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Abstract: Optical mouse chips—equipped with adequate lenses—can serve as small, light,
precise, fast, and cheap motion sensors monitoring optic flow induced by self motion of an
agent in a contrasted environment. We present a device that extracts self motion parameters
exclusively from flow in eight mouse sensors. Four pairs of sensors with opposite azimuth
are mounted on a sensor head, each individual sensor looking down with −45◦ elevation.
The head is mounted on a carriage and is moved at constant height above a textured planar
ground. The calibration procedure and tests on the precision of self motion estimates
are reported.
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1. Introduction

Optic flow (OF) is used by many insects for flight control [1,2]. Bees control landing, flight speed,
object and travelling distances by OF (see the comprehensive review by Srinivasan [3]). There is a vast
literature on the influence of OF on the control of flight speed, chasing behavior and turning responses in
various species of flies (see the review by Egelhaaf [4]). The present work was inspired by findings on the
visually controlled behavior of water striders (Gerris lacustris, Gerris paludum) [5–7]. These animals
efficiently compensate for body rotation by head counter-rotation based on OF information provided
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by a visual system with panoramic field of view and low spatial resolution. This observation raises
the question of how to distribute a limited number of small-field motion sensors over the view sphere
in order to optimally estimate self-motion from OF. Precision limits for the estimation of self-motion
parameters from OF in a static surround were investigated under various environmental conditions using
different parts of the visual field [8,9]. In these studies, self-motion from OF was determined using the
algorithm proposed by Koenderink & van Doorn [10] for spherical field of view eyes. The result was
that self-motion can be extracted from flow to a surprisingly high precision if flow can be observed by
detector pairs with opposite viewing directions and if these pairs are distributed over a large solid angle.
Under these conditions, a small number of properly combined flow measurements is sufficient for good
self-motion estimates, provided that the environment is static and detectable contrasts are abundant. The
extraction of self-motion from OF in nine viewing directions distributed over the entire visual sphere
and using suitably oriented Reichardt motion detectors was modeled by Neumann and Bülthoff [11].
In flies, “large field neurons” have been found with motion response fields, i.e., patterns of locally
preferred motion directions, reflecting global flow fields of particular rotatory or translatory self-motions.
A mathematical model of self-motion estimation via matched filters of this type has been suggested
by [12,13].

In addition to the interest in the exploitation of OF in animals there is a lot of work in robotics
devoted to the problems of structure from motion, obstacle avoidance, and self-motion control (for
a review see [14,15]). To extract self-motion from flow, Baker et al. [16] and Pless [17] showed
that an omni-directional view helps a lot to eliminate ambiguities in the evaluation of self-rotation
and -translation in the case both are present. A number of catadioptric systems have been developed
in order to realize omni-directional vision with a single camera [18–22]. Recently, an attempt has
been made to engineer an artificial compound eye with a half-spherical field of view (FOV) [23].
The approach most similar to ours is the so called argus eye [16,24]. In this system several cameras
with non-overlapping visual fields looking into various—preferably opposite—directions cooperate to
reveal self-motion parameters and the structure of the environment. Besides the difficulty of calibrating
such a system, one has to deal with the integration of the output of several cameras [17]. In this
paper, we present a much simpler and faster setup, monitoring OF by commercially available dedicated
flow detectors.

With the development of optical mouse chips (OMC), cheap (2.5 Euro), light (0.5 g), and fast
(response time <1 ms) mass- produced flow detectors have become available. These sensors can be
adapted for OF detection by attaching a suitable lens in front of the light-sensitive area in order to image
the optical environment to the sensor. In addition, multiple such sensors can be read out simultaneously
via a microprocessor. This design was first used and tested in an omni-directional treadmill (air supported
ball in socket) developed for investigating the behavior of rats in a virtual environment [25]. Two OMCs
(HDNS2000 Agilent) were used as motion detectors and equipped with small, high quality plastic lenses
(CAY046 Philips). The microprocessor extracted the displacement of the ball surface images fast and
simultaneously on the two OMCs. With this set-up, rotations of the ball about all three axes could
be registered. OMCs can also be used as OF detectors in general, contrasted environments by simply
adjusting the lens distance according to the distance of the imaged scene. Using a focal length of 4.6 mm,
the image quality is sufficiently good for distances from 10 cm to infinity.
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Odometry and its precision limits with several arrangements of mouse chips on ground moving robots
have been investigated by [26–30]. In all of these studies the sensors look down to the ground vertically.
In some of them [28–30] lenses different from those applied in computer mouse applications are attached
to the sensors in order to allow for larger distances to the ground, thus reducing errors caused by distance
variations. In the present paper, we use the combined recordings of eight sensors looking down at −45◦

