (which can be derived
from XY Z values) to perceptual attributes, such as lightness, colorfulness and hue. An early color
appearance model, the CIELAB color space [18], was derived specifically to map colors into a space
where color differences correlate closely with Euclidean distances measured in CIELAB. Other more
recent models, such as CIECAM02 [19], provide predictors of the perceptual attributes of the colors, but
CIELAB color difference formulae (which measure Euclidean distance in CIELAB space) are still used
extensively for color difference calculations, and are being incrementally improved alongside the color
appearance models, e.g., CIE ∆E00 [20].

Color appearance models may take into account the non-linear response of the visual system to light
transduced by the photoreceptors, including effects, such as adaptation and opponent color mechanisms,
but they have a relatively basic notion of spatial relationships between colors. To model these
effects, multiple image-difference predictors and image-appearance models have been proposed. These
include the relatively simple S-CIELAB model, which incorporates spatial filtering into the CIELAB
calculation [21], up to more complex models, such as iCAM [22], which includes spatial filtering and
local adaptation in a more complete color appearance model.

Recently, some perceptually-based image quality metrics have been presented. In particular, the
Color Image Difference (CID) quality measure [23] computes a color difference metric for a complete
image, taking into account multiple imaging factors in a perceptually-based color space, in particular
hue, chroma, lightness, lightness-contrast and lightness-structure.

2.3. Linear vs. Non-Linear

The characterization process involves a mapping from one three-vector, RGB, to a second
three-vector, XY Z. This can be done through either linear or non-linear mapping. Non-linear
approaches, such as polynomials [4], neural networks [5] or geometric approaches [24], have been
favored in some applications, as they introduce a greater number of parameters and, hence, can reduce
characterization error. Nonetheless, linear approaches are still popular and are widely employed in
default conversions used by color camera manufacturers. Linear transforms, while potentially less
accurate, preserve two important properties: scalability and the preservation of hue planes, which we
will briefly describe now.

The scalability property means that the characterization is equally valid when the exposure duration of
the camera is changed; this is not true for most non-linear characterizations, where a change in exposure
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duration will scale RGB values, but may result in angular shifts in the XY Z vectors, which, in turn,
correlate to visible color shifts. In general, when applying non-linear methods the transformation matrix
needs to be recalculated each time exposure is altered, although recently, some solutions have been
proposed for retaining scalability, while increasing the number of free parameters [6,25,26].

Similarly, the planes of constant hue in an RGB image, i.e., the plane of RGB responses to a matte
surface with some elements in light and some in shadow, will be preserved by a linear transformation,
but with a non-linear transform, there may be induced color shifts. This issue is covered in detail in [6],
where a method is proposed to circumvent this problem.

We note here that the scalability and constant hue plane properties follow directly from the
linear response to light of CCD/CMOS sensors [27]. Any non-linearity is added by in-camera image
processing, such as gamma correction or noise suppression. It is therefore more practical to directly
capture the images in RAW mode, thus circumventing these operations.

3. Spherical Sampling for Camera Characterization

The goal of the present paper is to build a 3× 3 matrix transform that can minimize perceptual errors,
rather than errors in XY Z space. Human color perception is a non-linear phenomenon, and therefore,
methods based on the minimization of a linear measure, such as least-squares with the L2 norm, are not
well adapted to this goal. To achieve this, we need a method for performing a constrained search of the
space of possible sensors.

Spherical sampling [11,28,29] provides a means for discretely sampling points on a sphere and
relating them to sensors. In particular, given a set of sensors, spherical sampling converts each sensor
into a point in the sphere and, from there, samples discrete points on the sphere within a pre-specified
angular distance from the starting point. Each of these sample points represents a new sensor. Therefore,
for example, given a set of three RGB sensors, these can be mapped to three separate points on a sphere.
Multiple points, say 10,000, can then be sampled close to each sensor on the sphere. In this example,
this results in 10,000 new R sensors, 10,000 new G sensors and 10,000 new B sensors. A discrete set
of plausible sensors can then be generated by enumerating all possible combinations of the R, G and B
sensors. These potential sensors can then be compared using an error metric.

There are alternative methods to exploring the sensor space. For example, one could sample
the nine coefficients of the transform matrix T directly or use a gradient descent or direct search
algorithm to optimize matrix coefficients. However, spherical sampling has several practical and
theoretical advantages.

First, the problem of uniform sampling on a sphere is well understood: we can be sure that sampled
points are equally distributed in all different directions, i.e., without over- or under-sampling in any given
direction. Sampling the matrix T does not ensure even sampling. By adding more data points to mitigate
under-sampling (and to ensure a maximum difference between samples), convergence times would be
increased and other regions would be unnecessarily over-sampled. Similarly, reducing the number of
sample points to avoid over-sampling may miss local error minima. Furthermore, it was shown in [11]
that the direct search and gradient descent methods for optimizing coefficients are more likely to fall into
sub-optimal error minima than the spherical sampling approach.
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Secondly, using spherical sampling, it is possible to define the extent over which the sampling will
take place in the sensor space, since the number of points that are sampled in the sphere is directly related
to the mean distance between any two solutions. Once again, this information is not available by directly
sampling on the matrix, since the same increment in different coefficients of the matrix might represent
very different distances in terms of the resulting sensors.

