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Abstract: In the design phase of sensor arrays during array signal processing, the estimation
performance and system cost are largely determined by array aperture size. In this article, we
address the problem of joint direction-of-arrival (DOA) estimation with distributed sparse
linear arrays (SLAs) and propose an off-grid synchronous approach based on distributed
compressed sensing to obtain larger array aperture. We focus on the complex source
distribution in the practical applications and classify the sources into common and innovation
parts according to whether a signal of source can impinge on all the SLAs or a specific one.
For each SLA, we construct a corresponding virtual uniform linear array (ULA) to create the
relationship of random linear map between the signals respectively observed by these two
arrays. The signal ensembles including the common/innovation sources for different SLAs
are abstracted as a joint spatial sparsity model. And we use the minimization of concatenated
atomic norm via semidefinite programming to solve the problem of joint DOA estimation.
Joint calculation of the signals observed by all the SLAs exploits their redundancy caused
by the common sources and decreases the requirement of array size. The numerical results
illustrate the advantages of the proposed approach.

Keywords: off-grid; joint spatial sparsity; distributed sparse linear arrays; direction
of arrival estimation; concatenated atomic norm; semidefine program; distributed
compressed sensing
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Abbreviation Name

CA-norm Concatenated atomic norm
CS Compressed sensing
DOA Direction of arrival
DOF Degree of freedom
DCS Distributed compressed sensing
JFS Joint frequency sparse
JSS Joint space sparse
JSDP Joint semidefinite programming
LRMC Low rank matrix completion
MRLA Minimization redundancy linear array
SDP Semidefinite programming
SLA Sparse linear array
SSDP Seperate semidefinite programming
ULA Uniform linear array
VULA Virtual uniform linear array

1. Introduction

Direction of arrival (DOA) estimation using sensor arrays plays an important role in many applications
of radar, sonar, ultrasonic, acoustic, and communication systems to track and localize sources [1–4].
Conventional DOA estimation methods obtain high freedoms by using arrays with large aperture. The
increase in the demand of sensors enlarges the array aperture but also increases the cost of receiver
hardware and computational complexity. Co-arrays based method is an effective way to enlarge the
array aperture with no sensors added, which means the DOA information of the same sources can be
estimated by fewer sensors. Second-order statistics is unitized in the covariance matrix of observed
signals in the uniform linear array (ULA) to extend aperture, which achievesO(N) freedoms withO(N)

sensors [5–7]. Four-order cumulants and higher-order statistics have been also used to make the array
aperture larger [8,9]. The redundancy among the signals of common sources observed by every sensor
in different arrays is considered and two or more arrays of specific structure are combined to construct
a new virtual array with super large aperture [10–15]. MUSIC [16] and ESPRIT [17] were two famous
algorithms to solve the problem of DOA estimation with high resolution. Some new array geometries
except for ULA are proposed to further enhance this advantage. Minimization redundancy linear
array (MRLA) [18] was used in the sensor array [10] and the multiple-input multiple-output (MIMO)
radar [11] to obtain the larger array aperture. However, the implementation difficulty of MRLA blocks
the development of this method. Pal and Vaidyanathan nested two or more ULAs and provided a nested
array to solve the DOA estimations with high degrees of freedom, which is up to O(N2k) with 2kN

sensors [12]. And then, they proposed a new approach for high resolution line spectrum estimation in
both temporal and spatial domain using a co-prime pair of samplers [13]. Two uniform samplers with
sample spacings MT and NT are used where M and N are co-prime and T has the dimension of space
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or time, which achievesO(MN) freedoms withM+N sensors. The implementations of these two array
structures are easier than that of MRLA.

However, a more flexible structure of array like sparse linear array (SLA) is expected to estimate
the DOA of sources together and developed by the revolution of compressed sensing (CS) [19]. To
reduce the demand of sensors with no accuracy decreasing, a convex optimization method was used
to deal with the problem of DOA estimation [20–23]. Although, `0-norm of the incident signals is a
rigorous way to model the sparsity constraint on the spatial distribution of sources, the `0-norm-based
optimization problem is not convex, and it is NP-hard to solve it directly [24]. Thus, convex relaxation
is used to transform this problem into a convex one [22] and `1-norm is introduced to solve it via a
convex optimization process [20,21,25,26]. The recent development of CS theory [19] has verified
the effectiveness of the application of sparse recovery technique with convex optimization [27] to
DOA estimation with the same array structure. A sparse representation of signal in the space domain
and its corresponding covariance vectors are comprehensively studied in [28,29]. And, Liu and Sha
further extended their own wideband covariance matrix sparse representation method to focus on
DOA estimation of wideband signals, respectively [30,31]. However, these CS-based methods are all
constrained to study the sources sparse distributed on a pre-defined grid. Tan et al., used joint sparsity
reconstruction methods based on co-prime array to explore the underlying structure between sparse
signals and gird mismatch [14]. Based on the developing theory of super resolution, they utilized the
degrees of freedom for the co-prime arrays and proposed a sparse recovery method via total variation to
obtain higher resolution [15].