of elevation with a distance of about 15 cm to the ground. This is a compromise between the best
orientation of sensors in order to register rotation of the robot around the vertical axis (best orientation
of sensors 0◦ of elevation) and translation on the ground (best sensor orientation−90◦ of elevation). The
integration of the sensors’ output is motivated by the matched filter approach found in the flies’ visual
system and explained in Section 3.

Here, we present a hardware realization of an odometer driven solely by simultaneous flow
measurements by mouse sensor chips along eight lines of sight in space.

A preliminary report of an OMC-based odometer was presented at the conference ’Flying Insects
and Robots’ held in Switzerland in 2007 [31]. Similar ideas have been applied to obstacle avoidance in
unmanned arial vehicles [15,32].

2. Hardware Implementations

The prototype of a sensor head with eight sensors has been mounted on a small three wheel carriage
(Figure 1). It is designed for ground moving robots for which the distance to ground does not change
too much. The viewing directions of the eight sensors are oriented at angular distances of 45◦ to each
other in azimuth and look down to the ground at −45◦ below the horizon (Figure 2). In this paper, we
consider vehicles with two degrees of freedom (DOF) of self-motion, i.e., yaw and forwards-backwards
translation, but extensions to general movements in the plane are straight-forward.

Figure 1. (a) Three wheel carriage with sensor head on flat ground (textured with the image
of pebbles); (b) The sensor head in detail above the hind wheels. The sensor head contains
eight optical mouse sensors (ADNS2620, Avago) looking at 45◦ relative to each other in
azimuth and about−45◦ relative to the horizon down to the ground. Each sensor is equipped
with a distance-adjustable plastic collimator lens (CAY046 Philips) of f = 4.6 mm focal
length which images the floor onto the light sensitive area of the sensor. On top of the head
an elongated triangle of reflex foil is attached as a target for tracking by a video camera
looking down from the ceiling.
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Figure 2. Sensor configuration and expected flow pattern. Each sensor marked with the
sensor number has a viewing direction shown as a red dashed line and an image plane
indicated by a gray transparent trapezoid. The directions of X- and Y -components in each
image plane are indicated by blue arrows. The X direction is in all sensors nearly parallel to
the horizontal plane. The red arrows show the optic flow induced in the sensors’ image planes
by the ground velocity indicated by green arrows. The upper figures in (a) and (b) show a
view onto the eight-sensors head from above and the side, the lower part shows the eight
light sensitive areas and the corresponding optic flow. Figure 2a illustrates pure translation
in forward direction (i.e., aligned with sensor 1), Figure 2b pure clockwise rotation (yaw).

(a) (b)

On top of the sensor head, an elongated triangle of reflex foil (3M Scotchlite type 7610) is attached
which allows to track the position and the angular orientation of the head by a video camera looking
down from the ceiling. The reflex marker moves in a horizontal plane 7 cm above the ground.

Each of the eight mouse sensors ADNS2620 (Agilent) samples the light intensity pattern on its
1x1 mm array of 18 × 18 light sensitive diodes (LSD) with a rate of about 1500 frames/s. The focal
length of the lens (f = 4.6 mm) and the size of the sensor diode array determine the FOV of the sensors to
12.4◦ × 12.4◦. A fast on-chip digital signal processor (DSP) calculates the displacement between
two consecutive light intensity patterns using a correlation technique. In order to avoid too large
displacements between subsequent images the maximum allowed speed of the pattern on the chip’s
light sensitive surface is limited to vmax = 300 mm/s. This limits the range of the detectable rotation
speed (about an axis perpendicular to the optical axis) to a maximum of

vmax

f
× 180◦

π
= 3737◦/s (1)

With a viewing distance D[cm] to ground the range of detectable translational speeds is limited to a
maximum of
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(300/f)D = 65.22s−1 × D (2)

(i.e., about 980 [cm/s] for D = 15 cm). The minimal detectable displacement is specified to
1/400 inches = 1/16 mm. With the focal length of 4.6 mm this leads to an angular resolution of
0.775◦ and to a minimum detectable displacement of 2.04 mm at a distance of 15 cm.