Finally, spherical sampling allows us to define the distance from the starting point with a simple and
intuitive measure: the angular distance. Using this distance, it is possible to avoid solutions that are too
far away from the starting point. This has been shown to be important in other applications, such as color
ratio stabilizations [11], where it was shown that failing to enforce a distance constraint could result in
extreme sensor shifts, such as a green sensor being modified to a red one.

Details of the Method

The problem of camera characterization can be thought of as the conversion from an original set
of RGB sensors to a different set, XY Z. In particular, in the domain of camera characterization, the
problem is to map each camera response RGB to an XY Z tristimulus value. When using a 3× 3 linear
transform, each new coordinate is a linear combination of RGB, with weights given by a column of the
transform matrix, e.g.,

X = t11R + t21G + t31B (3)

with the appropriate processing (which we discuss in the next paragraph), the vector [t11t21t31] (along
with the other columns of the transform T ) can be considered as a point on a sphere. Spherical sampling
then provides a method for systematically exploring sensor sets by choosing three points on the sphere
as the three columns of the transform matrix.

Mathematically, let us represent our original camera sensors S as an m× 3 matrix, where m denotes
the number of discrete wavelengths at which the sensor functions are sampled (this value is typically 31,
which comes from sampling the visible spectrum 400 nm to 700 nm at 10-nm intervals) and three is the
number of sensors, which for most applications, corresponds to the red, green and blue color channels.
We perform the reduced singular value decomposition (SVD) of these sensors in order to obtain an
orthonormal sensor basis. An orthonormal basis is needed, since differences between coefficient vectors
in T should map to the same differences in the sensors.

S = U · Σ · V t. (4)

In this equation U is an orthonormal matrix with dimension m × 3, Σ is a diagonal 3 × 3 matrix
containing the singular values of matrix S, V is an orthogonal 3 × 3 matrix and t is the transpose
operator. Then, U is the basis we seek.

From this basis U , we can define a new set of sensors S̃ (m × 3), different from the original sensors
S, by multiplying the basis by any linear transformation P (3 × 3), where P consists of three column
vectors, p1, p2, p3, that are sampled over the two-sphere. Then,

S̃ = UP, P = [p1, p2, p3]; (5)
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we are interested in the relation between the original sensors S and the newly defined sensors S̃.
Using Equations (4) and (5), we have:

S̃ = UP = UΣV t(ΣV t)−1P = S(ΣV t)−1P. (6)

Now, replacing this into Equation (2), we obtain:

T = (ΣV t)−1P. (7)

We can also rearrange this equation in order to relate a transformation matrix T with a set of points P
over the sphere.

P = ΣV tT. (8)

A visual explanation of this procedure can be seen in Figure 2.

Figure 2. Pipeline of the spherical sampling method. Adapted from [11]. From the original
set of sensors, representatives in the sphere are obtained. Then, a sampling over those points
in the sphere is performed. Finally, all of the points added are transformed back to the sensor
domain, representing a new set of sensors.

To find a global error minimum, it is possible, in principle, to sample sensors across the whole surface
of the sphere. However, the combination of three separate sensors means that the number of possible
three-sensor combinations for N samples would be O(N3), which would be prohibitive to compute for
large N . For example, if we select N to be 25, 000, which represents an angular distance between points
in the sphere of 1◦, we will have 25, 0003 = 2.6 trillion sensor sets. Furthermore, it is clear that some
sensor choices would be clearly unsuitable, both in terms of generating high error and in some degenerate
cases, where the transform matrix becomes rank-reduced and maps RGB values to a plane or vector,
rather than a complete 3D color space.

For these reasons, instead of sampling all of the sphere, we look at the two last equations for a
simplified solution. We start by considering TLS , which is the solution to Equation (2), which minimizes
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the least-squares characterization error in XY Z space, which is computed by solving the normal
equation. Once this matrix is found, we apply Equation (8) to obtain the TLS representatives in the
sphere, and we sample in their surrounds. Details of the sampling scheme, including the number of
points and the size of the sampling neighborhood, are provided in the following section. The sampling
on the sphere is based on [30].

4. Experiments and Results

We have performed three different experiments to demonstrate the capability of our method, each
using a different error metric. The first experiment deals with a pixel-wise measure, the CIE ∆E. This
is, to the best of our knowledge, the only perceptual error metric that has been used, until now, to
optimize camera characterization [31]. The other two experiments that we perform, which are based
on minimizing a color appearance model (S-CIELAB) and an image quality metric (CID), are novel.
They characterize the camera not only in terms of isolated pixel values, but also considering the context
(i.e., the spatial arrangement of colors in the scene); a strategy that is more consistent with human
vision and which also demonstrates the power of the method to take into account more complex color
appearance phenomena.

Our experiments have been performed using simulated camera systems, whereby the camera
sensitivities have been measured and recorded in advance, and the illumination and reflectance spectra
of the scene are taken from existing databases of spectra and multispectral images.

