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Abstract: Maintaining effective coverage and extending the network lifetime as  

much as possible has become one of the most critical issues in the coverage of WSNs. In 

this paper, we propose a multi-objective coverage optimization algorithm for WSNs, 

namely MOCADMA, which models the coverage control of WSNs as the multi-objective 

optimization problem. MOCADMA uses a memetic algorithm with a dynamic local search 

strategy to optimize the coverage of WSNs and achieve the objectives such as high 

network coverage, effective node utilization and more residual energy. In MOCADMA, 

the alternative solutions are represented as the chromosomes in matrix form, and the 

optimal solutions are selected through numerous iterations of the evolution process, 

including selection, crossover, mutation, local enhancement, and fitness evaluation. The 

experiment and evaluation results show MOCADMA can have good capabilities in 

maintaining the sensing coverage, achieve higher network coverage while improving the 
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energy efficiency and effectively prolonging the network lifetime, and have a significant 

improvement over some existing algorithms. 

Keywords: sensor networks; coverage algorithm; memetic algorithm; multi-objective 

optimization 

 

1. Introduction 

Wireless Sensor Networks (WSNs) are self-organized networks consisting of sensor nodes with the 

ability of sensing, processing and wireless communicating [1]. Coverage control is one of the most 

fundamental research issues in sensor networks, and studies how well a sensor network will monitor a 

field of interest with the proper node deployment [2,3]. Sensor nodes often have constrained resources 

and it is sometimes difficult to recharge their energy, and thus coverage sustainability in such sensor 

networks cannot be guaranteed. How to balance the network energy consumption in coverage control 

is an important issue, which can be modeled as a multi-objective optimization problem of prolonging 

the network lifetime and improving network coverage according to the characteristics of WSNs [4]. 

Multi-objective optimization problems involve two or more conflicting objectives and have not  

one optimal solution but many solutions which form the Pareto front representing a tradeoff of one 

objective against the other. In most applications, the goal of solving the multi-objective optimization 

problems is to compute an approximation of the Pareto front. Computational Intelligence (CI) and 

evolutionary algorithms provide adaptive, flexible and robust mechanisms that exhibit intelligent 

behavior to solve the multi-objective optimization problems of coverage control in complex and 

dynamic environments like WSNs [5]. Habib modeled the coverage problem with two sub-problems: 

floorplan and placement, and used the genetic algorithm (GA) to search the optimal coverage  

in WSNs [6]. Ozturk et al. applied artificial bee colony algorithm to the dynamic deployment of the 

sensor networks and obtained better deployments for WSNs than the particle swarm optimization 

algorithm [7,8]. The aforementioned articles emphasized to improve the coverage rate and did not 

specifically take into account network lifetime and energy balance in WSNs. Memetic algorithms  

are computational intelligence structures and a class of stochastic global search heuristics where 

evolutionary algorithms are combined with multiple and various local search heuristics in order to 

address such optimization problems as those in WSNs [9–11]. 

This paper presents a multi-objective coverage optimization algorithm based on memetic algorithm 

for WSNs, namely MOCOAMA, which considers the coverage degree, node utilization, node residual 

energy, and solves the 1-coverage multi-objective problem for WSNs [12–15], and finally gets the 

optimal deployment of network coverage. 

The rest of the paper is organized into five sections: Section 2 briefly introduces related work. 

Section 3 discusses the multi-objective optimization coverage problem of WSNs. Section 4 presents 

the key schemes for the proposed coverage algorithm for WSNs. Section 5 describes the multi-objective 

optimization coverage algorithm based on memetic algorithms. The simulation experiments and 

evaluation are given in Section 6. Finally, the conclusions are offered in Section 7. 
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2. Related Work 

Konstantinidis et al. proposed a memetic algorithm (MA)-based solution of energy-aware topology 

control (ToCMA) for WSNs using a combination of problem-specific light-weighted local searches 

and genetic algorithms [11], which can provide a better performance than the classical minimum 

spanning tree solutions. In ToCMA, the composing entities of a chromosome or genes are the power of 

sensor nodes; the fitness function of a solution is the sum of the power assigned to each gene, and 

repair and improvement methods are employed to refine solutions. 

Ferentinos et al. used a memetic algorithm to dynamically optimize the design of WSNs and 

considered different constraints such as application-specific requirements, communication constraints 

and energy consumption [14]. Their work showed that the hybridization of the original GA with the 

local search operations presented in memetic algorithms brought some improvement on the performance of 

the design process. 