The proper adjustment of the lens distance can be controlled by running the OMCs in the very slow
so called ’Pixel Data’ mode. In this mode the actual image of a still scene on the pixel surface of the
chip can be displayed in order to control image quality.

A microprocessor (µP) (CY7C68013A-56P, Cypress) reads information from all sensors at a rate of
about 140 Hz in parallel and synchronously (Figure 3). The information consists of three bytes: dY ,
dX , SQ, in that order. dY , dX are the pattern displacements since the last reading measured along
each sensor’s (Y,X) axes, SQ is a ’quality’ byte. If SQ falls below a selectable threshold, dY and dX
may be unreliable and are discarded. Reading the information from all sensors (strictly synchronously
in parallel) and transferring them via an USB1.1 bulk transfer to the PC takes less than 2 ms.

Figure 3. Circuit diagram of the odometer. A microprocessor (µP) (CY7C68013A-56P,
Cypress) reads information synchronously from all sensors in parallel via two serial lines to
each sensor : a clock- and a data line. The clock line is common to all sensors and guarantees
synchronous data transfer to and from all sensors. The data line of each sensor is connected
to an individual I/O pin on the µP. The µP is connected to a PC via USB.

Angular orientation and position in space of the sensor head are tracked by a video analogue compact
CCD camera (Sony CCD XC-ES50) equipped with a C-mount high quality lens (Kern, Macro-Switar,
f = 10 mm, FOV 26◦ × 34◦) mounted 2.7 m above the head’s reflex marker plane. The observed area
on the ground was 165 × 125 cm2. The lens is surrounded as tightly as possible by four halogen bulbs,
the brightness of which can be adjusted. A high fraction of the light of these bulbs is reflected back into
the lens by the reflex foil, while the amount of light reflected by the rest of the environment is much
smaller. Thus the triangle stands out with high contrast against the rest of the vehicle and the ground and
can be detected by thresholding. The camera is connected to the PC via a standard frame grabber board
(640 × 480 pixel, 50 frames/s), see (Figure 4).
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Figure 4. The sensor head is tracked by a compact analog video camera (Sony CCD
XC-ES50) mounted at the ceiling of the lab 2.7 m above the reflex foil triangle plane on top
of the sensor head. The attached high quality lens (Kern Macro-Switar, f = 10 mm) covers a
FOV of 165 × 125 cm2 on the ground. The lens is surrounded tightly by four halogen bulbs
the brightness of which can be adjusted. Thus the image of the reflex foil triangle can be
discriminated by its brightness and high contrast against the rest of the environment.

3. Calibration

3.1. Calibration of Head Translation and Rotation

The path of the carriage is a planar curve which can be approximated at any given moment by a
horizontal circle. This means that at any moment the motion of the carriage can uniquely be decomposed
into a translational component along its long axis and a yaw component about the center of the head (see
Figure 2). The response to pure forwards translation and yaw is illustrated by Figure 2a,b, respectively.
Sensor 1 looks in the forwards direction.

In order to use the head for odometry, we calibrate the sensitivity of each individual sensor to
(a) forwards translation and (b) yaw rotation. For this purpose the orientation of the front wheel is
fixed (a) in parallel or (b) orthogonal to the long axis of the carriage. The carriage is pushed by hand
and moves either in case (a) along a straight line without rotation or rotates in case (b) around the center
of the sensor head without translation. The position and orientation of the carriage are monitored by
the tracking camera and the output of all sensors is registered. The ground plane was textured with
an image of pebbles (see Figure 1). Sensor responses are linear in the range of at least 1.25◦/s to
1500◦/s [31]. Frame-by-frame flow measurements can therefore be integrated over extended motion
sequences to obtain more accurate results. The upper two sub figures in Figure 5 show the X response
of each sensor, the two lower ones the Y response to the accumulated flow induced by a pure forwards
translation (sub figure column a) and by a pure yaw to the right (sub figure column b), respectively. The
sensor number is indicated at the right margin of each sub figure.
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Figure 5. The accumulated X- (upper) and Y-response (lower row of sub figures) of the
eight sensors to pure translation (column a) and pure yaw (column b) versus the traveled
distance (a) and the orientation of the carriage (b) monitored by the tracking camera. Every
fifth sensor response is marked by a black dot, red lines are a linear fit to them. The slopes of
the linear fits in column (a) represent the (X, Y ) ‘unit’ responses

(
aix, a

i
y

)> of the sensors to
1 cm of translation and those in column (b) to 1◦ of rotation

(
bix, b

i
y

)>. For further discussion
of the responses see text.