The simulation works as follows: for each image (or set of pixels), we know the reflectance spectrum
at each pixel, and from this, we compute both the XY Z value at each pixel and the RGB response
of the camera using the standard image formation equations. Then, the RGB camera responses are
converted to estimated XY Z by the different methods. Therefore, we have the real and the estimated
XY Z images, and we calculate the different metrics from these.

To evaluate the device dependency of our results, we use a total of 37 cameras, including 28 used by
Jiang et al. [32] and nine from the image engineering web page [33]. While we use these cameras to
simulate the capture of still images, the characterization process applies equally to video images. For all
three experiments, we have computed the matrix TLS , which minimizes Equation (2) in the least-squares
sense, using 102 illuminants and 1995 reflectances from the Simon Fraser University dataset [34]. The
spherical sampling procedure considers points within a distance of 3.3◦ from those representing the
starting sensors in the first experiment, and 2.5◦ for the second and third; we sample 30, 000 points in
the sphere in all of the cases, except in Experiment 1b, where we sample 50, 000 points. Let us note
again here that with a bigger angular distance and a larger spherical sampling resolution, better results
might still be obtained at the cost of extra computations. Our selection of distances and points followed
a trade-off between computational time and improvement of the method. However, slight modification
of these parameters will not drastically modify our results.

4.1. Experiment 1a: CIE ∆E

As we mentioned earlier, XY Z is not a perceptual space, i.e., the same distance between two points
in different regions of the space represent different perceived distances by a human observer. As a
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result, minimizing error in XY Z space does not necessarily correspond to a minimized perceptual error.
In order to avoid this issue, different perceptual color spaces have been defined, most notably: CIELAB,
CIELUV [35] and CIECAM [19]. The most commonly-used space is the CIELAB space, as in this
space, Euclidean distance correlates with perceptual distance, and the color conversion from XY Z to
CIELAB is straightforward. The Euclidean distance in CIELAB space is referred to as the CIE ∆E and
is defined mathematically as:

∆E(p
1
, p

2
) = ‖p

1
− p

2
‖2 (9)

where p
1

and p
2

are two points in the CIELAB space with dimensions 3× 1.

More recently, some improvements on this metric have been proposed that are better correlated with
perceptual differences, notably CIE ∆E 2000 [20], which is known to give more accurate results for blue
colors. The formula for this calculation can be found in [20], and we denote the result as ∆E00 [36].

In this section, our goal is to minimize, for each particular camera, the average perceptual error for a
set of illuminants and reflectances, and we report results for both the ∆E and the ∆E00 metrics.

Mathematically, for a particular camera, we call p
i,j

(of dimension 3× 1) the real XY Z value of the
pixel for the reflectance i ∈ I under illuminant j ∈ J and q

i,j
(3×1) the RGB camera value of the pixel.

We look for the matrix T that minimizes:

arg min
T

∑
i∈I

∑
j∈J ∆E(Lab(pt

i,j
), Lab(qt

i,j
· T )

#I ·#J
(10)

where Lab() represents the transformation from XY Z to CIELAB. We follow the same procedure to
calculate ∆E00, by replacing Equation (9) with the standard formula in [20].

We note here that a similar experiment regarding color constancy using sharp sensors was performed
in [11].

We have performed our experiment using the 1995 reflectances and 102 illuminants described above.
Computing all possible surfaces under all lights induces a total of 203,490 color signals. We separate
these into training and test sets by assigning 90% of the color signals at random to the training set, and
the remaining 10% to the test set. We repeat this procedure 100 times to avoid any bias caused by the
random selection. In all figures and tables presented in this paper, the error statistics are reported for the
test set data only.

Table 1. ∆E results: average for 37 cameras.

Least-Squares Spherical Sampling

Min 1.7764 1.7764

Max 10.9365 10.5820

Mean 3.0289 2.9270

Median 2.5801 2.4692

The results for all 37 cameras are reported in Figures 3 and 4 for the ∆E and ∆E00 metrics,
respectively. Tables 1 and 2 show error statistics relating to the Figures, presenting the improvement
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obtained in the minimum, maximum, mean and median statistics. In the Tables, the errors for both the
least-squares method and our spherical sampling approach are averaged over all of the cameras.

Table 2. ∆E00 results: average for 37 cameras.

Least-Squares Spherical Sampling

Min 1.1178 1.1178

Max 7.3300 7.1277

Mean 1.8784 1.8245

Median 1.5049 1.4950

Figure 3. ∆E error for the different cameras. In blue: ∆E for spherical sampling; in red:
error for the least-squares minimization.

Figure 4. ∆E00 error for the different cameras. In blue: ∆E00 for spherical sampling; in red:
error for the least-squares minimization.

4.1.1. On the Significance of the Results

From these Figures and Tables, it is clear that the spherical sampling approach offers an improvement
on the performance of the least-squares method. The main reason for this is that spherical sampling can
map RGB to XY Z, while minimizing error in CIELAB co-ordinates, whereas the least-squares method
is minimizing error in XY Z space only. While modifications of the least-squares method are plausible
using non-linear optimization, this modification is non-trivial, and the spherical sampling method allows
us to perform the same minimization directly.
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We note that the magnitude in the improvement over least-squares is consistent with other works
presented in the color research literature [37,38]. Furthermore, other statistics suggest that the
improvement will have a visual impact. In Figures 5 and 6, we plot the maximum and the 98th percentile
of error scores for each camera, which show that the spherical sampling outperforms the least-squares
approach by a noticeable margin in a vast majority of the cases.