Jiang et al. used memetic algorithms to implement energy-efficient coverage control in cluster-based 

WSNs (CoCMA) [15], which contains a memetic algorithm-based schedule for sensor nodes and a 

wake-up scheme. In CoCMA, the coverage solutions are represented by binary strings, and the status 

of a node is represented by an allele of a chromosome. CoCMA can prolong the network lifetime while 

maintaining coverage preservation of WSNs with no sensing error, and has a significantly improved 

performance compared with the LEACH [16], LEACH-Coverage-U [17], etc. 

Ting et al. proposed a memetic algorithm to solve the set k-cover problem of WSNs, which has  

the effectiveness and efficiency of extending the network lifetime [18]. In MA, a chromosome 

represents the sequence in which all sensor nodes are collected to form covers, and the fitness value  

of a chromosome is the sum of coverage contributions of all sensor nodes and can enhance the 

differentiation of promising chromosomes. 

Arivudainambi et al. proposed a knowledge added improved memetic algorithm (iMA) for target 

coverage in WSNs, which is concerned with exploiting all available knowledge and demonstrated the 

effectiveness in extending the lifetime of WSNs [19]. iMA encodes the candidate solution as the 

chromosome represented by a matrix in which row represents the sensor nodes, and column represents 

the targets. 

In this paper, our proposed MOCOAMA uses the coverage optimization framework of  

CoCMA [15], MA [18] and, iMA [19], but it deals with the coverage problem of WSNs with the 

sensing error, divides the target area with the virtual cells as the basis of chromosome representation, 

and randomly and alternately selects some local search algorithms to achieve the dynamic local search. 

3. Multi-Objective Coverage Optimization Problem 

In this paper, we assume that sensor nodes are randomly and uniformly distributed over the target 

area, with the same physical structure, communication capacity, sensing range, initial limited energy 

and computing capacity. The sink node or the base station (sink) is assumed to have unlimited energy 

with plenty of power supplies. The sink or every sensor node has a unique identifier, and can get its 

own location information and communicate with its neighbor nodes usually using normal power or 

with each other through power control. 
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A target field D  is a two-dimensional plane divided into M N×  virtual cells. The points of interest 

are distributed in D  and there exists at most one point of interest in one virtual cell. A set of sensor 
nodes T are deployed over D  where 1 2{ , ,..., }nT t t t= , ( , y , r )i i i it x= , n  is the number of sensor nodes, 

[1, ]i n∈ , ( , y )i ix  is the coordinate of the sensor node it , and ri  is the maximum ideal sensing radius of it . 

The coverage field of it  is a circle area with ( , y )i ix  as the center and ri  as the radius. The Euclidean 

distance between it  and the point of interest c  whose coordinate is ( , y)x  in D  is: 

2 2( , ) ( ) ( )i i id t c x x y y= − + −  (1) 

If the set of virtual cells sensed by the sensor node it  is is , the coverage area of all sensor nodes is: 

1
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n
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i
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=

=   (2) 

where iγ  is the decision variable to be determined by the coverage algorithm, 1iγ =  if it  is in the state 

of activation, and 0iγ =  if it  is in the state of inactivation. 

The probability of sensing the point of interest c  by the sensor node it  in D is: 
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where er  is the sensing error value of the sensor nodes, ri  has the same value for all sensor networks 

assumed in this paper and λ  is the sensing attenuation coefficient. 

As long as the point of interest c  is effectively sensed by a sensor node, it can be said that c  is 
covered by the network. If a set of points of interest (i.e., 1 2, ,..., kc c c , k M N≤ × ) at the same time is 

sensed by it  , we get: 

1

| | (1 (1 ( , )))
k

i i j
j

s k p t c
=

= − −∏  (4) 

We define sensing coverage degree or coverage degree as the percentage of the field area covered 

by sensor nodes in the monitored field, which reflects the actual network sensing ability of monitoring 

a given field of interest or the points of interest. According to Equation (2), the coverage degree of 

sensor networks deployed in D  is: 
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According to Equation (4), we can get: 
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If k M N= × , we can get: 
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We define the objective optimization model of the network coverage as: 

1

min

max (T)

n

i
i

γ

ϖ
=






  (8) 

In WSNs, due to the limited energy of sensor nodes, reducing the energy consumption of some 

nodes and balancing the energy consumption of the entire network can effectively save the limited 

energy of the network and extend the network lifetime. Under the premise of guaranteeing some 

certain coverage degree, we may reduce the number of sensor nodes in working and deactivate the 

redundant nodes to reduce the energy consumption as much as possible to increase the network lifetime. 