In the practical applications of multiple arrays (such as wireless array sensor network, partial
discharge location [32], volcano monitoring [33] and underwater monitoring [34]), the localized sources
for each array maybe different which makes the existing co-arrays based methods out of action. In
this article, we focus on the problem of joint DOA estimations for multiple distributed SLAs with the
coexistence of common and innovation sources. The sources are classified according to whether they
are observed by all the SLAs (The source observed by all the arrays named the common source and
that observed by a specific array named the innovation source). This situation has not been discussed
in the existing off-grid methods with co-arrays [15]. We can only obtain these DOA information
via the accurate estimation algorithms separately implemented in different arrays. No advantage of
joint calculation appears by using the process of centralized processing. But the observed signals of
common sources in different arrays have redundancy which brings about repeated calculations in the
DOA estimations. In our prior work, a joint frequency sparsity (JFS) model was built up and the
distributed compressed sensing (DCS) off the grid was studied [35,36]. We introduce this idea of off-grid
DCS into solving the problem of joint DOA estimation with distributed SLAs under the coexistence of
common/innovation sources. An off-grid synchronous approach is proposed to utilize the observed
signals in different arrays to estimate the DOA information together. We construct a virtual-ULA
(VULA) for each SLA and consider the observed signals in a SLA as the random measurements of
the observed signal in its corresponding VULA. The relationship between these two signals can be
described as a random linear map. As assumed that the observed signal ensemble of each SLA is
composed of sparsely distributed common and innovation sources, each ensemble is abstracted as a joint
spatial sparsity (JSS) model under continuous atomic basis and described by a concatenated atomic norm
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(CA-norm). Since the compressed linear relation, the problem of joint DOA estimation is reformulated
as the minimization of CA-norm. Semidefine program (SDP) is used to search the accurate solution
under the condition of under-sampling. By exploiting the continuous counterpart [37] of the JSS model,
off grid estimation results is achieved with no decreasing of freedom. Also, joint calculation exploits the
redundancy among the signals of common sources observed by different SLAs to decrease array aperture
size. Numerical results are given to illustrate the effectiveness of our approach and its advantage over
the conventional methods of separate DOA estimation, which indicate a significant reduction in array
aperture with the same estimation accuracy.

In this article, we use capital italic bold letters to represent matrices, and lowercase italic bold letters
to represent vectors. For a given matrix A, A∗ denotes the conjugate transpose of A, AT denotes the
regular transpose, and AH denotes the conjugate without transpose. For a given p, ‖p‖0, ‖p‖1 are the
`0 and `1 norms, respectively, pi to represent the i-th element in p. ‖ · ‖A is the atomic norm and ‖ · ‖∗A
is the dual norm of it. We use ⊗ to denote the Kronecker product of two matrices, and � to denote the
point-wise multiplication of two vectors with the same dimension.

2. System Model

2.1. Overview of System Model

In the problem of joint DOA estimation with distributed SLAs under the coexistence of common
and innovation sources, the utilization of signal redundancy of common sources is the key. Simple
combination of the observed signals in SLAs has no help for the existing SDP solution, though it has
high resolution [14]. Our proposed joint estimation approach can be divided into three phases, including
source classification, VLUA construction and random mapping.

In the phase of source classification, we implement the source classification and study the different
impacts of common and innovation sources on the observed signals. For simplification, we just
discuss the situation of the same sensor number and source number. A SLA can be seen as the
random sample measurements of a ULA with the same array aperture, so that we construct a VLUA
with the same structure corresponding to each SLA and build up a JSS model for the sparse spatial
distributed common and innovation sources with this VLUA. A continuous atomic basis is used to give
a more accurate solution. As the relationship of the signals observed by SLA and its corresponding
VLUA is described by a random linear map, the problem of joint DOA estimation is similar to
the problem faced with in DSC. We combine the observed signals into one and form a new joint
DOA estimation problem. Because the factors of common sources in JSS models with different
VLUAs are the same, they can be independent from the original observed signals and seen as one
item in the joint estimation problem. Therefore, we can choose a norm minimization to indicate the
problem and solve it via the optimization method.

2.2. A Multi-SLAs System with Common/Innovation Sources

Figure 1 shows a practical application of the typical array network system. The narrowband signals
of K sources, sparsely distributed in the space domain, with the same wavelength, say λ, impinge on
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several SLAs. The signals of some sources can impinge on all arrays; but those of the others can only
impinge on the specific ones, which are classified into the common sources and the innovation ones. We
define the signal ensemble as the set of sources impinging on one array. There are J signal ensembles
existing in the system. Let Λ = {1, 2, . . . , J} denote the set of indices for the J signal. The multi-SLAs
system consists of M sensors with J SLAs placed according to the philosophy of MRLA, where each
SLA contains Mj = M/J sensors with the inter-element spacing being times of the half wavelength and
the smallest inter-array spacing between the two consecutive SLA centers is larger than the largest size
of SLA.

