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Abstract: This article presents a novel membrane-based sensor for real-time electrochemical 

investigations of cellular- or tissue cultures. The membrane sensor enables recording of 

electrical signals from a cell culture without any signal dilution, thus avoiding loss of 

sensitivity. Moreover, the porosity of the membrane provides optimal culturing conditions 

similar to existing culturing techniques allowing more efficient nutrient uptake and 

molecule release. The patterned sensor electrodes were fabricated on a porous membrane 

by electron-beam evaporation. The electrochemical performance of the membrane 

electrodes was characterized by cyclic voltammetry and chronoamperometry, and the 

detection of synthetic dopamine was demonstrated down to a concentration of 3.1 pM. 

Furthermore, to present the membrane-sensor functionality the dopamine release from 

cultured PC12 cells was successfully measured. The PC12 cells culturing experiments 

showed that the membrane-sensor was suitable as a cell culturing substrate for  

bio-applications. Real-time measurements of dopamine exocytosis in cell cultures were 

performed, where the transmitter release was recorded at the point of release. The 

developed membrane-sensor provides a new functionality to the standard culturing 

methods, enabling sensitive continuous in vitro monitoring and closely mimicking the  

in vivo conditions. 
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1. Introduction 

The development of electrochemical sensors is a rapidly growing and popular area [1,2]. In recent 

years electrochemical sensors have attracted great attention in chemical and biological studies due to 

the high sensitivity, simplicity and reliability of the sensors [2–4]. Electrochemical sensors are used to 

provide information about, e.g., selected DNA sequences, mutated genes associated with human 

diseases or neurotransmitters [5,6]. The progression made in this field promises simple and accurate 

platforms for patient diagnostics [5]. 

Apart from the sensitivity and simplicity of electrochemical sensors, they allow in vitro and in vivo 

detection of analytes. In vitro research aims at mimicking the in vivo conditions to improve the 

understanding of the processes inside the body. Therefore, enhancing the in vitro techniques of 

electrochemical sensing is essential to achieve tools capable of providing a more exact picture of what 

is happening in the microenvironment of cellular cultures. 

Cellular behavior has been explored by several types of electrochemical sensors in previous 

research. Castillo and colleagues explored a graphene electrode modified with a new conjugate of 

peptide nanotubes and folic acid for the selective detection of human cancer cells over-expressing 

folate receptors [4]. Another common example of electrical cell activity is the release of 

neurotransmitters generated from neurons that can be recorded using electrochemical sensors. In a 

previous study a combined cell culture biosensing platform using vertically aligned self-assembled 

peptide nanofibers was used for the detection of dopamine from PC12 cells [7]. Also in [8] the authors 

describe the use of overoxidized polypyrrole electrodes for the same purpose. Several other examples 

exist, using metal or carbon electrodes arranged in various geometries to electrochemically monitor 

various analytes in a cell culture. 

To fully reproduce the various environments that cells and tissues encounter during growth, 

microporous membranes are an important alternative to solid culturing substrates [9–11]. Culturing on 

solid substrates forces the cells to uptake nutrients and release waste and signaling molecules through 

their top side. In contrast, microporous membranes provide a surface that mimics in vivo conditions 

better than solid substrates by e.g. allowing exposure to nutrients and waste release also from beneath 

the cells [9]. The traditional analysis of cellular cultures does not effectively allow continuous 

measurements of biological behavior such as dopamine exocytosis. As an example, HPLC 

measurements require discontinuous sampling that excludes valuable information that can be provided 

by continuous monitoring. 

This study discloses a membrane-based sensor, where gold (Au) and silver-chloride (AgCl) 

electrodes with a thickness of a few nanometers are deposited on top of a microporous membrane 

surface. The membrane sensor allows aqueous medium to penetrate the membrane from beneath and 

reach the upper layer where cells are cultured. This permits optimal cell growth conditions as seen in 

current membrane culturing applications [9–11]. Moreover, monitoring of the target analyte in the 
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proximity of the cells without any dilution or diffusion of the signals provides a more thorough 

understanding of processes occurring inside a culture. The membrane sensor was functionalized by 

culturing of the cells on top and detection of dopamine exocytosis in PC12 cells was demonstrated 

with this system. 