(a) (b)

‘Unit’ responses to translations of 1 cm and rotations of 1◦ are given by the slope of the accumulated
sensor readings which were fitted by linear regression. The slope of this regression in column (a) is taken
as the (X, Y ) unit response to 1 cm of translation, ai =

(
aix, a

i
y

)> where i denotes the sensor number
and > marks transposition. Similarly, the slope in column (b) is taken as the (X, Y ) unit response to 1◦

of yaw, bi =
(
bix, b

i
y

)>.
The responses shown in Figure 5, column a and b, reflect the sensor arrangement, depicted in

Figure 2a,b, respectively. The pattern of responses is characteristic for each DOF: in sensors with
opposite azimuth (e.g., sensor pairs 1–5, 2–6, etc.) translation induces flow in opposite (X, Y )-direction
whereas yaw induces in all sensors approximately the same flow, mainly in X-direction. These response
patterns depicted in the lower panel of Figure 2a,b can be used as templates or matched filters which
allow the extraction of each self-motion component in the case of superimposed translation and yaw (see
Equations (6) and (7) in Section 4). The response patterns to translation and rotation of sensor pairs
looking in opposite directions (i.e., 1–5, 2–6, etc.) are approximately orthogonal to each other.
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Note that our head is also capable of measuring sideways translation as another DOF. This DOF can
be extracted by a third matched filter illustrated in Figure 6 orthogonal to that of Figure 2a. We do not
pursue this idea further but show mathematics and experiments for the two DOF case.

Figure 6. Sensors’ light sensitive area and expected flow pattern for sideways translation
analogous to lower Figure 2a,b.

The response c =
(
c1x, c

1
y, . . . , c

n
x, c

n
y

)> of n sensors to a combined motion of τ cm of translation and
ρ degrees of yaw can be written as c = Um (3)

where m = (τ, ρ)> and U = (a,b), the unit response matrix, consists of two columns, the
first a =

(
a1x, a

1
y, . . . , a

n
x, a

n
y

)> representing the unit response of the n sensors to translation and
b =

(
b1x, b

1
y, . . . , b

n
x, b

n
y

)> that to yaw, respectively.

3.2. Calibration of the Tracking Camera

For the calibration of the tracking camera (Figure 4) a horizontal disk of reflex foil of 3.3 cm diameter
was successively positioned at the nodes of a rectangular grid of six by five lines laid out on the ground
with a spacing of 25 cm in X and Y direction. The height of the reflex foil disk above ground was
identical to that of the carriage’s reflex triangle. The coordinates and brightness of the video pixels
imaging the reflex disk were extracted using OpenCV. From the pixels passing an intensity threshold,
the intensity-weighted center of gravity (CG) was calculated and assigned to the corresponding ground
coordinates. The (X, Y ) coordinates of the ground plane were aligned with the (x, y) coordinates of
the camera. The optical axis of the camera was adjusted orthogonally to the ground plane so that no
trapezoidal distortion of the image was visible. The quality of the lens resulted in no barrel-shaped image
deformation visible within the error limits of the determination of the CG. Thus the pixel coordinates
(x, y) of the tracking camera were assigned to the (X, Y ) coordinates of the ground system using a
simple camera model.

x− x0 = sxX; y − y0 = syY (4)

where (x0, y0) = (148.1962 ± 0.2776 , 68.2872 ± 0.3296) denote the origin of the ground coordinate
system in camera coordinates and (sx, sy) = (3.5910 ± 0.0037, 3.9145 ± 0.0053) are (x, y) scaling
factors including focal length, object distance, and pixel size. x0, sx and y0, sy were evaluated by a linear
fit over all x- versus X-coordinates and y- versus Y -coordinates, respectively. The standard deviation in
reconstructing the ground coordinates (X, Y ) from image coordinates (x, y) were (0.86 cm, 1.03 cm).
Obviously the pixels were not quadratic but had a slightly larger extension in x-direction.
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4. Odometry

As long as the distance of the sensors to the ground is constant, we can use the stream of sensor
responses ci and Equation (3) to extract the displacement τ and the rotation ρ between two sensor
responses. In order to find the best solution for m we have to solve Equation (3) as(

