Next Article in Journal
Locally-Referenced Ultrasonic – LPS for Localization and Navigation
Next Article in Special Issue
A Real-Time Pinch-to-Zoom Motion Detection by Means of a Surface EMG-Based Human-Computer Interface
Previous Article in Journal
Magnetic Resonance Sensors
Previous Article in Special Issue
Adaptive Activity and Environment Recognition for Mobile Phones
Article Menu

Export Article

Open AccessArticle
Sensors 2014, 14(11), 21726-21749; doi:10.3390/s141121726

Face Recognition System for Set-Top Box-Based Intelligent TV

Division of Electronics and Electrical Engineering, Dongguk University, 26 Pil-dong 3-ga, Jung-gu, Seoul 100-715, Korea
*
Author to whom correspondence should be addressed.
Received: 18 April 2014 / Revised: 4 November 2014 / Accepted: 11 November 2014 / Published: 18 November 2014
(This article belongs to the Special Issue HCI In Smart Environments)
View Full-Text   |   Download PDF [4695 KB, uploaded 18 November 2014]   |  

Abstract

Despite the prevalence of smart TVs, many consumers continue to use conventional TVs with supplementary set-top boxes (STBs) because of the high cost of smart TVs. However, because the processing power of a STB is quite low, the smart TV functionalities that can be implemented in a STB are very limited. Because of this, negligible research has been conducted regarding face recognition for conventional TVs with supplementary STBs, even though many such studies have been conducted with smart TVs. In terms of camera sensors, previous face recognition systems have used high-resolution cameras, cameras with high magnification zoom lenses, or camera systems with panning and tilting devices that can be used for face recognition from various positions. However, these cameras and devices cannot be used in intelligent TV environments because of limitations related to size and cost, and only small, low cost web-cameras can be used. The resulting face recognition performance is degraded because of the limited resolution and quality levels of the images. Therefore, we propose a new face recognition system for intelligent TVs in order to overcome the limitations associated with low resource set-top box and low cost web-cameras. We implement the face recognition system using a software algorithm that does not require special devices or cameras. Our research has the following four novelties: first, the candidate regions in a viewer’s face are detected in an image captured by a camera connected to the STB via low processing background subtraction and face color filtering; second, the detected candidate regions of face are transmitted to a server that has high processing power in order to detect face regions accurately; third, in-plane rotations of the face regions are compensated based on similarities between the left and right half sub-regions of the face regions; fourth, various poses of the viewer’s face region are identified using five templates obtained during the initial user registration stage and multi-level local binary pattern matching. Experimental results indicate that the recall; precision; and genuine acceptance rate were about 95.7%; 96.2%; and 90.2%, respectively. View Full-Text
Keywords: set-top box; face recognition; in-plane rotation; multi-level local binary pattern set-top box; face recognition; in-plane rotation; multi-level local binary pattern
Figures

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Lee, W.O.; Kim, Y.G.; Hong, H.G.; Park, K.R. Face Recognition System for Set-Top Box-Based Intelligent TV. Sensors 2014, 14, 21726-21749.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Sensors EISSN 1424-8220 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top