2. Experimental Section 

2.1. Materials/Chemicals 

A dopamine stock solution at 0.1 M was made from dopaminehydrochloride (H8502-10G,  

Sigma-Aldrich, Broendby, Denmark, 0.47 g) in PBS (P4244, Sigma-Aldrich, 25 mL). A coating 

solution of polyethyleneimine (PEI) (P-3143, Sigma Aldrich) diluted to a concentration of 50 µg/mL 

in PBS was prepared. A concentration of 3.1 × 105 PC12 cells (CRL-1721, ATCC, Manassas, VA, 

USA), passage 2, was cultured on each membrane-sensor. Differentiation medium was made from 

DMEM/F12 (D0819, Sigma-Aldrich), heat inactivated horse serum (HS, H1138, Sigma), fetal  

bovine serum (FBS, F-2442, Sigma-Aldrich), penicillin/streptomycin (P/S), 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES, 83264, Sigma-Aldrich), and Nerve Growth Factor (NGF, 

N2513, Sigma-Aldrich). Trypsin-EDTA (T2600000, Sigma-Aldrich) was used for release of cells prior 

to reseeding on the sensor. 

2.2. Membrane-Sensor Design 

The membrane sensor is based on the existing membrane inserts made of hydrophilic PTFE with a 

diameter of 24 mm and average pore size of 400 nm (PICM0RG50, Merck Millipore, Billerica, MA, 

USA). The three electrode membrane based electrochemical biosensor requires a working electrode, 

counter electrode and a reference electrode, see Figure 1a. The working and counter electrodes were 

made of Au, while the reference electrode was made of AgCl. The pattern of the electrodes satisfies the 

requirement of having a larger surface area of the counter electrode than the working electrode [12]. The 

pattern of the electrodes deposited on the membrane, with electrical contacts from the membrane to the 

sides of the grips, is seen in Figure 1a. 

2.3. Shadow Masks and Patterned Electrode Deposition 

In order to deposit the desired pattern, two different shadow masks were designed, as seen in  

Figure 1b,c. The shadow masks were milled in aluminum. Electron-beam evaporation was used to 

deposit metal on the membrane inserts using the pattern masks and a Physimeca electron beam 

evaporation system (Physimeca Technologies, Villiers Le Bacle, France). The deposition was executed 

in two steps: firstly by depositing the Ag-pattern (Figure 1b) and secondly by depositing the  

Au-pattern (Figure 1c). Ag was deposited with a rate of 5 Å/s, while Au was deposited with a rate of 

10 Å/s, both at 80 °C and a pressure of 2 × 106 mbar. In order to deposit material on the sides of the 

membrane insert the electron-beam was tilted 25°. A layer of 100 nm Ag and Au was deposited. The 

Ag on the membrane-sensors was covered with 50 mM iron(III)chloride-(FeCl3) for 12 s in order to 

create a film of approximately 50 nm AgCl [13]. 
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Figure 1. (a) Sketch of the three-electrode membrane-based electrochemical sensor. The 

sensor involves patterned deposition of a working, counter and reference electrode;  

(b) Sketch of the shadow mask used to deposit the reference electrode; (c) Sketch of the 

shadow mask used to deposit the working and the counter electrodes; (d) Membrane-sensors 

connected to a potentiostat by crocodile clips. (1) Reference electrode; (2) Counter 

electrode and (3) Working electrode; (e) SEM image of the electrode covered membrane 

showing black dots representing the pores. The inset shows a line scan across a single pore 

revealing that the pores were not blocked by the metal deposition. 

 

2.4. Conductivity Measurements and Pore Characterization 

The conductivity of the membrane sensor was measured using a two-point probe ohmmeter. The 

measurements were taken between the membrane-electrodes and their respective grips. It was 

necessary to add a small amount of silver paste (DGP, Advanced Nano Products, Seoul, Korea) in the 

corner between the wall and the membrane, since the connection was disrupted. By adding silver paste, 

the current could successfully be measured from the membrane to all grips. The pores of the 

membrane-sensor were characterized using a Scanning Electron Microscope (SEM, Zeiss Supra 40 VP, 

Cambridge, UK) in order to verify the porosity of the membrane. 

