
Sensors 2014, 14, 21195-21212; doi:10.3390/s141121195
OPEN ACCESS

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

Constrained State Estimation for Individual Localization in

Wireless Body Sensor Networks

Xiaoxue Feng 1,*, Hichem Snoussi 2, Yan Liang 1 and Lianmeng Jiao 1

1 School of Automation, Northwestern Polytechnical University, Xi’an 710072, China;

E-Mails: 15929443901@163.com (Y.L.); jiaolianmeng@163.com (L.J.)
2 Institute of Charles Delaunay, University of Technology of Troyes, Troyes 10000, France;

E-Mail: hichem.snoussi@utt.fr

* Author to whom correspondence should be addressed; E-Mail: fengxiaoxue@mail.nwpu.edu.cn;

Tel.: +86-159-2944-3901; Fax: +86-029-8843-1306.

External Editor: Leonhard M. Reindl

Received: 11 June 2014; in revised form: 25 July 2014 / Accepted: 1 August 2014 /

Published: 10 November 2014

Abstract: Wireless body sensor networks based on ultra-wideband radio have recently

received much research attention due to its wide applications in health-care, security,

sports and entertainment. Accurate localization is a fundamental problem to realize the

development of effective location-aware applications above. In this paper the problem of

constrained state estimation for individual localization in wireless body sensor networks

is addressed. Priori knowledge about geometry among the on-body nodes as additional

constraint is incorporated into the traditional filtering system. The analytical expression

of state estimation with linear constraint to exploit the additional information is derived.

Furthermore, for nonlinear constraint, first-order and second-order linearizations via Taylor

series expansion are proposed to transform the nonlinear constraint to the linear case.

Examples between the first-order and second-order nonlinear constrained filters based on

interacting multiple model extended kalman filter (IMM-EKF) show that the second-order

solution for higher order nonlinearity as present in this paper outperforms the first-order

solution, and constrained IMM-EKF obtains superior estimation than IMM-EKF without

constraint. Another brownian motion individual localization example also illustrates the

effectiveness of constrained nonlinear iterative least square (NILS), which gets better

filtering performance than NILS without constraint.



Sensors 2014, 14 21196

Keywords: constrained state estimation; ultra-wideband radio; individual localization;

wireless body sensor networks

1. Introduction

In recent years, ultra-wide-band (UWB) technologies have drawn great interest in the wireless

community [1]. The development of UWB has ushered in a new era in short-range wireless

communications. Among various potential applications, one of the most promising applications is

wireless body sensor networks (WBSNs) [2–4] based on UWB radio, which consist multiple low-cost,

low data-rate and self-organized wireless sensors attached to, or implanted into, the human body, and

have recently received a lot of research interests due to their wide applications in health-care, security,

sports and entertainment. For location-aware applications requiring indoor positioning or motion capture

features, global position information of the WBSNs or each individual sensor position are required [5,6].

In the WBSNs localization context, location estimators can be divided into two categories,

non-probabilistic and probabilistic estimators. The typical algorithm of non-probabilistic estimator is

weighted least squares (WLS) [2] which does not necessitate prior information. While probabilistic

estimator consists in locating the mobile nodes based on probabilistic assumptions. The latter can be

based on a priori statistical models for the observed measurements conditioned on the mobile positions,

such as likelihood functions. Accordingly, these algorithms are usually more accurate than simple

non-probabilistic estimators like WLS in the view of information fusion.

The probabilistic estimators can be classified into two categories, namely Bayesian and Non-Bayesian

approaches. Non-Bayesian estimators assume that the mobile positions are treated as unknown

deterministic parameters whereas mobile positions are defined as random variables with known prior

distributions in Bayesian estimators. Kalman Filter (KF), as one of the most popular Bayesian estimator

has been mainly adopted for tracking applications [7,8], for instance in vehicular or personal navigation

applications. But in typical wireless tracking problems, due to the non-linearity of the measurement

function, the Extended Kalman Filter (EKF) may be adopted instead, which consists in preserving the

full KF formalism after linearizing locally the incriminated function around the predicted state. Both

KF and EKF are well known and popular in the wireless body sensor networks [9–11], due to their

simplicity and practicability for implementation. In the case of maneuvering targets, where the target

switches between multiple states, the interactive multiple model (IMM) is employed. IMM uses a bank

of filters processing in parallel, with each filter acting on a dynamic model.