In the j-th ensemble, Kc common sources and Kj innovation sources simultaneously impinge on the
j-th SLA. The common sources, of which the wave signals are denoted as sc,k(t), k = 1, . . . , Kc, mean
the sources in the ensemble impinge on all the SLAs. And the innovation sources, of which the wave
signals are denoted as sc,j(t), j = 1, . . . , Kj, j ∈ Λ, mean the sources in the ensemble impinge on only
one SLA. Therefore, there are K = Kc +

∑
j∈ΛKj sources in all to be localized in the system. Their

powers are respectively
{σc,k}Kck=1, {σ1,k}K1

k=1, . . . , {σJ,k}
KJ
k=1,

and the sources are sparsely distributed in the space domain with DOAs of

{θc,k}Kck=1, {θ1,k}K1
k=1, . . . , {θJ,k}

KJ
k=1.

Figure 1. A practical multi-SLAs system with partly common sources.

2.3. Joint Spatial Sparsity Model Based on the Virtual ULA

For simplicity, we assume that all the signal sources in noiseless environment are far-field and
temporally uncorrelated. To build up a complete JSS model, we first construct a VULA as a reference
array with N(N � Mj) sensors shown in Figure 2, of which the inter-element spacing is the half
wavelength. Each SLA in the system is regarded as Mj random samplings of these N sensors. The first
sensor of the first SLA in the system coincides with the first sensor in the VULA, defined as the reference
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element in the system. The array aperture of VULAs must be no smaller than the cumulative sum of the
apertures of SLAs, i.e.,

max
n=1,...,N

{dn} ≥ max
mj=1,...,Mj ,j∈Λ

{dmj}.

where, dn is the spacing between the n-th sensor and the reference element; dmj is the spacing between
the m-th sensor in the j-th SLA and the reference element.

Figure 2. The structure of VULA for common/innovation sources.

Here, we give J signal ensembles corresponding to J SLAs in the system. Considering the signals of
Kc common sources and Kj innovation sources simultaneously impinge on the j-th SLA in the practical
system, we assume now they impinge on the VULA in the j-th signal ensemble. On the other hand,
the sensors in the VULA in the j-th ensemble can sense the signals of Kc + Kj sources. Except for
the signals {sc,k(t)}Kck=1 of the common sources, these sensors in one ensemble can only sense those
{sj,k(t)}

Kj
k=1 of the innovation ones. Thus, the signal observed by the n-th sensor in the j-th ensemble is

expressed as

xj,n(t) =
Kc∑
k=1

sc,k(t)e
−j2π dn

λ
sin(θc,k) +

Kj∑
k=1

sj,k(t)e
−j2π dn

λ
sin(θj,k) (1)

Since the inter-element spacing of the ULA is half length of the wave, i.e., dn = (n − 1)λ/2,

n = 1, . . . , N , Equation (1) is expressed as

xj,n(t) =
Kc∑
k=1

sc,k(t)e
−jπ(n−1) sin(θc,k) +

Kj∑
k=1

sj,k(t)e
−jπ(n−1) sin(θj,k) (2)

The signals observed by the VULA with N sensors in the j-th ensemble have the vector form of

xj(t) = Acsc(t) +Ajsj(t) (3)
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where, sc = [sc,1, . . . , sc,Kc ]
T is the common sources from Kc different directions, and sj =

[sj,1, . . . , sj,Kj ]
T , j ∈ Λ is the innovation sources from Kj different directions. The matrix Ac is the

steering matrix of the first array for the common sources

Ac = [ac(θc,1),ac(θc,2), . . . ,ac(θc,Kc)]

=


1 1 . . . 1

e−jπ sin(θc,1) e−jπλ sin(θc,2) . . . e−jπλ sin(θc,Kc )

...
... . . . ...

e−jπ(N−1) sin(θc,1) e−jπ(N−1) sin(θc,2) . . . e−jπ(N−1) sin(θc,Kc )

 (4)

where ac(θc,k) = [1, e−jπ(n−1) sin(θc,k), . . . , e−jπ(n−1) sin(θc,k)]T . The matrix Aj is the steering matrix in
the j-th ensemble for the innovation sources.

Aj = [aj(θj,1),aj(θj,2), . . . ,aj(θj,Kj)]

=


1 1 . . . 1

e−jπ sin(θj,1) e−jπ sin(θj,2) . . . e−jπ sin(θj,Kj )

...
... . . . ...

e−jπ(N−1) sin(θj,1) e−jπ(N−1) sin(θj,2) . . . e−jπ(N−1) sin(θj,Kj )

 (5)

where aj(θj,k) = [1, e−jπ(n−1) sin(θj,k), . . . , e−jπ(n−1) sin(θj,k)]T .
As assumed that the sources are uncorrelated, the common source correlation matrix and the

innovation source correlation matrix should be diagonal, namely, Rss,c = diag(σc,1, . . . , σc,Kc) and
Rss,j = diag(σj,1, . . . , σj,Kj). Then the correlation matrix of the j-th ensemble is given by

Rxx,j = E [xj(t)xj(t)
∗]