2.5. Electrochemical Characterization 

Cyclic voltammetry was used to characterize the performance of the membrane sensor, while 

chronoamperometry was used to determine the detection limit using synthetic dopamine as a model 

compound. The membrane sensor was connected to the potentiostat via alligator clips as seen in Figure 1d. 

Ferri/ferrocyanide (FFC) in phosphate buffered saline (PBS) was used to characterize the membrane 

sensor. Cyclic voltammograms were obtained in a 10 mM FFC aqueous solution, where the voltage 
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was cycled from −0.6 to 0.8 V for several sweep rates between 50 and 260 mV/s, starting with the 

highest sweep rate. 

Synthetic dopamine (as described in Section 2.1) was used to determine the lowest detectable 

concentration by the membrane sensor. The stock solution was purged with nitrogen for 30 min before 

starting the experiments to eliminate oxygen or any other form of oxidation during the process [14]. 

All electrochemical characterization was performed in PBS. The tests were performed at room 

temperature. The potential used for the chronoamperometry measurements was 200 mV based on the 

dopamine peak found during the CVs. Prior to injecting the dopamine a baseline was obtained in PBS 

for 60 s. Then, the dopamine solution was pipetted at the edge of the membrane and the current was 

monitored for about 3 min, until it reached the baseline again. In this work a new membrane was  

used for each concentration of synthetic dopamine. However, it is possible to perform repetitive 

measurements with the same membrane as is demonstrated in a later developed system [15]. 

2.6. PC12 Cells Culturing on Membrane-Sensor 

Prior to seeding of the cells the membranes were sterilized by washing in ethanol. In order to 

promote cellular adhesion the membrane sensors were coated with a PEI layer. The membranes were 

submerged in 1 mL of 50 µg/mL PEI in PBS for two hours at room temperature. Subsequently, the 

sensors were washed twice with PBS before cell culturing. 

The PC12 cell culturing was conducted in differentiation medium according to the procedure 

followed by Taskin and others [7]. Briefly, 24 h before seeding the PC12 cells on the membrane 

sensors the cell culture medium was changed to differentiation medium consisting of DMEM/F12 

supplemented with 0.5% HS, 0.5% FBS, 100 μg/mL P/S, 25 mM HEPES, and 0.1 μg/mL NGF. This 

served to initiate the differentiation and inhibit proliferation.  

After 24 h of pre-differentiation the differentiation medium was removed from the culture flask and 

the cells were washed 3 times with PBS. The cells were detached by incubation with 1 mL 0.05% 

trypsin-EDTA at 37 °C for 3 min. After the incubation the cell suspension was transferred to a 10 mL 

Falcon tube and 4 mL of differentiation medium was added to passivate the trypsin-EDTA. Next, the 

tube was centrifuged at 850 rpm for 3 min. The supernatant was removed and the cell pellet was  

re-suspended in differentiation medium. The cells were then seeded on the membrane sensors with a 

surface density of 0.7 × 105 cells/cm2, corresponding to 3.1 × 105 cells per membrane. The membrane 

sensors with cells were transferred to 6-well plates containing 2 mL of differentiation medium per 

well. The well plates were kept in a humidified incubator at 37 °C, where the cells were cultured for 

either 14 or 30 days with a medium change every 2–3 days. 

The PC12 cells that were used for measuring dopamine exocytosis were cultured on the membrane 

sensors for 14 days in five replicates before the dopamine release was measured from each culture 

through chronoamperometry.  

Prior to exocytosis measurements the cell medium was removed from the well plates and replaced 

by 5 mM physiological buffer solution (low K+ buffer) using Eppendorf pipettes. A constant potential 

of 200 mV was applied and the current was measured, producing a baseline. When a stable baseline 

was obtained dopamine release was triggered by injecting 200 µL of 450 mM potassium buffer 

solution (high K+ buffer) directly on top of the cells [11]. 
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3. Results and Discussion 

3.1. Confirming the Porosity of the Membrane-Sensor 

SEM analysis was performed to determine the state of the pores after the metal deposition. The 

obtained images of the patterned electrodes confirmed that the pores were not blocked by the deposited 

materials (Figure 1e). Line scans of 30 pores show an average pore diameter of 521 ± 29 nm (Figure 1e, 

inset). This shows that deposition of 100 nm thick electrodes does not compromise the porosity of the 

membrane-sensor. 