Apart from the state filtering system, we might have information about a system that the filtering

algorithm does not incorporate. For example, we may know that the states satisfy equality or inequality

constraints. There are many examples of state-constrained systems in engineering applications. Some

of these examples include, fault diagnosis [12], vision-based systems [13], target tracking [14,15],

robotics [16], and navigation [17]. Recently, fixed-length links between on-body modes in WBSNs

as additional constraints to improve the localization accuracy have been paid much attention.

Mhedhbi et al. [18] adapts a centralized classical Multidimensional Scaling (MDS) for on-body MoCap

applications and pose estimation. The authors introduce additional constraints relying on the prior



Sensors 2014, 14 21197

knowledge of minimal and maximal feasible distances related to the body dimensions (and thus some

kinds of geographical limitations). In [19] the centralized Maximum Likelihood estimator has been

considered, introducing other constraints relying on the actual positions of on-body mobile nodes.

In [20], the Constrained Distributed Weighted Multi-Dimensional Scaling (CDWMDS) algorithm is

proposed for coarse WBAN motion capture, where nodes’ locations are asynchronously estimated

in a body-strapped Local Coordinate System (LCS), using information from their 1-hop neighbors.

Fixed-length links (e.g., between the hand’s wrist and the elbow) are also incorporated as geometric

constraints, limiting the number of required on-line measurements, while still benefitting from a mesh

topology. However, the above methods are all based non-Bayesian localization method.

In this paper, we investigate Bayesian localization method for UWB-based individual localization

and aim at increasing the localization accuracy. Due to the harsh propagation environment in vicinity of

the human body, the positioning accuracy can be degraded [21]. The major sources of this impairment

are multi-path propagation and potential non-line-of-sight conditions. To overcome these problems, we

investigate the improvement in the positioning accuracy by taking the a priori knowledge about geometry

among the on-body nodes into account. For example, the distances between any two on-body nodes

are fixed. From a practical point of view, the prior knowledge of the on-body nodes’ distance can be

obtained by letting the user deploy the nodes within a reasonably given area (e.g., drawn on a specific

piece of clothes, typically on the torso). This information can be interpreted as additional reference

measurements, which improves the localization accuracy in the view of information fusion. Our goal is

how to introduce the fixed-length link constraints into the traditional Bayesian filtering algorithm.

In this paper, considering the priori knowledge about geometry among the on-body nodes, a novel

constrained state estimation for individual localization is presented. Employing the Taylor series

expansion of the nonlinear constraints and maintaining the first term and second term separately,

IMM-EKF with first-order and second-order linearizations constraint are proposed respectively.

Furthermore we discuss the two linearized methods influenced on the state estimation results through

simulations. In this paper, our contribution is that we propose the constrained IMM-EKF algorithm

for UWB based individual localization, exploit second-order nonlinear state constraints providing better

approximation for higher order nonlinearities and demonstrate the effectiveness of the new method on an

individual localization example, compared with the unstrained IMM-EKF. Note that, even the proposed

constrained state estimation method is intended for Bayesian filtering algorithm, it can also be applied

into the non-Bayesian algorithm, such as nonlinear iterative least square (NILS) [22].

The paper is organized as follows. Section 2 gives a brief formulation of individual localization

problem. Section 3 presents the projection method for state estimation with linear constraint, and the

first-order and second-order linearizations are proposed to extend the projection method to nonlinear

cases. Section 4 applies the constrained state estimation into IMM-EKF for UWB based individual

localization. Section 5 presents some simulation results to evaluate the algorithm. Finally, Section 6

closes with some conclusions and suggestions for future works.
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2. Problem Formulation

A typical WBSNs indoor localization scenario is presented in Figure 1. Each WBSNs consists

m + n nodes, where n is the number of mobile nodes to be located on the body (the red dots in

Figure 1), and m is the number of anchors with known positions (the infrastructure anchors in Figure 1),

where m should be equal or larger than 3. In the following,
[

X1(k), · · · , Xn(k)
]

is the vector of

unknown 3-Dimensional coordinates at time k and
[

Xn+1, · · · , Xn+m

]

is a vector of known and

time-invariant positions of anchors.