Figure 5. Ninety eighth percentiles per camera for both spherical sampling (blue) and
least-squares (red).

Figure 6. Maxima per camera for both spherical sampling (blue) and least-squares (red).

Similarly, in Figure 7 we plot the percentage of color signals (i.e., combinations of surfaces and
illuminants) where either method (Least-Squares or Spherical Sampling) outperforms the other by at
least 1 or 2 ∆E units, respectively. We can see how for both cases, spectral sharpening is perceptibly
better for around 3% more color signals than the least-squares approach. These results suggest a clear
benefit in using our method over least-squares.

4.1.2. Comparison vs. Matrix Sampling

As explained in Section 3, spherical sampling has some theoretical advantages over simple matrix
sampling. Here, we also compare the two methods numerically in terms of the error they produce.
Spherical sampling in the previous experiment generates a mean of 16, 000 possible matrices, with an
approximate difference in their values of 0.10 per matrix element. To create an analogous situation
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for direct matrix sampling, we have randomly obtained 16,000 matrices by directly adjusting the initial
least-squares estimate by an increment ranging from−0.05 to 0.05 for each matrix coefficient. In Table 3,
we present the average error for the full set of cameras, illuminants and reflectances used. We can see
that our method, with a more efficient approach to sampling, gives lower error.

Figure 7. (Top) Blue bars: percentage of color signals where spherical sampling gives a
lower error than least-squares by 1 ∆E. Red bars: percentage of cameras where least-squares
gives a lower error than spherical sampling by 1 ∆E; (Bottom) Blue bars: percentage
of color signals where spherical sampling gives lower error than least-squares by 2 ∆E.
Red bars: percentage of cameras where least-squares gives lower error than spherical
sampling by 2 ∆E. The results show that our method obtains a perceptible improvement
for around 3% more samples than least-squares for both cases.

Table 3. Comparison between matrix sampling and spherical sampling as the mean for all
the cameras, illuminants and reflectances.

Matrix Sampling Spherical Sampling

∆E 2.9555 2.9270

∆E00 1.8316 1.8245

4.2. Experiment 1b: Different Illuminants

As we pointed out in the Introduction, some cameras calculate pre-set color correction matrices under
different illuminations, which gives better color correction for each individual illuminant. In this section,
we look at how well our method works in this situation by deriving separate color correction matrices
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under different illuminants and comparing the performance of our technique with the least-squares
approach, where the least-squares solution is derived using the same illuminant.

Using the same set of 1995 reflectances, we generated color signals for each of three illuminants:
one representing daylight, one a fluorescent illuminant and the third an incandescent illuminant. The
spectral sensitivities of these illuminants can be found in Figure 8. For each illuminant, we separate the
data into training and test sets, with a proportion of 90% for training and 10% for the test. We then use
the spherical sampling procedure to generate a color correction matrix for the training set and to test the
performance on the test set and then repeat this process 100 times. Results of this procedure, measured
using ∆E and ∆E00 error, are shown in Tables 4 and 5.

Figure 8. Spectral sensitivities of the three illuminants used in Experiment 1b.

Table 4. ∆E error for three different illuminants on the Simon Fraser dataset (Least-Squares
(LS), Spherical Sampling (SS)).

Daylight Incandescent Fluorescent

LS SS LS SS LS SS

Min 1.0581 1.0581 0.9804 0.9804 1.0092 1.0092
Max 6.9781 6.8166 6.3126 6.1703 4.5314 4.3278
Mean 1.8353 1.8153 1.6491 1.6297 1.7122 1.6690

Table 5. ∆E00 error for three different illuminants on the Simon Fraser dataset
(Least-Squares (LS), Spherical Sampling (SS)).

Daylight Incandescent Fluorescent

LS SS LS SS LS SS

Min 0.6729 0.6729 0.5527 0.5527 0.4915 0.4915
Max 4.5663 4.4134 4.3101 4.2190 2.5441 2.4224
Mean 1.1240 1.1116 0.9465 0.9330 0.8057 0.7967
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4.3. Experiment 2: S-CIELAB

Our previous experiments, which can be considered the de facto experiments for perceptual
minimization, have one main drawback: they do not take into account the image context. For example,
when looking at a yellow pixel, the distance between the real and approximated value will be the same,
both if it has a pink neighborhood or an orange one. This is known to be false, since human perception
relies deeply on the context of the scene [39]. It is for this reason that S-CIELAB was proposed [21].
Basically, S-CIELAB computes the ∆E error measure after applying spatial pre-processing to account
for the spatial-color sensitivity of human vision. We note here that in practice, our method can be
applied to minimizing characterization error for a range of more complex perceptual measures, such as
CIECAM02. Here, we use S-CIELAB and another spatial error metric, CID (see below), as test cases to
demonstrate the power of the approach, while we acknowledge that resulting spatial biases introduced
into the characterization matrix may only be optimal for restricted imaging situations.

Figure 9. Foster et al. [40] hyperspectral dataset used in Experiments 2 and 3.