3.2. Evaluation of the Electrochemical Performance of the Membrane-Sensor 

The membrane sensor showed good conductivity between the patterned electrodes and the grips with a 

resistance between 6.4 and 13.1 Ω, see Table 1 for average results measured on five different electrodes. 

Table 1. Electrode resistances of the membrane-sensor. 

Electrode Resistance 

Counter 6.4 ± 0.2 Ω 
Working 7.2 ± 0.5 Ω 

Reference 13.1 ± 0.6 Ω 

Evaluation of the cyclic voltammetry measurements with different potential sweep rates in FFC 

leads to the conclusion that the membrane sensor is reliable, Figure 2a.  

Figure 2. Cyclic voltammograms obtained with membrane-sensor. (a) Typical cyclic 

voltammograms in 10 mM Ferricyanide at differential potential scan rates. Inset: Current 

peak heights versus square root of the sweep rates (SR); (b) Examples of typical cyclic 

voltammograms in 0.1 M synthetic dopamine at various potential scan rates.  

 

It is seen that the numeric ratio between the current peaks is almost unity (example in figure:  

0.0004 A/0.00037 A) and that the peak potentials are independent of the sweep rate. The inset in Figure 2a 
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shows that the peak current is proportional to the square root of the sweep rate. Based on these 

observations, the reaction on the membrane-sensor is considered pseudo-reversible. 

The electrochemical response of the membrane sensor to 0.1 M synthetic dopamine (in PBS) clearly 

demonstrates oxidation (top anodic peaks) and reduction (bottom cathodic peaks) in the forward and 

reversed scans, Figure 2b. Consequently the measurements indicate the expected reversibility of the 

reaction obtained by the membrane sensor. 

Chronoamperometric measurements were used to produce a calibration curve for detection of 

dopamine using the membrane sensor. The measurements were conducted by applying a constant 

potential of 200 mV and measuring the current response. The potential was chosen based on the 

position of the oxidation peak in Figure 2b. Each measurement was initiated in PBS and once a stable 

baseline was obtained a controlled amount of dopamine was added. The inset in Figure 3 shows a 

typical chronoamperometric time-trace generated upon injection of dopamine solution. The 

accumulated charge (area beneath the curve [16]) was calculated using numerical integration by the 

trapezoidal rule. Figure 3a shows the accumulated charge of the amperometric measurements plotted 

against dopamine concentration. It is seen that the current signal increases linearly with dopamine 

concentration for concentrations varying from 3.1 pM to 17 mM. The linear fit (shown with the solid 

red line in Figure 3a following the equation ܥℎܽ݁݃ݎ	ሺμܾܥሻ = 79.82 ∙ ሻܯሺ݊	݊݋݅ݐܽݎݐ݊݁ܿ݊݋ܥ + 0.09	, 
with an R2 value of 0.99) was based on the data obtained for concentrations up to 25 pM, as these 

measurements were repeated several times (Figure 3b). The measurements for higher concentrations of 

dopamine were only done once and this is why this data has not been used to obtain the linear fit. 

However, by extending the fit to the higher concentrations (shown with the dotted red line in Figure 3a), 

we observe that these also fall on the fitted line. Therefore, we can conclude that linearity is observed 

up to mM range. 

Figure 3. Calibration of membrane-sensor. Plot of the average charge signals versus dopamine 

concentrations for chronoamperometric responses obtained by the membrane-sensor. Error 

bars denote standard deviation of the measurements. (a) The measurements obtained for 

the entire range of tested concentrations; (b) The measurements obtained at the lower 

concentration range (up to 25 pM). Inset: Typical chronoamperometric recording of dopamine. 

 
  

(a) 
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Figure 3. Cont. 