Figure 1. Typical WBSNs deployment scenario for individual localization.

We assume that anchors broadcast periodic beacon signals on a dedicated control channel, and that

each WBSNs operates on a different channel frequency to avoid interference stemming from anchors

and neighboring WBSNs. Moreover, we consider that each node is able to perform TDOA based

(Time-Difference-Of-Arrival) range measurements [23] with respect to anchors within communication

range and TOA based (Time-Of-Arrival) range measurements to other nodes associated to the same body

area network. These distance measurements can be used together with the known anchor positions to

localize the corresponding node relative to the anchors. Then the movement of the body is tracked by

determining the nodes positions. Consider the following dynamic equation and measurement equation

of the system given by

X(k) = F (X(k − 1)) + n(k) (1)

Z(k) = G(X(k)) + w(k) (2)

where F (·) and G(·) are the known state transition function and measurement function, respectively.

State vector X(k) includes the three-dimensional positions and velocities of each blind node to be

positioned, X(k) =
[

x(k) vx(k) y(k) vy(k) z(k) vz(k)
]

. {n(k)} and {w(k)} are noise inputs.

They are Gaussian distributions with zero mean and with covariance Q(k) and R(k). The two types of

noise are mutually independent. Given the initial state vector and the associated covariance, the problem

is to estimate the state vector of every time step by using corresponding measurement data.

Given all the available IR-UWB TOA measurements
{

d̃ij(k)
}

i,j
at time k, given existing constraints

related to the body geometry and the known locations of the infrastructure anchors, the problem

considered in this paper consists in estimating the absolute positions of the carrying bodies in the global

coordinate system, relying on their on-body nodes.
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3. State Estimation with Constraint

3.1. State Estimation with Linear Constraint

Considering the same system defined in Equations (1) and (2), suppose there are some linear

constraints in the state evolvement which are formulated using an equality formula as

DX = δ (3)

where D denotes a state constrained matrix. For simplification, time instant k is omitted. At this time,

the filtering case is called a linear filtering problem with linear equality constraints. One method to deal

with the equality linear constraints has been presented by Dan Simon [12,17]. It is a projection method

in essence. It is an effective method and has a good performance. The detailed derivation is given in

the following.

Let X̃ denotes the modified state estimation, W denotes arbitrary symmetric positive definite matrix,

X̂ denotes the general state estimation before considering the condition of constraints. The estimation

problem with state constraints translates into an optimization problem

{

min J(X̃) = (X̃ − X̂)TW (X̃ − X̂)

s.t.DX̃ = δ
(4)

Use the Lagrange multiplier method to solve the above equation. Firstly, we construct the formula

J(X̃, λ) = (X̃ − X̂)TW (X̃ − X̂) + 2λT (DX̃ − δ) (5)

Subsequently, calculate the partial derivatives and the results of each component are set zero, i.e.,

{

∂J

∂X̃
= W (X̃ − X̂) +DTλ = 0

∂J
∂λ

= DX̃ − δ = 0
(6)

Thus we obtain

X̃ = X̂ −W−1DT (DW−1DT )−1(DX̂ − δ) (7)

The method is called projection method via modifying state estimation. That is to say, the current

state estimation is projected on the constrained subspace.