U>U
)−1

U>c = m (5)

With U>U = (a2, ab; ab,b2) and (U>U)−1 = (b2,−ab;−ab, a2)/det(U>U), the solution of
Equation (5) reads

τ =
(
b2(ac)− (ab)(bc)

)
/D (6)

ρ =
(
a2(bc)− (ab)(ac)

)
/D (7)

with
D = det(U>U) = a2b2 − (ab)2 (8)

The new orientation αt+1 and the new coordinates Xt+1, Yt+1 are then iterated from the previous
αt, Xt, Yt by a trapezoidal rule:

αt+1 = αt + 0.5 (ρt + ρt+1)

Xt+1 = Xt + 0.5 (τt cosαt + τt+1 cosαt+1)

Yt+1 = Yt + 0.5 (τt sinαt + τt+1 sinαt+1) (9)

The odometer can only be expected to monitor the increments τ of position and ρ of orientation over
time, so (X0, Y0) and α0 at time t = 0 must be known from elsewhere.

5. Tests

In order to get a first estimate of the precision of odometer results from our sensor head it was moved
manually 20 times along a straight line for distances τ of 20, 40, 60, and 80 cm and rotated 20 times
around the vertical axis by ρ = 90◦, 180◦, 270◦, and 360◦. We take these values as ground truth, ignoring
possible errors of the manually performed movements. Averages and standard deviations of estimates τ
and ρ for these trials are given in Table 1.

Table 1. Test results for head translation and rotation by hand.

Translation Rotation
τ [cm] avg τ [cm] std(τ ) [cm] ρ [deg] avg ρ [deg] std(ρ) [deg]

20 19.8495 0.1072 90 90.0205 0.4356
40 39.875 0.1064 180 180.3925 0.6167
60 59.8995 0.1425 270 271.1805 0.5264
80 79.9285 0.1710 360 360.664 0.8132

For a more rigorous test of the performance of the sensor head, we moved it on a flat ground textured
with the pebbles image (see Figure 1) and recorded the position (xc, yc) and the orientation α of the
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carriage i.e., of the reflective triangle on top of the sensor head by the video camera at the ceiling (see
Section 2). Pixel-coordinates (xi, yi)and -brightnesses (hi) were extracted using OpenCV. Coordinates
(xc, yc) of the carriage are taken as the center of gravity (CG):

xc =
∑

hi xi/
∑

hi; yc =
∑

hi yi/
∑

hi (10)

where the sum is taken only over points (xi, yi) the image brightness hi of which is above a safe threshold
to discriminate the reflective triangle from any background.

From the image coordinates (xc, yc), world coordinates (Xc, Yc) were calculated according to
Equation (4). The best estimate of the orientation α of a body consisting of points Pi with coordinates
(Xi, Yi) relative to the center of gravity (CG) and weight hi can be found by evaluating the orientation
of the intensity weighted principal axis,

α = 0.5 arctan
[
2
∑

hiXiYi/
∑

hi
(
X2

i − Y 2
i

)]
(11)

Several tracks of the odometer carriage were recorded, we present two of them. We fixed the angle of
the front wheel relative to the long axis of the carriage and pushed the latter by hand so that it ran along a
circle the (X, Y ) coordinates of which are shown in Figure 7. The track taken by the camera is depicted
by the black line and every 8th sample of coordinates is marked by a black circle. A red circle marks
every 2nd X, Y -sample evaluated from the odometer recordings. Every 8th sample of coordinate pairs is
connected by a blue line to illustrate the error between tracking camera and odometer recordings. Every
200th sample is marked by the sample number and a bigger circle (black for the camera and red for the
odometer). At time 0, tracked and estimated positions and angles are assumed to be equal.