= AcRss,cA
∗
c +AjRss,jA

∗
j

=
Kc∑
k=1

σc,kac(θc,k)a
∗
c(θc,k) +

Kj∑
k=1

σj,kaj(θc,k)a
∗
j(θc,k) (6)

After vectorizing the correlation matrixRxx,j , we have

vj = vec(Rxx,j) = Φc(θc,1, . . . , θc,Kc)σc + Φj(θj,1, . . . , θj,Kj)σj (7)

where,

Φc(θc,1, . . . , θc,Kc) = A∗c �Ac

=
[
ac(θ1)H ⊗ ac(θ1), . . . , ac(θKc)

H ⊗ ac(θKc)
]

Φj(θj,1, . . . , θj,Kj) = A∗j �Aj

=
[
aj(θ1)H ⊗ aj(θ1), . . . , aj(θKj)

H ⊗ aj(θKj)
]

The signals of interests respectively become σc = [σc,1, . . . , σc,Kc ]
T and σj = [σj,1, . . . , σj,Kj ]

T .
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As we extend the signals observed by the ULA in the j-th ensemble to those observed by the new
array with N2 sensors, the signals observed by the n-th sensor in the new array is given by

vj(n) =
Kc∑
k=1

σc(k)e−jπ(n−1) sin(θc,k) +

Kj∑
k=1

σj(k)e−jπ(n−1) sin(θj,k), n = 1, . . . , N2 (8)

And the vector form is

vj =



∑Kc
k=1 σc(k) +

∑Kj
k=1 σj(k)

...∑Kc
k=1 σc(k)e−jπ sin(θc,k) +

∑Kj
k=1 σj(k)e−jπ sin(θj,k)

...∑Kc
k=1 σc(k)e−jπ(N2−1) sin(θc,k) +

∑Kj
k=1 σj(k)e−jπ(N2−1) sin(θj,k)


(9)

Actually, the vector vj has N2 elements but only 2N − 1 non-repeated values, which means the
corresponding array has at most N − 1 degree of freedoms [12,13,16]. Thus, the SLA with Mj � N

sensors can localize at most O(N) sources via CS [19,27].
With the consideration of the causality of system, we give a straightforward change of variables.

Letting ξk = 1+sin(θk)
2

∈ [0, 1] for all k, the linear model of Equation (11) can be transformed into

rj = e−jπnvj

=



∑Kc
k=1 σc(k) +

∑Kj
k=1 σj(k)

...∑Kc
k=1 σc(k)e−j2πξc,k +

∑Kj
k=1 σj(k)e−j2πξj,k

...∑Kc
k=1 σc(k)e−j2π(N2−1)ξc,k +

∑Kj
k=1 σj(k)e−j2π(N2−1)ξj,k


(10)

The sources in the system have JSS, which means each element of the vector rj is generated as a
combination of two DOA sparse components (i) a common component zc, which is common for all the
array ensembles; and (ii) an innovation component zj , which is unique to the corresponding ensemble.
The vector rj can be expressed as

rj = Φ̃c(ξc,1, . . . , ξc,Kc)σc + Φ̃j(ξj,1, . . . , ξj,Kj)σj, j ∈ Λ (11)

Due to the spatial sparsity of σc and σj , rj is a JSS setting. The components in each ensemble is
denoted by Z = [z∗c , z

∗
1, . . . ,z

∗
J ]∗. These combine additively, giving rj = zc + zj, j ∈ Λ. And the two

component can be expressed as
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zc = Φ̃cσc =



∑Kc
k=1 σc(k)

...∑Kc
k=1 σc(k)e−j2πξc,k

...∑Kc
k=1 σc(k)e−j2π(N2−1)ξc,k



zj = Φ̃jσj =



∑Kj
k=1 σj(k)

...∑Kj
k=1 σj(k)e−j2πξj,k

...∑Kj
k=1 σj(k)e−j2π(N2−1)ξj,k


(12)

2.4. Random Linear Map from VULA to SLA

Actually, we attempt to design SLAs in the system by reducing the number of sensors equipped with
their own corresponding VULA for low cost of system. Mj sensors are active in every SLAs with the
inter-element spacing of random times of the half wave length. And the number of sensors in each SLA
is equal, i.e., M1 = Mj = M/J . Every SLA corresponding to the j-th ensemble has its Kc common
sources and Kj innovation sources. We can get the signals in the ensemble collected by sensors the j-th
SLA, i.e.,

yj,mj(t) =
Kc∑
k=1

sc,k(t)e
−j2π

dj,mj
λ

sin(θc,k) +

Kj∑
k=1

sj,k(t)e
−j2π

dj,mj
λ

sin(θj,k) (13)

and the vector form of which is given as

yj(t) =


∑Kc

k=1 sc,k(t) +
∑Kj

k=1 sj,k(t)∑Kc
k=1 sc,k(t)e

−j2π
dj,1
λ

sin(θc,k) +
∑Kj

k=1 sj,k(t)e
−j2π

dj,1
λ

sin(θj,k)

...∑Kc
k=1 sc,k(t)e

−j2π
dj,Mj
λ

sin(θc,k) +
∑Kj

k=1 sj,k(t)e
−j2π

dj,Mj
λ

sin(θj,k)