3.2. Sate Estimation with First-Order Linearization Nonlinear Constraint

For the nonlinear constraint g(X) = d, we can perform a Taylor series expansion of the constraint

equation around the state prediction X̂− to obtain

g(X) ≈ g(X̂−) + g′(X̂−)(X − X̂−)+1/2
s
∑

i=1

ei(X − X̂−)
T
g′′(X̂−)(X − X̂−) (8)

where s is the dimension of g(X), ei is the i natural basis vector in Rs , and the entry in the pth row and

qth column of the n× n matrix g′′(X) is given by

[g′′(X)]pq =
∂2gi(X)

∂Xp∂Xq

(9)
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Neglecting the second-order term gives

g′(X̂−)X = d− g(X̂−) + g′(X̂−)X̂− (10)

This equation is equivalent to the linear constraint if

{

D = g′(X̂−)

δ = d− g(X̂−) + g′(X̂−)X̂−
(11)

Thus nonlinear constraints are linearized. Sometimes, though, we can do better than simple first-order

linearization, as discussed in the following sections.

3.3. State Estimation with Second-Order Linearization Nonlinear Constraint

If we keep the second-order term in Taylor series expansion then the constrained estimation problem

is second-order linearization nonlinear constraints. Then the constrained estimation problem can be

approximately written as

X̃ = argmin
X

(X − X̂)TW (X − X̂) (12)

such that

XTMiX + 2mT
i X + µi = 0(i = 1, . . . , s) (13)

where W is a weighting matrix, and Mi, mi and µi can obtained from Equation (8). The optimization

problem given in Equations (12) and (13) can be solved with a numerical method. A Lagrange multiplier

method for solving this problem is given below [24–26].

X̂ = G−1V (I + λΣTΣ)−1e(λ) (14)

q(λ) =
∑

i

e2i (λ)σ
2
i

(1 + λσ2
i )

2 + 2
∑

i

ei(λ)tj
1 + λσ2

i

+m0 = 0 (15)

where G is an upper right diagonal matrix resulting from the Cholesky factorization of W = HTH as

W = HTH = GTG (16)

V is an orthonormal matrix, and Σ a diagonal matrix with its diagonal elements denoted by σi, are

obtained from the singular value decomposition (SVD) of the matrix LG−1 as

LG−1 = UΣV T (17)

where U is the other orthonormal matrix of the SVD and L results from the factorization M = LTL ,

and

e(λ) = [. . . ei(λ) . . .]
T = V T (GT )−1(HTz − λm) (18)

t = [. . . ti . . .]
T = V T (GT )−1m (19)

As a nonlinear equation in λ, it is difficult to find a closed-form solution in general for the nonlinear

equation q(λ) = 0 in Equation (15). Numerical root-finding algorithms, the Newton’s method may be
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used instead. Consider the case where W = GTG, z = GX and m = 0, the constrained solution is

given by

X̃ = (W + λM)−1WX̂ (20)

where the Lagrangian multiplier λ is obtained iteratively as below

λl+1 = λl −
q(λl)

q̇(λl)
(21)

with the corresponding q(λ) and q̇(λ) given by

q(λ) =
∑

i

e2iσ
2
i

(1 + λσ2
i )

2 +m0 = 0 (22)

q̇(λ) = −2
∑

i

e2iσ
4
i

(1 + λσ2
i )

3 (23)

4. Constrained IMM-EKF for Individual Navigation

4.1. Unconstrained IMM-EKF for Individual Navigation

In order to solve non-linear tracking problems with behavior pattern of target changing with time,

e.g., the measurement metric is based on IR-UWB TOA, interacting multiple model extended Kalman

filter (IMM-EKF) is applied in this paper to perform individual localization. The IR-UWB TOA based

measurement equation of node i in LOS condition is given below

Z i(k) =













d̃i1(X(k))

d̃i2(X(k))
...

d̃in+m−1(X(k))













==















(

XT
i (k)X1(k)

)
1

2 + wi1(k)
(

XT
i (k)X2(k)

)
1

2 + wi2(k)
...

(

XT
i (k)Xn+m−1(k)

)
1

2 + win+m−1(k)















,

j = 1, 2, . . . , n+m− 1 and j 6= i
(24)

where d̃ij(X(k)) denotes one range measurement available at time k between one on-body node i and a

connected node j, j being another on-body node(belonging to the same WBSNs) or one infrastructure

anchor. In case of IR-UWB, according to the IEEE 802.15.4a standard, the conditional TOA-based

ranging error model is assumed to be similar for both of on-body and inter-body links. Measurement

noise wij(k) is a centered Gaussian random variable with a standard deviation σ.