Figure 7. (X, Y ) coordinates of the circular track of the odometer pushed by hand. The
black curve shows the trace by the tracking camera. Every 2nd odometer sample is marked
by a red ◦. Every 8th pair of samples is connected by a blue line to illustrate the error
between corresponding camera- and odometer coordinates. Every 200th sample is marked
by a bigger ◦ and its sample number, black for the camera and red for the odometer.
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Figure 8 shows for the same experiment versus the number of samples in (a) the orientation of the
carriage extracted from the camera images (Equation (11)) (black) and the accumulated ρ evaluated from
the odometer recordings (red) (Equation (7)), in (c) ρ (red) and the changes of the carriage orientation
between two samples seen by the camera (black)) in the sample interval indicated by the rectangle in (a).
Similarly in (b) the travelled distance taken from the camera X, Y coordinates (Equation (10)) (black)
and the accumulated τ gained by odometry (Equation (6)) (red). In (d) the differential camera path length
(black) and τ (red) between two samples are depicted in the sample interval indicated by the rectangle
in sub figure (b). Horizontal pieces of the traces indicate standstill of the carriage between hand pushes.
Note the different scales.

Figure 8. (a) The corresponding entities, the accumulated ρ (red) (Equation (7)) and
the orientation (black) of the camera image (Equation (11)). (b) The accumulated τ

(Equation (6)) (red) and the travelled distance of the carriage taken by the camera (black)
on the circle path of Figure 7. (c) ρ (red) and the change of the orientation of the carriage
(black) between two samples, (d) τ and travelled distance between two samples of camera
images. (c) and (d) are taken in the time intervals indicated by the rectangles in sub figures
(a) and (b), respectively.

(a) (b)

(c) (d)

In a second test we dragged the carriage along a curved path of about 10 m length. The X, Y
coordinates are depicted in Figure 9. As in Figure 7 the black trace represents the track of the camera
(Equation (10)) while the red circles represent the carriage’s positions that are calculated from the
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integrated sensor responses (τ, ρ) of the odometer (Equations (6) and (7)). Again, blue connection
lines between every 8th pair of coordinates indicate the deviation between the position estimates of the
tracking camera and the odometer. Similarly to sub Figure 8c,d we show in Figure 10a,b the angular
orientation and the traveled distance, respectively, versus the sample number.

Figure 9. (X, Y ) coordinates of the 10m curved track of the odometer dragged by hand. The
data are presented in a similar way as in Figure 7.

Figure 10. (a) The accumulated ρ obtained from the odometer (red) (Equation (7))
and the angular orientation of the carriage extracted from the camera recordings (black)
(Equation (11)) during the track shown in Figure 9 are plotted versus the sample number.
(b) The accumulated τ (red) (Equation (6)) and the distance travelled on the curved track are
plotted versus the sample number.

(a) (b)
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Figure 11. (a) the carriage is pushed along a straight line with a blank sheet of white paper on
its left side. Eight numbered arrows indicate the azimuth of the eight mouse sensors; (b) The
SQ-responses of the sensors are plotted versus the sample number. Only sensors 2, 3, 4 look
to the blank zone, one after the other, while their SQ-response drops to low numbers; (c) The
estimated X, Y -position of the vehicle using the responses of different sensor combinations,
neglecting their SQ-responses (d) estimated X, Y -position of the vehicle using for each
frame only sensors with SQ-response larger than the threshold of 90 (e) the evaluated angle
of the vehicle’s path when the SQ-responses are neglected and (f) when for each frame only
sensors with SQ-response larger than 90 are used. In (c), (d), (e), (f) every 20th sample is
marked by a point and every 200th sample by a number. Note the scales.

(a) (b)

(c) (d)

(e) (f)
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In a third test we pushed the carriage along a straight path of about 60 cm passing an area of low
contrast on one side of the vehicle, see Figure 11a. A blank sheet of white paper was positioned to the
left side of the path so that only sensors 2, 3, 4 looked to the paper with some time delay between them.
The rest of the ground plane was covered with the usual contrasted pattern. The SQ-response reflects
the pattern contrast on the sensor’s image plane (see Figure 11b). The track of the carriage was evaluated
by odometry (see Section 4) taking into account various combinations of sensor pairs, indicated in the
number insets of Figure 11c–f. In Figure 11c,e the dX, dY -responses of the sensors were taken into
account irrespective of their SQ-response, whereas in Figure 11d,f their response was suppressed and
the corresponding rows of U (Equation (3)) were deleted as soon as the SQ-response dropped below
the threshold of 90. Comparing Figure 11c,e to Figure 11d,f the marked improvement of odometry by
taking the SQ-responses of the sensors into account is obvious. The results for various combinations of
sensor pairs show that in the case of two sensor pairs (1,3,5,7 and 2,4,6,8) odometry leads to large errors
if both sensor pairs (2,4,6,8) are affected by bad contrast instead of only one pair (1,3,5,7). In case of
sensor pair 3,7 suppressing the response of one of them is intolerable because rotation and translation
cannot be separated and odometry leads to uncontrollable results. Therefore results for pair 3,7 have
been omitted from Figure 11d,f. In general the more sensors are included, the safer the path-estimate.
From a technical point of view eight sensors are convenient because synchronous reading of data from
eight sensors by a microprocessor can be done by one-byte operations.