 ∈ CMj (14)

Obviously, the data collected by a SLA can be considered as a random sampling of that sensed by
its VULA shown in Figure 3, where some of sensors in ULA is not used in the practical SLAs, named
virtual sensors. The relationship of linear map can be expressed as

yj(t) = Θjxj(t) ∈ CMj (15)

where, different measurement matrix Θj ∈ CMj×N corresponding to different choice of sensors is a
random linear map from VULAs to SLAs. Obviously, Θj is a random unit matrix. Therefore, the
correlation matrix among the j-th ensemble can then expressed as

Ryy,j = E[yj(t)yj(t)
∗]

= ΘjRxx,jΘ
∗
j (16)



Sensors 2014, 14 21990

Figure 3. Random linear map for VULA to SLA.

We spread the first row and the first column as a new vector according to the following rule

uj = [Ryy,j(0,Mj − 1), . . . , Ryy,j(0, 1), Ryy,j(0, 0), Ryy,j(1, 0), . . . , Ryy,j(Mj − 1, 0)]T (17)

The vector uj ∈ C2Mj−1 is also a random sampling of the vector vj in Equation (11) given as

uj = Ψjvj (18)

where, Ψj ∈ C(2Mj−1)×N2 is a new random linear map. This matrix contains theN+1±(dj,1−dj,mj)-th
row (1 < mj ≤ Mj) of a N2 × N2 unit matrix. By straightforward changing of variables, the linear
model of Equation (18) is reformulated as

wj(ξc,k, ξj,k) = Ψjrj(ξc,k, ξj,k) (19)

Let W = [w∗1, . . . ,w
∗
J ]∗ ∈ C2M−J , R = [r∗1, . . . , r

∗
J ]∗ ∈ CJN2 , and Ψ = diag(Ψ1, . . . ,ΨJ) ∈

C(2M−J)×JN2 . The joint linear model of SLAs in the system is given as

W = ΨR (20)

3. SDP Based Joint DOA Estimation Algorithm

3.1. CA-Norm of JSS Model

The ill-posed inverse problem was studied by Chandrasekaran [38] and a general framework was
provided to convert notions of simplicity into convex penalty functions, resulting in convex optimization
solutions to linear undetermined inverse problems. Considering a simple model with a nonnegative
combination of a few sensors from atomic set, signal x ∈ RP can be formed as follows:

x =
K∑
i=1

ciai,ai ∈ A, ci ≥ 0 (21)

where A is a set of atoms that constitutes simple building blocks of general signals. And x is assumed
simple so that K is relatively small. Then, the definition of atomic norm was given as [38]

‖x‖A = inf

{∑
a∈A

: x =
∑
a∈A

caa, ca ≥ 0∀a ∈ Λ

}
(22)
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And the support function of A is given as:

‖x‖∗A = sup{〈x,a〉 : a ∈ A} (23)

Equipped with a convex penalty function given a set of atoms, a convex optimization method can
be used to recover a “simple” model given limited linear measurements. With a known linear map
Φ : RP → RN , linear information about x∗ formed according to Equation (21) from a set of atoms is
given as:

y = Φx̃ (24)

The convex formulation to reconstruct x̃ given y:

x̂ = arg min
x
‖x‖A s.t. y = Φx (25)

The dual problem of Equation (25) is given as follows:

max
z
yTz s.t. ‖Φ∗z‖∗A ≤ 1 (26)

Obviously, Equation (20) is such an ill-posed inverse problem, when the number of available sensors
of SLAs is smaller than the number of sensors in VULAs, i.e., Mj � N . We can construct J + 1 atoms
sets for the JSS model in Equation (11), respectively corresponding to the signal of common source sc(t)
and the signal of innovation source sj(t), which take the same form of

A = {αj(ξ, n) : ξ ∈ [0, 1], n ∈ [0, 1, . . . , N − 1]} (27)

where, α(ξ, n) = e−j2π(n−1)ξ. The sets of variables Ωc = {ξc,k}Kck=1 and Ωj = {ξj,k}
Kj
k=1 can lie anywhere

on the unite circle, such that ξc,k, ξj,k are continuously valued in [0, 1].
In the prior work, we have considered a joint frequency sparsity (JFS) model and extended the atomic

norm to JFS setting [35]. To develop a norm description of the JSS, we also extend the atomic norm
to JSS setting and give the definition of CA-norm of JSS. The “`0-norm” type atomic norm [38] is
defined as

‖r‖A,0 = inf

{
s : r =

K∑
k=1

σka(ξk)

}
(28)

and it convex relaxation, the atomic norm [38], is defined as

‖r‖A = inf

{∑
k

σk : r =
K∑
k=1

σka(ξk)

}
(29)

where, σk ≥ 0 as it is denoted as the power of signal.
The “`0-norm” type CA-norm of signal from VULA is defined as

‖R‖CA,0 = inf

{
‖zc‖A,0 +

∑
j∈Λ

‖zj‖A,0 : zc + zj = rj, j ∈ Λ

}
(30)