Figure 10. Yasuma et al. [41] rendering of the hyperspectral dataset used in Experiments
2 and 3.
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Given that S-CIELAB is applied to images, for the purposes of our experiments, it is important to
use meaningful images and meaningful illumination. To this end, we have used three different datasets:
the 16 hyperspectral images obtained by Foster et al. [40], which contain a range of man-made objects,
natural landscapes and both indoor and outdoor scenes, the 15 images labeled as “stuff” obtained by
Yasuma et al. [41], which contain a range of very colorful objects, and the combination of both datasets.
We have calculated color signals using the D65 illuminant. The 16 images of the first dataset are
presented in Figure 9, while the 15 images of the second are presented in Figure 10.

Figure 11. S-CIELAB error for the different cameras computed as the mean for the different
images. In blue: S-CIELAB error for spherical sampling; in red: error for the least-squares
minimization. (Top) First dataset; (middle): second dataset; (bottom) third dataset.

In this experiment, for each camera, we use spherical sampling to calculate a color correction matrix
that minimizes S-CIELAB error. Mathematically, if we define Ih,D65 (dimension N×3) as the real XY Z
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values of image h of the database under the D65 illuminant and Jh,D65 (dimension N × 3) as the image
obtained by the camera for the same image and illuminant, we search for the matrix T that minimizes:

arg min
T

∑M
h=1 S-CIELAB(Ih,D65, Jh,D65 · T )

M
(11)

To separate the training and test sets we use a leave-one-out procedure, whereby, for each dataset, we
use all except one image to build the transform matrix and test the method on the remaining image. We
repeat this procedure as many times as there are images in the dataset, leaving out each image in turn
and then calculating the mean error over all images.

Results for all of the different cameras on the three different datasets are shown in Figure 11. A
statistical analysis of the results is shown in Table 6.

Table 6. S-CIELAB results: average result for 37 cameras using a leave-one-out paradigm
(Least-Squares (LS), Spherical Sampling (SS)).

Foster et al. Yasuma et al. Combination

LS SS LS SS LS SS

Min 0.7139 0.5173 1.2528 1.1716 0.9766 0.8395

Max 4.4245 3.8121 7.1496 6.7660 5.7788 5.4829

Mean 1.2100 1.0056 1.8447 1.6981 1.5170 1.4154

Median 1.0529 0.8701 1.5141 1.3740 1.2856 1.2240

4.4. Experiment 3: CID Measure

Lissner et al., have recently proposed a new perceptually based Color Image Difference (CID) metric,
which shows a good correlation with human evaluations of gamut mapping algorithms [23]. The method
is originally based on the intensity SSIM image quality metric of Wang et al. [42].

In this experiment, we have followed the same procedure as Section 4.3 and have used the
leave-one-out paradigm to minimize the mean CID error for a subset of the hyperspectral images and to
test a novel image for which the method was not trained.

Defining Ih,D65 as the real XY Z image h of the database under the D65 illuminant and Jh,D65 as the
image obtained by the camera for the same image and illuminant, we search for the matrix T minimizing:

arg min
T

∑M
h=1CID(Ih,D65, Jh,D65 · T )

M
. (12)

Results are shown in Figure 12, and once again, spherical sampling outperforms the least-squares
optimization. A statistical analysis is shown in Table 7.
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Figure 12. Color Image Difference (CID) error for the different cameras computed as the
mean for the different images. In blue: CID error for spherical sampling; in red: error
for the least-squares minimization. (Top) First dataset; (middle) second dataset; (bottom):
third dataset.

Table 7. CID results: average for 37 cameras.

Foster et al. Yasuma et al. Combination

LS SS LS SS LS SS

Min 0.0024 0.0018 0.0061 0.0053 0.0041 0.0036

Max 0.1144 0.1017 0.1377 0.1288 0.1256 0.1157

Mean 0.0092 0.0076 0.0166 0.0136 0.0127 0.0106

Median 0.0045 0.0040 0.0098 0.0077 0.0074 0.0072
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4.5. Qualitative Examples

The previous sections outline results for quantitative metrics that have proven correlations with human
perceptual performance in image evaluation. While a full perceptual experiment is beyond the scope of
the present work, in this section, we include some visual examples to help understand the method’s
performance in a more intuitive way.

Figure 13 presents some qualitative examples of color correction matrices that minimize both the
S-CIELAB and the CID measures. The images are presented in sRGB using the standard transform
to convert from XY Z to sRGB. In the top rows, i.e., the flower image, we present color correction
results that minimize S-CIELAB error. The image on the left, which is the least-squares minimization,
has a mean S-CIELAB difference from the middle image (the real image) of 8.74. The image created
by spherical sampling, shown on the right, gives a mean difference of 4.86. The bottom rows, i.e., the
garden image, show the color correction results from minimizing the CID measure. The image on the
left (the least-squares solution) has a mean difference from the central image (the original) of 0.0569,
while the image generated from spherical sampling, shown on the right, gives an error of 0.0232. A
cropped version of this comparison is presented in the last row. We note here the yellowish cast in the
least-squares image.