6. Discussion

In the case of superimposed self-rotation and -translation the ambiguity in the separation of
rotation and translation poses a serious problem if only the limited FOV of a normal camera is
available. The advantage of monitoring flow in an omni-directional FOV (like in insects) has been
demonstrated [16,33,34]. The evaluation of self-motion from flow extracted from catadioptric
systems [18–20] poses its own problems [33–35] and affords considerable computing power on the
panoramic images. OMCs directly provide us with fast flow estimates along their viewing direction
through their implemented dedicated DSP.

Since it is only necessary to properly combine a few widely distributed OF measurements for the
evaluation of self-motion, we wanted to find out what can be done with only eight sensors for a ground
moving vehicle. The ‘proper combination’ of OF results in various viewing directions simply means to
apply a ‘matched filter’ to these results in order to find best estimates for the self-motion components.
In our case the ‘unit’ responses mentioned in Chapter 3 which we tried to illustrate in Figures 2
and 5 represent such filters and their application to the sensor responses is shown in Equations (6) and (7)
for the self-translation- and -rotation-components, respectively, of the carriage. Because the odometer
registers only increments of path length and orientation between two samples, we expect increasing error
accumulation the longer the track.

In Table 1 early results for a short pure translation of 80 cm and a rotation on the spot of 360◦ are
presented. The error does not increase to more than about 0.2% in both cases.

Later the tracking camera was installed in order to record longer curved paths of the odometer head.
On the curved trail of about 10 m with superimposed translation and rotation (see Figure 9) the error
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in the heading angle α accumulates to about 8◦ (Figure 10a), that of the traveled distance to about
7 cm (Figure 10b). The maximum distance between the positions gained from the odometer and the
camera was 9 cm after about 820 cm of the track. From all our tests we conclude that under the favorite
conditions of a well textured and illuminated flat ground the error of orientation as well as of position
revealed by our odometer accumulates to no more than about 1% of angle or pathlength, respectively.

We would like to stress four more points :

(a) the response of mouse detectors is surprising linear for a wide range of flow velocities from slow
motion up to the largest speed in our experiments. We never reached the maximum allowed speed of
about 9 m/s (see Section 2) with hand controlled movements of the carriage within the 165 × 125 cm2

FOV of our camera at the ceiling. The calibration responses in Figure 5 have been recorded while
pushing the carriage by hand which means large variations in traveling speed. Still the accumulated
X, Y -responses of the sensors grew linearly with traveled distance and heading angle irrespective of
the traveling- or angular speed profile. Note the very small slope of the accumulated Y response of the
sensors in the case of yaw (lower panel of Figure 5). The small increase of the Y -response results from
small deviations from the sensors’ ideal orientation with respect to X-axes parallel to the ground plane.
These deviations result in a small flow component in Y -direction during yaw. Even for these small flow
components the accumulated Y -response deviates from a linear increase with yaw angle by a few counts
irrespective of the yaw velocity. This means that our mouse sensors respond reliably down to very slow
displacements of the pattern on their pixel array.

The linearity of the response of mouse chips with respect to flow velocity is superior to the Reichardt
detector and all its elaborated versions (e.g., [36]). The performance of the lens equipped mouse sensor
seems to be also superior to other hardware based flow detectors such as the DVS sensor ([37]) (which
has its merits in flow detection in an extended visual field) or the 2-pixel time of travel sensor ([38]), both
with respect to velocity range and linearity. In particular, for the performance data of our mouse detector
ADNS2620, we obtain much better results compared to those of the ADNS-9500 (Avago) shown in [38],
maybe due to our attached optics (enlarged aperture, CAY046 lens).