With the consideration of Equation (20), the goal of DOA estimation problem becomes the
minimization of ‖R‖CA,0 satisfying the measurement a-priori

min
R
‖R‖CA,0 s.t. wj = Ψjrj, j ∈ Λ (31)



Sensors 2014, 14 21992

We study the spark of continuous dictionary Φ in Equation (20). The quantity spark of Φ, denoted by
spark(Φ), is the smallest number of atomic of Φ which are linearly dependent. spark(Φ) = spark(Φc)+∑

j∈Λ spark(Φj) ∈ [2,M + 1]. Considered as a distributed model of [39], rj =
∑K

k=1 σkaj(ξk), j ∈ Λ

is the unique optimizer to Equation (31) if

K <
spark(Φc) +

∑
j∈Λ spark(Φj)− 1 +

∑
j∈Λ rank(ωj)

2
(32)

where, the atomic decomposition above ia the unique one satisfying that K = ‖R‖A,0. It is the
theoretical guarantees of the “`0-norm” type CA norm minimization in Equation (31).

3.2. Joint SDP Based CA-Norm Minimization Algorithm

In this subsection, we describe how to use a joint SDP (JSDP) approach to solve the DOA estimation
problem. The optimization problem in Equation (31) is computationally infeasible given the infinite
dimensional formulation of the “`0-norm” type CA norm in Equation (30). We attempt to provide a
finite dimensional formulation in the following results. The goal of DOA estimation problem ‖R‖CA,0
in Equation (29) equals the optimal value of the following rank minimization problem [39]

min
u,n,U≥0

rank(U) s.t. U =

[
d-toep(u) Z

Z∗ n

]
(33)

where, Z = [z∗c , z
∗
1; . . . , z∗J ]∗, d-toep(u) is the block diagonal matrix

diag (toep(uc), toep(u1), . . . , toep(uJ))

composed of toeplitz matrices generated from complex vectors u = {uc, uj, j ∈ Λ}; toep(u) is a
symmetric toeplitz matric generated by the vector u; and U ≥ 0 means that U is positive semideninite.
It follows that is equivalent to the following low rank matrix completion (LRMC) problem [40]

min
u,Z,n

1

2N

(
rank(toep(uc)) +

∑
j∈Λ

rank(toep(uj)

)
(34)

s.t.

[
d-toep(u) Z

Z∗ n

]
� 0,wj = Ψj(zc + zj), j ∈ Λ

Due to the NP-hard nature of rank minimization problem, solving the “`0 norm” type CA-norm
minimization would become computationally intractable. An alternative approach is to consider its
convex relaxation, CA-norm, defined as

‖R‖CA = inf

{
‖zc‖A +

∑
j∈Λ

‖zj‖A : zc + zj = rj, j ∈ Λ

}
(35)

The atomic norm defined for single vector in Equation (29) is actually a special case of CA-norm for
J = 1. And the similar study of total variance norm is introduced in [15]. In this work, we propose to
solve the following CA-norm minimization problem to achieve accurate DOA estimations of the off-grid
sparse spatial signals

min
R
‖R‖CA s.t. wj = Ψjxj, j ∈ Λ (36)
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For rj = zc + zj ∈ CN , j ∈ Λ,

‖R‖CA = inf

{
1

2N

(
tr(toep(uc)) +

∑
j∈Λ

tr(toep(uj))

)
+

1

2
n :

[
d-toep(u) Z

Z∗ n

]
� 0

}
(37)

which is proved in [35]. Therefore, Equation (36) can be expressed as the following computationally
tractable SDP

min
u,Z,n

1

2N

(
tr(toep(uc)) +

∑
j∈Λ

tr(toep(uj)

)
+

1

2
n

s.t.

[
d-toep(u) Z

Z∗ n

]
� 0,wi = Ψj(zc + zj), j ∈ Λ (38)

We can get accurate Z by using SDP solver. The trigonometric polynomials about the DOAs
information of common and innovation sources are given as

pc,2N−2(e−j2πξ̂c) = |σc|2 − |(A∗czc)(ξ̂c)|2 = |σc|2 −
N−1∑

i=−N−1

uc,ie
−j2πiξ̂c ,uc,i =

∑
n

zc,nz̄c,n−i (39)

pj,2N−2(e−j2πξ̂j) = |σj|2 − |(A∗jzj)(ξ̂j)|2 = |σj|2 −
N−1∑

i=−N−1

uj,ie
−j2πiξ̂j ,uj,i =

∑
n

zj,nz̄j,n−i (40)

pc,2N−2(e−j2πξ̂c) and pj,2N−2(e−j2πξ̂j) have at most 2n− 2 roots, respectively [37]. Since construction
p2N−2(e−j2πξ̂) is a real-valued and nonnegative trigonometric polynomial, it cannot have single roots
on the unite circle since the existence of single roots would imply that p2N−2(e−j2πξ̂) takes on negative
values. Therefore, p2N−2(e−j2πξ̂) is either zero everywhere or has at most N − 1 roots on the unit circle.
The accurate DOAs of the sources can be estimated as