We define node utilization as the ratio of the number of cells having active sensor nodes to the total 

cell number in the target area given by: 

|| ||
( )

T
U T

M N
=

×
 (9) 

where || T ||  is the number of cells having active sensor nodes and sensor nodes are deployed in the 

target field D  which is divided into M N×  virtual cells. 

To extend the lifetime of sensor networks, we also consider the residual energy of WSNs in the 
target field D . If iE is the residual energy of the sensor node it , the energy distribution of the network 

is expressed as: 
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where ( )E T  reflects the degree of energy difference in the network; if its value is smaller, the energy 

difference between sensor nodes may be smaller, and the residual energy of the sensor nodes may  

be higher. 

To increase the network lifetime, we may not only use as few nodes as possible to reduce energy 

consumption, but also make sure to select the nodes with balanced energy consumption and a higher 

residual energy. Therefore, we define the objective optimization model of the energy consumption as: 

min ( ) ( )

max (T)

U T E Tα β
ϖ

× + ×



 (11) 

where α  is the node utilization weighting coefficient, β  is the energy balance weighting coefficient 

and 1α β+ = . 

According to Equations (8) and (11), in MOCOAMA, we pay attention to Pareto optimal solutions 

of the multi-objective coverage optimization problem of WSNs formulated as: 
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4. Multi-Objective Coverage Optimization Designs 

A memetic algorithm uses the notion of meme(s) as units of information encoded in computational 

representations [20], which is a combination of global search and local search, and the objects of 

genetic manipulation are not any individuals in the population space, but some locally-optimal 

representatives elected by local search and from the local area. Using the inherent parallelism of 

memetic algorithm, we can greatly accelerate the rate of convergence of the multi-objective coverage 

optimization algorithm for WSNs. 

4.1. Encoding Rule 

Encoding is a mapping from the problem space to the solution space, but memetic algorithm cannot 

directly process the solution data of the solution space, so before searching, the variables of the 

solution space must be mapped into the data structures of evolutionary space, namely chromosomes. In 

MOCOAMA, when the sink divides the target area into M N× cells, each chromosome represents a 

deployment solution of WSNs with the form of an M N×  matrix given in Equation (13): 

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

x x x
x x x

x x x

N

N

M M M N

 
 
 ℵ =  
 
 
 





   


 (13) 

In each chromosome ℵ , allele ,i jX  denotes one of the n  sensor nodes covering the virtual cell of 

(i, j)  where , [0, ]i jX n∈ ; if , 0i jX = , the virtual cell of (i, j)  is not covered by any sensor node. The sensor 

nodes in one cell have one of three states: “sleeping” state, “detecting” state and “working” state; the 

“working” state is the state of activation, and other two states are the states of inactivation. Sensor 

nodes covering one cell update their remaining energy in real time, and the sink chooses one sensor 

node as the working node which has shorter distance from the center of the virtual cell or has more 

residual energy and has a priority right to being the working node. After collecting the information on 

locations and residual energy of all nodes covering each cell, the sink computes the probability of 

being a working node for each sensor node. The node with greater probability will be elected as the 

working node covering one cell, or a node will be randomly selected as the working node from those 

nodes with the same probability, and other nodes will turn into being the sleeping state from the 

detecting state. In order to balance the energy consumption of each node, re-election of the working 

node covering one cell will be requested under the control of the sink when the remaining energy of 

the working node is less than the average energy of sensor nodes covering one cell. 

In MOCOAMA, only one of the sensor nodes is elected in its virtual cell; one virtual cell is covered 

at least one sensor node at the different time unless it cannot be covered by any sensor node. 
Therefore, from each chromosome, given the WSNs of 1 2{ , ,..., }nT t t t= , we can get some sets of sensor 

nodes in working state and one set of sensor nodes can be described as: 
,

,
1, 1 1

{ }
i M j N n

i j i i
i j i

X tγ
= =

= = =

Ψ = =   (14) 

where 1iγ =  if the sensor node i  is in working state and 0iγ = if otherwise. 
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According to Equations (13) and (14), we can get one of the decision solutions of deploying WSNs 

given by: 

1

n

i
i

γ
=

Γ =  (15) 

4.2. Fitness Function 

In MOCOAMA, the fitness of each chromosome may be evaluated according to the values of the 

multiple optimization sub-goals. We apply Pareto ranking [21] as the fitness value evaluation scheme 

in searching for a set of Pareto-optimal solutions of multi-objective coverage optimization for WSNs. 