(b) We did not investigate the influence of the amount of illumination of the scenery on the sensor
recordings. But we saw no difference in sensor responses outdoor or indoor with an average room
illumination. We used a lens with a numerical aperture of 0.4 which produces a relatively bright image
compared to other applications using a lens with N = 0.2 (CAX100) [38,39]. If a lens is to be attached
to the sensor, it is necessary to widen the stop provided by the factory in the cover of the sensor. All the
lights from the lens should hit the light sensitive pixel area of the sensor. Mouse chips are intended to
work on surfaces with a wide variety of reflectance factors. The built in adaptation of the shutter time to
various illuminations of the pixel surface compensates for illumination changes.

(c) In order to detect flow induced by self-motion it is advantageous to look along directions which
deviate as much as possible from the direction of self-translation or the axis of self-rotation. Because
the translation induced flow is inversely proportional to the distance of seen contrast, ground moving
agents should look directly down to the ground. But then they would not see any yaw (except the yaw
axis is excentric to the sensor). A compromise which allows to see flow induced by yaw as well as by
translation is to look at 45◦ to the ground. Then the flow induced by yaw is reduced only by a factor of
1/
√

2 compared to a sensor with a horizontal optical axis. In the case of forwards translation the flow in
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a sensor looking down at 45◦ in forwards/backwards direction is reduced by a factor of 1/2 compared to
flow in a vertically downwards looking sensor. A sensor looking sidewards and downwards under 45◦

sees a flow reduced only by a factor of 1/
√

2 compared to a down looking sensor.
(d) Monitoring the SQ-response of the sensors allows one to exclude sensors that do not see good

contrast. The more sensors are used the less the danger to find not enough good flow measurements for
a safe self-motion estimate.

The advantages of motion detectors looking into a set of fixed selected directions over a camera
are obvious :

(1) The sensors are light, cheap, and can be attached to various locations on the vehicle.
(2) Motion detection by mouse chips is at least 20 times faster than by a camera (1500 (dX, dY )

samples/sec versus 60 frames/s). There is no need to wait for finishing a frame. In addition, flow
needs not be extracted by some algorithm but is determined by a fast dedicated on-chip hardware.

(3) Motion detection can be done in parallel along as many lines of sight as sensors are used
(simultaneous distributed flow extraction).

(4) Illumination problems are reduced because of the self adjusting exposure time of the chips to
changing luminance of the environment.

(5) The focal length f of the lens attached to the sensor determines the FOV and the sensitivity to
motion. A large f increases the sensitivity to motion (and decreases the FOV) but also increases the
weight of the optics because f/d should not exceed a level of say 5 (depending on the luminance
of the environment) in order to provide enough light on the sensor surface. The decreased depth
of field with increased f does not play a critical role because some blur can be tolerated as long as
the quality byte indicates a reliable intensity distribution on the sensor’s surface.

(6) The arrangement of lines of sight of the sensors can be adjusted to the intended purpose
(self-motion on the ground or in the air, obstacle avoidance, etc.). For self-motion estimates the
angular distribution of viewing directions to contrast in the environment should be as wide as
possible, preferably arranged in pairs of opposite viewing directions. For obstacle avoidance the
motion sensitivity should be as large as possible and directed to nearly forwards directions.

Disadvantages are:

(1) Objects cannot be discriminated.
(2) Calibration may be a problem.
(3) Enough sensors must see contrast along their line of sight. But sensors that do not see enough

contrast or respond irregularly may be excluded from motion estimate (because their quality byte
indicates an unreliable intensity distribution of the sensor image) in order to make the estimate
through the rest of the sensors reliable.

The advantages of OMCs on small unmanned aerial vehicles (SUAV) are also obvious. As already
mentioned in the introduction a set of seven OMCs has been used by the LIS team of the EPFL (see
the comprehensive PhD thesis of A. Beyeler [32] and [15] to construct a device called ’opti pilot’ which
controls the flight of a flying delta platform and allows to avoid large obstacles. Nevertheless the full
potential of OMCs is not yet exploited, e.g., all three DOFs for rotation could quickly and easily be
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extracted from a set of eight sensors looking in opposite directions along the horizon and applying
suitable matched filters to the OMC responses. A more difficult question is the extraction of true
self-translation and distance to obstacles. For this purpose inspiration can be drawn from the observation
of the side-to-side flight maneuvers of bees approaching a goal [40]. During these maneuvers the
honeybees stabilize their head position against any rotation and thus avoid flow induced by self-rotation
in their eyes. From the flow induced by self-translation they can judge absolute distances to contrast in
forwards direction as long as they know their lateral speed. A first approach in this direction is reported
by Adrien Briod ([39]).
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