 

In the horizontal range of the first five points in Figure 3b, the increase of dopamine concentration 

did not lead to an increase in signal. Thus, 3.1 pM was the lowest detected dopamine concentration 

with the membrane sensor presented in this study. 

In this work the effect of interfering compounds, such as e.g. ascorbic acid, has not been addressed. 

However, it is a commonly encountered problem when utilizing amperometric sensing and thus it  

should be mentioned that numerous methods to avoid or diminish the issue have previously been  

demonstrated [17–22]. As the developed membrane sensor has electrodes made by commonly used 

metals, it is likely that the methods developed for other systems can be adapted to this system with 

good results. This will be addressed in future work along with demonstrations on sensing in sample 

fluids such as saliva, blood or urine. 

3.3. PC12 Cell Characterization on the Membrane-Sensor 

To investigate the possibility of cellular studies on the membrane sensor, PC12 cells were cultured 

on top of the sensor surface. Figure 4a displays the healthy differentiation of the cells on top of the 

membrane sensor after 14 days of culturing.  

Figure 4. PC12 cells differentiated on the membrane-sensor. Differentiation for (a) 14 days 

and (b) 30 days. The characteristic neuronal-like morphology is exhibited by the cells. 

 

(b) 
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Although PC12 cells are normally cultured for a maximum of about 14 days [23], the PC12 cells 

were also cultured on the membrane sensor for 30 days likewise with healthy differentiation  

(Figure 4b). The differentiation into the characteristic neuronal cell morphology is clearly observed, 

which is indicative for healthy survival and development. This demonstrates that cells cultured on the 

membrane sensor were capable of proper growth and differentiation. 

3.4. Real-Time Dopamine Exocytosis Measurements of PC12 Cells on Membrane-Sensor 

Real-time dopamine exocytosis measurements were obtained using the membrane-sensor (Figure 5). 

The dopamine release was triggered approximately 60 s after recording a baseline in pure PBS, and the 

dopamine was measured. The inset in Figure 5 shows an average charge recording of ~216 µC released 

by an average cell population of 3.1 × 105 per membrane-sensor for five experiments. According to the 

calibration curve in Figure 3 and the uncertainties of the linear fit, approximately 2.71 ± 0.16 nM 

dopamine was detected by one membrane sensor. This corresponds to an average generated charge of 

0.7 nC/cell. The generated charge per PC12 cell measured by the membrane sensor is comparable to an 

earlier study that detected 0.1 nC/cell using gold-deposited electrodes [24]. 

Figure 5. Typical chronoamperometric current-time trace corresponding to dopamine 

exocytosis from differentiated PC12 cells, obtained upon induction of dopamine release on top 

of the membrane-sensor. Inset shows the average charge accumulated during the measurement. 

 

The results show that it is possible to obtain recordings of neurotransmission as the signals are 

released, which makes the membrane-sensor suitable for monitoring purposes. The membrane-sensor 

would be advantageous to use in bio-applications, where small changes need to be detected in 

conditions mimicking the in vivo environment, because of its high sensitivity and low detection limit 

compared to traditional detection methods with detection limits in the nanomolar range. The sensor 

competes with single-walled carbon nanotubes decorated sensors with a detection limit in the picomolar 

range [1,25–27]. 

In this work only one measurement per membrane was performed. However, a similar sensor 

system has later been proven to be capable of continuous measurements as well as repeated 
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measurements over a longer time period [15]. This indicates that the sensor presented in this work has 

potential as a reusable sensor system, which would make it suitable for integration with microfluidics. 

4. Conclusions 

A novel membrane-based sensor has been presented, where patterned electrodes have been 

deposited on a thin porous membrane. The membrane sensor allows continuous real-time 

measurements of analytes of interest from cell cultures without dilution of target signals. Furthermore, 

electrochemical characterization of the sensor has shown reliability of measurements and 

concentrations of dopamine in the picomolar range have successfully been detected. The application of 

the membrane sensor in culturing PC12 cells and detecting released dopamine from the cell 

populations demonstrates that this novel sensor can with great advantages be integrated in future 

biological studies.  
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