Figure 13. Qualitative evaluation of the approach. Top two rows, minimizing the S-CIELAB
measure: full image (top column) and detail (second row). Last two rows, minimizing the
CID measure: full image (third row) and detail (last row). For each column the images are:
original (left), least-squares (center) and spherical sampling (right).

We also present a qualitative example for comparison between the spherical sampling and matrix
sampling approaches in Figure 14. In this figure, the spherical sampling images (right), appear closer
to the original images (center) than those from matrix sampling (left), especially in the red colors.
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In particular, for the S-CIELAB case, matrix sampling gives a mean error for the whole image of 1.2823,
while spherical the sampling error is 0.7624. In the case of the CID measure, the mean error using matrix
sampling is 0.0248, while the spherical sampling error is significantly lower: 0.0076.

Figure 14. Qualitative evaluation of the approach versus matrix sampling. Top two rows,
minimizing the S-CIELAB measure: full image (first row) and detail (second row). Last
two rows, minimizing the CID measure: full image (third row) and detail (last row).
For each column, the images are: matrix sampling (left), original (center) and spherical
sampling (right).

5. Discussion

In the previous section, we have minimized three different error metrics independently. In Table 8,
we compare the results between these metrics using the mean percentage improvement for the three
different cases. As expected, our method shows an improvement when minimizing ∆E and ∆E00, but
less of an improvement than it shows for the image-based metrics. Even in this case, our improvement
is approximately 3%. More impressive are the results for the other two metrics, where our spherical
sampling procedure reduces the error by more than 6% for S-CIELAB and 13% for the CID.

Table 8. Percentage improvement in error-metric for spherical sampling when compared
to least-squares.

∆E ∆E00 S-CIELAB CID

Mean percentage 3.42% 2.87% 6.90% 13.50%

Another way to represent the results is to analyze what is happening in the sensor space. As our
method maps XY Z to RGB responses, one can also conceptualize this is as mapping the RGB sensor
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sensitivities directly to the XY Z color matching functions. The question then is: are the approximate
XY Z color matching functions found by spherical sampling closer to the real XY Z sensors than those
obtained via the least-squares optimization? To address this question, we have defined a new measure.

Let us define X, Y and Z as m× 1 vectors, which are discrete representations of the color matching
functions x̄, ȳ and z̄, respectively, sampled at m wavelengths spanning the domain ω. Let us also define
X̂LS , Ŷ LS and ẐLS as the approximation derived by least-squares (LS) and X̂SS , Ŷ SS and ẐSS as the
approximation derived by spherical sampling (SS). We also define eLSi and eSSi , i ∈ {X, Y, Z} as the
error obtained for both methods, which we compute for each sensor separately; e.g., the error for the X

sensor is calculated as:

eLSX =
∑
m∈ω

‖Xm − X̂LS
m ‖q (13)

where q represents the chosen norm. In this paper, we will use q = 1 and q = 2. We choose these values,
since q = 1 represents the response to a flat white surface under a white illuminant and q = 2 is the
typical Euclidean norm. From the previous equation, the difference between the two approaches can be
computed as:

diffX(LS, SS) = eLSX − eSSX ; (14)

therefore, when this difference is smaller than zero, the least-squares sensors are closer to the real sensors
than spherical sampling ones and vice versa.

We note here that while Equation (13) could be minimized more directly by computing a matrix
T from Equation (1), the purpose here is to compare the transforms derived using real spectra and
illuminants for their ability to approximate the XY Z color matching functions. This metric provides
an indirect measure of how well the methods will generalize to unseen data, and we use it as a “sanity
check” to further ensure that overtraining is not occurring.

In Table 9, we show the results averaged over all cameras for all three sensors in the three different
experiments. In this case, we have performed the minimization of the three measures on the full set of
images, i.e., we do not separate training and test data, since the metric we are computing is different from
the metric used to learn the transforms. We can see that the spherical sampling technique results in lower
error than the least-squares method in 15 out of 18 cases, which reinforces the adequacy of our method.

Table 9. Error in a least-squares optimization minus error using a spherical sampling
procedure computed in the sensor space.

∆E S-CIELAB CID

X Y Z X Y Z X Y Z

L1 1.03 0.20 0.33 0.31 0.08 0.94 0.40 0.15 0.55

L2 1.43 0.30 –0.04 0.36 0.01 –0.38 0.47 0.11 –0.39
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6. Conclusions

The present work investigates a novel technique for mapping camera RGB responses to device
independent, CIE XY Z, color co-ordinates. The method works by discretely sampling sensor sets that
are close to an initial “best-guess” solution derived by minimizing the least-squares error. The discrete
nature of the algorithm means that error can be minimized in any chosen color space, which allows the
optimization to take into account the spatial characteristics of colors in images and takes a step towards
characterizing perceptual, as well as physical aspects of the color.

The method was tested on a range of different images and simulated camera response curves. The
results show that for over 90% of image and sensor combinations, the initial least-squares solution can be
improved upon by spherical sampling. This improvement ranges from approximately 3% for CIELAB
∆E error to 7% for the S-CIELAB and 13% for the CID error metrics.