θ̂ = 2ξ̂ − 1 (41)

3.3. Dual Certificate

Dual problem is studied to check the successful reconstruction of the optimization [38]. Let R∗

denote the optimal solution to Equation (36) and Q = [q∗1, . . . , q
∗
J ]∗, where qj ∈ CMj . Then the dual

problem of Equation (36) is given as

max
Q
〈Φ∗Q,R∗〉R s.t. ‖Φ∗Q‖∗CA ≤ 1 (42)

where ‖ · ‖∗CA is the dual norm of CA-norm, and

‖Φ∗Q‖∗CA = sup
‖R‖CA=1

〈Φ∗Q,R∗〉R

= sup
‖zc‖A+

∑
j ‖zj‖A=1

(
〈
∑
j∈Λ

Φ∗jqj, zc〉R + 〈
∑
j∈Λ

Φ∗jqj, zj〉R

)

= sup
σc+

∑
j σj=1,fc,fj∈[0,1]

(
σc〈
∑
j∈Λ

Φ∗jqj, a(fc)〉R + 〈
∑
j∈Λ

Φ∗jqj, a(fj)〉R

)

= sup
f∈[0,1]

max

{
|〈
∑
j∈Λ

Φ∗jqi, a(f)〉|,max
j∈Λ
|〈Φ∗jqi, a(f)〉|

}
(43)
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Strong duality simply holds since Equation (36) is only equality constrained and thus satisfies Slater’s
condition [27]. Based on this certification, a dual certificate to the optimality of the solution of
Equation (36) can be obtained. And we proved its uniqueness [35] and provide it as a guide for the
construction of dual polynomials.

4. Numerical Experiments

In this section, we evaluated the proposed approach by performing numerical experiments. We choose
the probability of success as the major performance. The DOA estimation is considered as successful if
the DOA estimation error of each source satisfies the following condition

max

{
max
ξc,k∈Ωc

{‖ξ̂c,k − ξc,k‖2}, max
ξj,k∈Ωj

{‖ξ̂j,k − ξj,k‖2}
}
≤ 10−4 (44)

We focus on the key impact factor of array aperture size and evaluate the demand of sensors in each
SLA via different DOA estimation methods with multiple parameter settings. DOAs were generated
uniformly random on [0, 1] with an additional constraint on minimum separation ∆ as follows

∆ = min
j

inf
ξ,ξ′∈Ωc

⋃
Ωj ;ξ 6=ξ′

|ξ − ξ′| ≥ 1

N2
(45)

The inter-element spacings of SLAs were generated uniformly random on [λ/2, 40(λ/2)], which is
integer multiple of the half wavelength. JSDP in Equation (38) was solved via SDPT3-4.0 toolbox [41].

Firstly, we compare the proposed JSDP with the original separate-SDP (SSDP) approach in the ULAs.
SSDP means joint calculation of the observed signals without any co-arrays methods. We set Kc = 4,
Kj = 2 in each signal ensemble. We performed Monte Carlo experiments for Mj from 2 to 18 and
J = 1, 2, 4, 8, and recorded the probability of success from 2000 trials. The number of sensors in the
VULA in JSDP is assumed as N = 40 to ensure that all the sources for SLAs in system can be localized.
Figure 4 shows the performance curves.

Figure 4. The impact of the number of sensors per SLA on probability of success DOA
estimation with various numbers of SLAs compared between the joint SDP and separate one.

The JSDP approach exhibits a definite advantage over its separate counterpart. In SSDP, one SLA
requires at least 7 sensors to possibly localize 6 sources, and the increase of array number brings about
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larger calculation errors so as to decrease the probability of success. JSDP is equality to SSDP when
J = 1, which requires approximately 11.7 sensors to successfully localize 6 sources with high
probability. The JSDP approach achieves exact DOA estimation after Mj exceeds a certain threshold,
which is the demand of approximately 8.9 sensors in each SLA for J = 2, while at least 12.6 sensors
per SLA are required for SSDP to achieve comparable performance. The gap increases with the increase
of J , implying the promise of application to multi-arrays systems. When J = 4 and J = 8, JSDP
respectively requires approximately 7.1 and 6.4 sensors to address the requirement of successful DOA
estimations; SSDP respectively requires at least 15 sensors. Obliviously, JSDP makes the sensors in all
the SLAs virtually construct a larger array to implement the DOA estimation of common sources which
brings about larger degrees of freedom. In other words, we can use the arrays with smaller aperture size
via JSDP to satisfy the same demand of sources localized via SSDP. The increase of J decreases the
aperture requirement and system cost of SLAs.

Then, we discuss the parameter impact of source number in detail. The number of common sources is
the key object in the research closely related to the performance of JSDP. In the case of 4 SLAs system,
4 signal ensembles with 2 innovation sources are assumed. We performed Monte Carlo experiments for
Mj from 2 to 18 and the number of common sources Kc = 1, 2, 4, 8, and recorded the probability of
success from 2000 trials. The performance curves are shown in Figure 5.