The allocation order of each non-dominated individual in current population is 1; the allocation order 

of any other individual is the number of dominant individuals plus 1; the formula is as follows: 

( ) |{ | , , } |i j j j i iR P Pℵ = ℵ ℵ ∈ ℵ ℵ ∀ℵ ∈  (16) 

where iℵ  is any individual of the population P ,   means the dominance relationship between two 

individuals, ( )iR ℵ  means the number of individuals which dominate iℵ  in population P. The allocation 

order of iℵ  is ( ) 1iR ℵ + . If the individual iℵ  is closer to the optimal solution, the order number  

of iℵ  is smaller. When iℵ  is a non-dominated solution, the order number of iℵ  is 1. According to  

Equations (12) and (16), the fitness function in MOCOAMA is: 

1

( ( ) 1)

1 2( ) ( ( ( ) ( )) (T))

n

i i
i

R

if U T E T
γ

δ α β δ ϖ =

− ℵ + ×
ℵ = × + × −  (17) 

4.3. Local Search Strategy 

The local search strategy of memetic algorithms is a process of screening the excellent individuals 

in the local area. The combination of global search algorithms and local search algorithms often shows 

good convergence and strong global search capability in solving the multi-objective optimization 

problem, but there are no uniform standards and guides in the choice of local search strategies, as well 

as the position, mild and frequency, so we need to discover the local search strategy which is suitable 

for the unresolved problem. Synthesizing the advantages of a variety of local search algorithms can 

make the process of the local search converge faster and have higher solution quality by designing 

specific local search access policies. 

In order to achieve dynamic local search, we propose some self-adaption scheduling rules of the 

local algorithm. In every iteration of MOCOAMA, some algorithms from the pool of local search 

algorithms are randomly and alternately selected to make local search and get diverse solutions. Then 

the sink searches m  searched nearest points from the initial point of the local search and the situation 

of solution fitness improvement corresponding to the local search algorithms used in the m  points is 

evaluated. The one of the local search algorithms having the most obvious improvement on fitness is 

eventually used in the multi-objective optimization. The proposed rules learn from the search history 

information to regulate the local search strategy with adaptive, self-learning features. 

The pool of local search algorithms is a collection of many local search algorithms, including the 

tabu search algorithm [22], hill climbing search algorithm [23] and adaptive directional local search 

strategy [24]. Tabu search is an optimization algorithm for simulating human intelligence, which 
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mimics the human memory function, saves the searched optimal solution to the tabu table in the 

process of solving, and marks the solutions to avoid repeating the same search in order to gain a broad 

search range [22]. The hill-climbing algorithm is a heuristic search algorithm based on greedy search 

strategy, which selects a random solution as the current solution in the solution space and compares 

with the solutions in the neighborhood scope one by one until you find a local optimal solution [23]. 

The adaptive directional local search strategy dynamically adjusts the neighborhood radius and/or local 

search probability, depending on the relative local and global effectiveness of evolutionary operators 

and the local search operator [24]. 

5. Memetic Algorithm Based Multi-Objective Coverage Optimization 

In this paper, MOCADMA uses the dynamic local search strategy and a local algorithm scheduling 

mechanism to adapt to the selection of local search algorithms; and increases the optimal storage 

strategy to accelerate the convergence speed of the algorithm. The pseudo code of MOCADMA is 

described as follows: 

Pseudo code of MOCADMA 
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MOCADMA includes iterated evolutionary operations of memetic algorithm and dynamic local 

search strategy, which is described in detail as follows: 

(A). The Sink Collects the Information of Sensor Nodes 

After initial uniform deployment, every sensor node is in the “detecting” state and sends its location 

information (#location), maximum ideal sensing radius (#r), sensing error value (#re) and energy 

information (#residual_Energy) to the sink by flooding communication. 

(B). The Sink Divides the Network 

The sink divides the monitored target field into M N×  virtual cells (or units) according to the 

locations of the sensor nodes; each sensor node belongs to only one cell but can cover numerous cells; 

one cell may have many sensor nodes. 