This method would be of direct and immediate applicability for camera manufacturers, who would be
able to appreciably increase the accuracy of the color characterization of their cameras, without any need
to change the experimental set-up that they use. Furthermore, the proposed method is of interest for color
researchers and professional photographers/cinematographers, who may use an affordable calibration
device to estimate the RGB response curves of the camera and then apply our method to properly
correct the RAW data.

Acknowledgments

This work was supported by European Research Council, Starting Grant Ref. 306337, and by Spanish
grants AACC, Ref. TIN2011-15954-E, and Plan Nacional, Ref. TIN2012-38112.

Author Contributions

Javier Vazquez-Corral, David Connah, and Marcelo Bertalmío conceived and performed the
experiments and wrote the paper.

Conflicts of Interest

The authors declare no conflicts of interest.

References

1. Hubel, P.; Holm, J.; Finlayson, G.; Drew, M. Matrix calculations for digital photography. In
Proceedings of the Fifth Color Imaging Conference: Color, Science, Systems and Applications,
Scottsdale, AZ, USA, 11 November 1997.

2. Sharma, G. Color fundamentals for digital imaging. In Digital Color Imaging Handbook;
CRC Press, Inc.: Boca Raton, FL, USA, 2003; Volume 20.

3. Hung, P. Color theory and its application to digital still cameras. In Image Sensors and Signal
Processing for Digital Still Cameras; Nakamura, J., Ed.; CRC Press, Inc.: Boca Raton, FL, USA,
2005; pp. 205–221.



Sensors 2014, 14 23227

4. Hong, G.; Luo, M.R.; Rhodes, P.A. A study of digital camera colorimetric characterization based
on polynomial modeling. Color Res. Appl. 2001, 26, 76–84.

5. Cheung, T.L.V.; Westland, S.; Connah, D.R.; Ripamonti, C. A comparative study of the
characterization of color cameras by means of neural networks and polynomial transforms.
J. Color. Technol. 2004, 120, 19–25.

6. Find-Andersen, C.; Hardeberg, J.Y. Colorimetric Characterization of Digital Cameras Preserving
Hue Planes. In Proceedings of the IS&T/SID 13th Color Imaging Conference: Color, Science,
Systems and Applications, Scottsdale, AZ, USA, 8 November 2005; pp. 141–146.

7. Ramanath, R.; Snyder, W.; Yoo, Y.; Drew, M. Color image processing pipeline. IEEE Signal
Process. Mag. 2005, 22, 34–43.

8. Finlayson, G.; Drew, M. Constrained least-squares regression in color spaces. J. Electron.
Imaging 1997, 6, 484–493.

9. Bianco, S.; Gasparini, F.; Russo, A.; Schettini, R. A new method for RGB to XYZ transformation
based on pattern search optimization. IEEE Trans. Consum. Electron. 2007, 53, 1020–1028.

10. Adcock, G. Charting your camera. In Creative COW Magazine; Creative COW LLC.: Talladega,
AL, USA, 2011.

11. Finlayson, G.D.; Vazquez-Corral, J.; Süsstrunk, S.; Vanrell, M. Spectral sharpening by spherical
sampling. J. Opt. Soc. Am. A 2012, 29, 1199–1210.

12. Horn, B.K.P. Exact Reproduction of Colored Images. Comput. Vis. Graph. Image Process.
1984, 26, 135–167.

13. Finlayson, G.D.; Drew, M.S. The Maximum Ignorance Assumption with Positivity.
In Proceedings of the IS&T/SID Fourth Color Imaging Conference: Color, Science, Systems
and Applications, Scottsdale, AZ, USA, 20 November 1996; pp. 202–205.

14. Viggiano, J.A.S. Minimal-Knowledge Assumptions in Digital Still Camera Characterization
I.: Uniform Distribution, Toeplitz Correlation. In Proceedings of the IS&T/SID Ninth
Color Imaging Conference: Color, Science, Systems and Applications, Scottsdale, AZ, USA,
7 November 2001; pp. 332–336.

15. Finlayson, G.D.; Paul, J. Minimal Knowledge versus the Real World. In Proceedings of
the IS&T/SID Tenth Color Imaging Conference: Color, Science, Systems and Applications,
Scottsdale, AZ, USA, 13 November 2002; pp. 133–238.

16. Drew, M.S.; Funt, B.V. Natural metamers. Comput. Vis. Graph. Image Process. Image Underst.
1992, 56, 139–151.

17. Maloney, L.T. Evaluation of linear models of surface spectral reflectance with small numbers of
parameters. J. Opt. Soc. Am. A 1986, 3, 1673–1683.

18. International Commission on Illumination. Recommendations on Uniform Color Spaces,
Color-Difference Equations, Psychometric Color Terms; CIE Central Bureau: Vienna,
Austria, 1978.

19. Moroney, N.; Fairchild, M.D.; Hunt, R.W.G.; Li, C.; Luo, M.R.; Newman, T. The CIECAM02
color appearance model. In Proceedings of the IST/SID 10th Color Imaging Conference,
Scottsdale, AZ, USA, 13 November 2002; pp. 23–27.



Sensors 2014, 14 23228

20. Luo, M.; Cui, G.; Rigg, B. The development of the CIE 2000 Colour-Difference Formula:
CIEDE2000. Color Res. Appl. 2001, 26, 340–350.