The main steps in one cycle of IMM-EKF are given below [27]. For simplicity, the subscript i of node

state Xi is omitted.

Step 1: Calculate the mixing probabilities

µα|β(k|k) =
pαβµα(k|k)

µβ(k + 1|k)
(25)

where the predicted mode probability µβ(k + 1|k) of mode β is computed by

µβ(k + 1|k) =

r
∑

α=1

pαβµα(k|k) (26)
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with pαβ being transition probability from mode α to mode β and r being the total number of probable

model of state.

Step 2: Calculate the mixed initial state and covariance

X̂0β(k|k) =
r
∑

α=1

µα|β(k|k)X̂α(k|k) (27)

P̂0β(k|k) =

r
∑

α=1

µα|β(k|k)
{

P̂α(k|k) +
[

X̂α(k|k)− X̂0β(k|k)
]

[•]T
}

(28)

Step 3: Perform mode-matched filtering and calculate the likelihood function Λα corresponding to

different model α via traditional EKF. When the EKF method is applied for solving non-linear tracking

system, the main problem of EKF is to linearize locally the function around the predicted state. The

linearized measurement equation Gk satisfies

Z i(k)
∆
= GkX(k) =













d̃i1(X(k))

d̃i2(X(k))
...

d̃in+m−1(X(k))













=











G1
kX(k)

G2
kX(k)

...

Gn+m−1
k X(k)











,

j = 1, 2, . . . , n+m− 1 and j 6= i
(29)

where

Gj
k =

[

x̃−xj(k)

D
0

ỹ−yj(k)

D
0

z̃−zj(k)

D
0
]

X̃=Xi(k|k−1)
(30)

D =
(

X(k|k − 1)TXj(k)
)

1

2 (31)

Step 4: Update model probability

µβ(k + 1|k + 1) =
µβ(k + 1|k)Λβ

r
∑

α=1

µα(k + 1|k)Λα

(32)

Step 5: Combine model-conditioned estimates and covariances

X̂(k + 1|k + 1) =

r
∑

α=1

µα(k + 1|k + 1)X̂α(k + 1|k + 1) (33)

P̂ (k+1|k+1) =

r
∑

α=1

µα(k + 1|k + 1)
{

P̂α(k + 1|k + 1) +
[

X̂α(k + 1|k + 1)− X̂(k + 1|k + 1)
]

[•]T
}

(34)
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4.2. Constrained IMM-EKF with First-Order Linearization Nonlinear Constraint (FC-IMM-EKF)

The additional constraints introduced in the individual localization system is that the distance between

any two on-body nodes is fixed (i.e., constant over time under body mobility) represented as follows. For

simplification, time index k is omitted.

(xi − xj)
2 + (yi − yj)

2 + (zi − zj)
2 = dij

2 (35)

Obviously, the constraint is nonlinear. The deduced results of first-order linearization constraint in

Equation (11) are given below.

D = [x− xj(k) 0 x− xj(k) 0 x− xj(k) 0]
X=Xi(k|k−1) (36)

δ = dij
2 −Xi(k|k − 1)XT

j (k) +DXi(k|k − 1) (37)

Thus the modified state estimation after first-order linearization constraint is

X̃i(k|k) = Xi(k|k)−W−1DT (DW−1DT )−1(DXi(k|k)− δ) (38)

with W being an identity matrix or the inverse of estimation covariance P .

4.3. Constrained IMM-EKF with Second-Order Linearization Nonlinear Constraint (SC-IMM-EKF)

The most difficult problem of second-order linearization nonlinear constraint is to find the solution

of λ. However, for the special constraint case mentioned in Equation (35), a closed-form solution of

λ can be derived. Assume W = I2, M = I2, m = 0, and m0 = −d2ij . The constrained estimate in

Equation (20) can be written below. For simplification, time index k is omitted.