Figure 5. The impact of the number of sensors per SLA on probability of success DOA
estimation with various numbers of common sources.

When J = 1, approximately 6.2 sensors per SLA can successfully localize all 9 sources with high
probability. As the increase of number of common sources, JSDP with original array aperture cannot
obtain so many successful estimation and more sensors are required to allow more sources localized. In
the situation with more localized sources, the sensors In short, an increasing number of common sources
will increase the workloads of SLAs. The increase of J decreases the increment of sensors in each
SLA. The total amount of sensors in the system is approximately proportional to the number of common
sources according to the simulation results. We believe there has a relationship of the number of sensors
and common sources. The theoretical bound will be studied in our next work.
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Of course, the impact of the number of innovation sources should also be studied to fully prove
the high efficiency of JSDP. We discuss a SLAs system with 8 innovation sources in all, which means
J ×Kj is a constant set as 8. Thus, J = 1, 2, 4, 8, corresponding to Kj = 8, 4, 2, 1. And the number of
common sources is still 4. We performed Monte Carlo experiments for Mj from 2 to 25 and recorded the
probability of success form 2000 trials. The number of sensors in the VULA is assumed as N = 80 to
ensure that all the sources for SLAs in system can be localized. Figure 6 shows the performance curves.

Figure 6. The impact of the number of sensors per SLA on probability of success DOA
estimation with various numbers of innovation sources.

As the average number of common and innovation sources per SLA is isocon descending with the
number of SLAs, the demand of sensors per SLA is approximately proportional to the number of SLAs
too. The demand of sensors when J = 1 is twice times as that when J = 2, and so on. The results
fully indicate that all the sensors undertake the equal number of estimation task for common sources. On
the other hand, the array aperture size is closely related to the number of sources in each SLA, which
supports the definition of degree of freedom.

From the above simulation results, we can draw a conclusion that one source need about 2.3 sensors
to estimate its DOA, which is similar to the conclusion in [37] to require at least two samples for a spike.

Moreover, we also discuss the demand of sensors for the aperture size assumed in the VULA. We set
Kc = 4, Kj = 2 in each ensemble. We performed Monte Carlo experiments for Mj from 2 to 18 and
N = 40, 80, 160, and recorded the probability of success from 2000 trials. The number of SLAs is set as
J = 4. Figure 7 shows the performance curves.

Similar to all kind of DOA estimation methods, the aperture size of VULA has a threshold for enough
degree of freedoms, in terms of the largest spacing difference of any two sensors in a SLA. If the
array aperture addresses the requirement, the performance enhancement of algorithm becomes slow. Of
courses, the ULA with larger aperture has higher degree of freedoms. However, the estimation accuracy
is depended on the solution methods. In JSDP, the minimum resolution is determined by sensor numbers
described in Equation (45). The finer resolution makes the DOA information in the case of two sources
with a small DOA difference estimated more accurate so as to increase the probability of success.
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Figure 7. The impact of the number of sensors per SLA on probability of success DOA
estimation with various numbers of sensors in the VULA.

5. Conclusions

The array aperture size is one of the most important parameters in array signal processing, highly
effecting the accuracy of DOA estimations and the cost of location system. In this article, we discussed
the application of multiple distributed SLAs with the coexistence of common and innovation sources,
which was not referred to in the existing co-arrays methods. The separate algorithm for each SLA brings
about the repeated calculations of DOA estimations for the common sources. The redundancy of the
signal of common sources motivated us to address this problem with a joint DOA estimation method. All
the sources for each SLA were classified into the common sources and the innovation ones. The common
source was defined as the signal of which can imping on all SLAs in the system and the innovation one
was defined as that can only imping on a specific SLA. Considering that the sources are sparse spatial
distributed, we can use a JSS model to describe the problem of joint DOA estimation. We constructed a
VULA for each SLA to obtain O(N) freedoms with Mj sensors, and considered the signals observed by
SLAs as the samplers of those observed by their corresponding VULAs. The relationship between these
two kinds of signals is a random linear map. An off-grid synchronous approach was proposed to combine
the observed signals in all the SLAs and jointly estimate the DOA information of all sources. A CA-norm
was used to reformulate the problem of joint DOA estimation into the minimization problem, which was
solved via JSDP. By exploiting the continuous counterpart of the JSS model, the DOAs of all sources can
be simultaneously estimated with off-grid estimation accuracy. And the sources are localized with the
arrays of smaller aperture in terms of the decrease of sensors via JSDP. From the numerical results, we
can find the joint approach has more advantages than the existing separated one. All the estimation tasks
are shared by all the SLAs which brings about at least 20% decrease of demand of sensors per SLA.

Of course, in this article we did the initial researches on the joint DOA estimation with distributed
SLAs. Some more complex conditions such as the noise environment and different number of sensors
per SLA (like co-prime arrays) should be considered in our next works. Although we conclusion the
impacts of SLA number, source number and sensor number per VLUA on the demand of sensors in the
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SLAs, the formulation indicating the relationship between sensor number and the above parameters will
be studied in detail.
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