21. Zhang, X.; Wandell, B.A. A spatial extension of CIELab for digital color image reproduction.
Soc. Inf. Display Symp. Tech. Dig. 1997, 6, 61–63.

22. Fairchild, M.D.; Johnson, G.M. iCAM framework for image appearance, differences, and quality.
J. Electron. Imaging 2004, 13, 126–138.

23. Lissner, I.; Preiss, J.; Urban, P.; Scheller, M.; Lichtenauer, M.S.; Zolliker, P. Image-Difference
Prediction: From Grayscale to Color. IEEE Trans. Image Process. 2013, 22, 435–445.

24. Hardeberg, J.Y.; Schmitt, F. Color Printer Characterization Using a Computational Geometry
Approach. In Recent Progress in Color Management and Communications; Society for Imaging
Science and Technology: Springfield, VA, USA, 1998; pp. 88–91.

25. Finlayson, G.D.; Mackiewicz, M.; Hurlbert, A. Root Polynomial Colour Correction.
In Proceedings of the IS&T/SID 19th Color Imaging Conference: Color, Science, Systems and
Applications, San Jose, CA, USA, 7 November 2011; p. 115.

26. McElvain, J.; Gish, W. Camara Color Correction Using Two-Dimensional Transforms.
In Proceedings of the IS&T/SID 21st Color Imaging Conference: Color, Science, Systems and
Applications, Albuquerque, NM, USA, 7 November 2013; p. 250.

27. Holst, G.C. CCD Arrays, Cameras, and Displays; JCD Pub.: Winter Park, FL, USA, 1996;
p. 332.

28. Finlayson, G.D.; Susstrunk, S. Spherical Sampling and Color Transformations. In Proceedings
of the IST/SID 9th Color Imaging Conference, Scottsdale, AZ, USA, 6–9 November 2001;
Volume 9, pp. 321–325.

29. Vazquez-Corral, J.; Bertalmío, M. Spectral Sharpening of Color Sensors: Diagonal Color
Constancy and Beyond. Sensors 2014, 14, 3965–3985.

30. Lovisolo, L.; da Silva, E. Uniform distribution of points on a hyper-sphere with applications to
vector bit-plane encoding. IEE Proc. Vis. Image Signal Process. 2001, 148, 187–193.

31. Nakamura, J. Image Sensors and Signal Processing for Digital Still Cameras; CRC Press, Inc.:
Boca Raton, FL, USA, 2005.

32. Jiang, J.; Liu, D.; Gu, J.; Susstrunk, S. What is the Space of Spectral Sensitivity Functions for
Digital Color Cameras? In Proceedings of the IEEE Workshop on Applications of Computer
Vision (WACV), Tampa, FL, USA, 15–17 January 2013; IEEE Computer Society: Washington,
DC, USA, 2013; pp. 168–179.

33. Spectral Sensitivities of Several Cameras. Available online: http://www.image-engineering.de/
library-m/test-reports (accessed on 1 December 2014).

34. Barnard, K.; Martin, L.; Funt, B.; Coath, A. A Data Set for Colour Research. Color Res. Appl.
2002, 27, 147–151.

35. Wyszecki, G.; Stiles, W. Color Science: Concepts and Methods, Quantitative Data and
Formulae, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 1982.

36. Sharma, G.; Wu, W.; Dalal, E.N. The CIEDE2000 color-difference formula: Implementation
notes, supplementary test data, and mathematical observations. Color Res. Appl. 2005,
30, 21–30.



Sensors 2014, 14 23229

37. Bianco, S. Reflectance spectra recovery from tristimulus values by adaptive estimation with
metameric shape correction. J. Opt. Soc. Am. A 2010, 27, 1868–1877.

38. Bianco, S.; Schettini, R. Two New von Kries Based Chromatic Adaptation Transforms Found by
Numerical Optimization. Color Res. Appl. 2010, 35, 184–192.

39. Otazu, X.; Parraga, C.A.; Vanrell, M. Toward a unified chromatic induction model. J. Vis. 2010,
10, doi:10.1167/10.12.5.

40. Foster, D.H.; Amano, K.; Nascimento, S.M.C.; Foster, M.J. Frequency of metamerism in natural
scenes. J. Opt. Soc. Am. A 2006, 23, 2359–2372.

41. Yasuma, F.; Mitsunaga, T.; Iso, D.; Nayar, S. Generalized Assorted Pixel Camera: Post-Capture
Control of Resolution, Dynamic Range and Spectrum; Technical Report; Department of
Computer Science, Columbia University: New York, NY, USA, 2008.

42. Wang, Z.; Bovik, A.; Sheikh, H.; Simoncelli, E. Image quality assessment: From error visibility
to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612.

c© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).


	Introduction
	Background-12pt
	Sources of Error
	Perceptual Error
	Linear vs. Non-Linear

	Spherical Sampling for Camera Characterization
	Experiments and Results
	Experiment 1a: CIE Lg
	On the Significance of the Results
	Comparison vs. Matrix Sampling

	Experiment 1b: Different Illuminants
	Experiment 2: S-CIELAB
	Experiment 3: CID Measure
	Qualitative Examples

	Discussion
	Conclusions