X̃ −Xj = (W + λM)−1W
(

X̂ −Xj

)

= (1 + λ)−1
(

X̂ −Xj

)

(39)

Substitute the above equation into the constraint equation in Equation (35)

(

X̃ −Xj

)T (

X̃ −Xj

)

=

(

X̂ −Xj

1 + λ

)T (

X̂ −Xj

1 + λ

)

= d2ij (40)

The solution for λ is

λ =

√

(

X̂ −Xj

)T (

X̂ −Xj

)

dij
− 1 (41)

Taking the solution of λ back into Equation (39) gives the deduced results of second-order

linearization constraint in Equations (12) and (13)

X̃i(k|k) = Xj(k|k) +
dij (Xi(k|k)−Xj(k))

√

(Xi(k|k)−Xj(k))
T (Xi(k|k)−Xj(k))

(42)
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5. Simulation Results

In our evaluation framework, only an individual localization is considered. The body moves in a

20 m × 20 m × 4 m 3D environment. The scene is surrounded by 4 infrastructure anchors, set at the

corners. And there are 4 nodes placed on the body. The initial position of the 4 nodes are given in

Table 1. And the measurement noise covariance is 0.09. The distance among the on-body nodes as

additional constraints are given in Table 2 as below.

Table 1. Initial positions of the 4 nodes.

Index 1 2 3 4

x position (m) 2.3 2 2.2 2.1

x velocity (m/s) 0.3464 0.3464 0.3464 0.3464

y position (m) 10 10 10 10

y velocity (m/s) 0.2 0.2 0.2 0.2

z position (m) 0.8 0.7 0.8 1

z velocity (m/s) 0 0 0 0

Table 2. Distance constraint between each two nodes.

Index 1 2 3 4

1 – 0.3162m 0.1m 0.2828m

2 0.3162m – 0.2236m 0.3162m

3 0.1m 0.2236m – 0.2236m

4 0.2828m 0.3162m 0.2236m –

5.1. Simulation Case 1: Localize the CV Target Based on EKF

In the first simulation case, the individual moves at the constant speed of 0.4 m/s for an overall

duration of 50 s. In other words, the model number r equals 1. The target state transition equation used

in the CV tracking is

Xk+1 =





















1 T 0 0 0 0

0 1 0 0 0 0

0 0 1 T 0 0

0 0 0 1 0 0

0 0 0 0 1 T

0 0 0 0 0 1





















Xk + nk (43)

where process noise nk subject to Gaussian distribution, zero-mean with covariance

Q = diag([0.004, 0.002, 0.003, 0.002, 0, 0]).

Figure 2 gives the estimation result of EKF based individual localization, which shows the method of

EKF based individual localization is effective. In the following figures, comparisons among EKF, EKF

with the first-order nonlinear constraints (FC-EKF) and EKF with second-order nonlinear constraints
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(SC-EKF) of localization accuracy based on 100 Monte-Carlo runs are given. Figures 3–6 show

estimation results of 4 on-body nodes and Figures 7–8 show estimation results of individual localization.

It can be seen that the constrained EKF results in much more accurate estimates than the unconstrained

EKF, which verifies the effectiveness of the proposed method. Also, it can be seen that the estimation

results of FC-EKF is worse than SC-EKF. The reason of this phenomenon is mainly the state constraints

is of high order nonlinearity. Thus we can conclude that for higher-order nonlinear constraints, the

second-order solution as presented in this paper would outperform a first-order solution.

Figure 2. Estimation result of EKF.
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Figure 4. RMSE of sensor 2.
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Figure 5. RMSE of sensor 3.

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5
sensor 3 RMSE in x coordinate

step

R
M

S
E

 

 

EKF
EKF with first−order linearization
EKF with second−order linearization

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4
sensor 3 RMSE in y coordinate

step

R
M

S
E

 

 

Figure 6. RMSE of sensor 4.
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Figure 7. RMSE of individual localization in x coordinate.
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Figure 8. RMSE of individual localization in y coordinate.
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5.2. Simulation Case 2: Localize the Maneuvering (CV-CT-CA) Target Based on IMM-EKF

An IMM-EKF switching between a (nearly) constant velocity (CV), (nearly) constant acceleration

(CA) models and a coordinated turn (CT) model is simulated here: (1) CV for the first 20 time intervals

(2) CT for the 20-40 time intervals (3) CA for the final 20 time intervals. Target state transition equation

used in the CA tracking is

Xk+1 =





















1 T T 2/2 0 0 0

0 1 T 0 0 0

0 0 1 0 0 0

0 0 0 1 T T 2/2

0 0 0 0 1 T

0 0 0 0 0 1





















Xk +





















T 2/2 0

T 0

1 0

0 T 2/2

0 T

0 1





















q1k (44)

where q1k is the variance of process noise Q1 = diag([0.0012, 0.0012]).
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Target state transition equation used in the CT tracking is

Xk+1 =





















1 sin(w ∗ T )/w 0 0 −(1− cos(w ∗ T ))/w 0

0 cos(w ∗ T ) 0 0 −sin(w ∗ T ) 0

0 0 0 0 0 0

0 (1− cos(w ∗ T ))/w 0 1 sin(w ∗ T )/w 0

0 sin(w ∗ T ) 0 0 cos(w ∗ T ) 0

0 0 0 0 0 0





















Xk +





















T 2/2 0

T 0

0 0

0 T 2/2

0 T

0 0





















q2k

(45)

where q2k is the variance of process noise Q2 = diag([0.0012, 0.0012]), and the turn

rate ω =0.08 rad/s. The IMM-EKF filters assume a mode transition probability matrix

π = [0.8, 0.15, 0.05; 0.3, 0.4, 0.3; 0.05, 0.15, 0.8] and are initialized with the mode probability vector

µ = [1/3, 1/3, 1/3]. In order to save space, only results of node 1 and node 4 are given here. The same

conclusion can be obtained from the Figures 9–12, that is, the constrained IMM-EKF results in much

more accurate estimates than the U-IMM-EKF, and the estimation results of SC-IMM-EKF is better than

FC-IMM-EKF.

Figure 9. State estimation of node 1.
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Figure 10. Estimate error of node 1.
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Figure 11. State estimation of node 4.
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Figure 12. Estimate error of node 4.
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5.3. Simulation Case 3: Localize the Brownian Motion Target Based on NILS

In order to prove that the proposed constrained state estimation can also be applied in non-Baysian

methods, individual localization based on nonlinear iterative least square (NILS) [22] is simulated here.

It can be seen from Figures 13 and 14, that the constrained NILS provides much more accurate estimates

than the unconstrained NILS, which verifies the effectiveness of the proposed method.

Figure 13. State estimation of individual localization.
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Figure 14. Estimate error of individual localization.
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6. Conclusion

In order to further improve the localization accuracy of the individual localization problem, priori

knowledge about geometry among the on-body nodes as additional constraints are incorporated into

the traditional IMM-extended Kalman filter. A novel IMM-EKF with nonlinear constraints for

individual localization in WBSNs is presented. Employing the Taylor series expansion of the nonlinear

constraints and maintaining the first term and second term separately, IMM-EKF with first-order and

second-order linearizations constraint are proposed respectively. Simulation results on an individual

localization example demonstrate that the proposed constrained IMM-EKF method gets better estimation

performance than the unconstrained IMM-EKF provides. And it is exploited that second-order nonlinear

state constraints providing better approximation than the first-order case for high order nonlinearity

constraint. Besides, simulation about localizing a Brownian motion target based on NILS proves the

effectiveness of the proposed method on non-Baysian algorithm.

In this paper, we utilize the Newton’s method to find the numerical root in Equation (15). Our

future works will include searching for more efficient root finding algorithm to solve the Lagrangian

multiplier. Other directions of our future work will show more theoretical results related to convergence

and accuracy for nonlinear constrained IMM-EKF.
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