(C). The Sink Generates the Initial Population, Calculates the Fitness Values and Saves the  

Optimal Solutions 

The sink calculates the probability of sensing points of interest by sensor nodes according to 

Equation (3) and the numbers of virtual cells sensed by sensor nodes according to Equation (4) using 

the information (#location, #r, #re) of every sensor node, repeatedly selects one node in every cell as 

the working node by roulette wheel selection that takes the number of the sensed virtual cells as the 
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weight of every node, and generates the deployment solutions which form the initial candidate 

population CP  of chromosomes. Then the sink gets the decision variables of sensor nodes from the 
chromosomes and calculates the fitness value of individual chromosome iℵ  in the initial population 

according to Equation (17) using the information (#residual_energy) of sensor nodes, selects the 

chromosomes with higher fitness value as the local Pareto-optimal solutions, and then saves these 

solutions in the current optimal population P . For the local optimal solution, if the population P  does 
not contain iℵ  and iℵ  is not dominated by the existed solutions in P , the sink adds iℵ  to P . At the 

same time, the Euclidean distance of the local best individual iℵ  to other individuals in the external 

population space is calculated, and the closer individual is substituted for iℵ . 

(D). Crossover 

The sink takes multi-point crossover through exchanging the statuses of nodes in different local 

optimal chromosomes represented as the matrices. Two individual chromosomes in the current optimal 

population P  are randomly and continuously selected and exchange one random row with the given 

crossover probability; if this recombination generates two new individuals, they will be added into the 

offspring population OP . 

(E). Mutation 

To maintain the diversity of solutions, the sink generates a variety of solutions through randomly 

changing the status of the nodes in the virtual cells. The mutation operator is applied to all individual 

chromosomes in OP , and every allele in one chromosome is modified with the given mutation 

probability; if this recombination generates a new individual, it will be added into OP . 

(F). Dynamic Local Search 

Some algorithm from the pool of local search algorithms, including the tabu search algorithm [22], 

hill climbing search algorithm [23] and adaptive directional local search strategy [24] is randomly and 
alternately selected to make local search in P OP , and every local search algorithm generates  

its local population; then the sink compares the average fitness values of the same number of sample 

individuals around the initial point of the local search in those local populations, gets the local search 

algorithm that has the highest average fitness value, and selects its local population as the current 

candidate population CP . 

(G). The Sink Calculates the Fitness Values and Saves the Optimal Solutions 

The sink calculates the fitness value of individual chromosome iℵ  in the current candidate 

population CP , selects the local Pareto-optimal solutions, and then saves these solutions in P . 

(H). The Sink Determines the Current Optimal Deployment Solution 

When the number of iterations has reached the predetermined maximum threshold, the sink finishes 

determining the current optimal deployment solution having the highest fitness value; otherwise, 

MOCADMA continues to run from (D). 
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(I).The Sink Broadcasts the Deployment Solution 

The sink broadcasts the optimal network deployment solution to each sensor node, and informs each 

node in its cell responsible as the working node or the non-working node. The working nodes are in the 

“working” state covering the target area with the optimal deployment solution, and the non-working nodes 

are alternate in the “sleeping” or “detecting” state in a period of time. The sink monitors the network 

and evaluates the energy consuming of every sensor node. When the next round threshold time that 

may be decided by the routing protocol has arrived, or the remaining energy of one working node  

is less than the average energy in one cell, another new round comes and MOCADMA continues to 

run from (D). 

6. Experiments and Evaluation 

We use Matlab to perform the simulation experiments of MOCADMA in which the sink is placed at 

the center of the target area. In fact, the sink may be deployed at any place in the area, but the energy 

consumption will be distributed over the field evenly if the position of the sink approximates the 

geometric center of the target area [15]. An energy consumption model [15,16,25] is used in the 
simulation experiments. In the energy consumption mode, the transmission energy TXE  for transmitting 

K  bits of information between two sensor nodes is calculated by Equation (18); the consumed energy 

RXE  for receiving K  bits of information by one sensor node is calculated by Equation (19); when the 

clustered routing algorithm is applied to the WSNs, the energy consumption of one cluster head [16] is 

calculated by Equation (20): 
2dTX elec fsE K E Kε= × + × ×  (18) 

RX elecE K E= ×  (19) 

4( 1) dCH elec elec DA amp toSink

n n
E K E K E K E K

C C
ε= − × × + × + × × + × ×  (20) 

where n  is the number of sensor nodes, C  is the number of clusters, toSinkd is the distance between the 

cluster head and the sink, elecE is the energy consumed by the electronics in the transmitter or receiver, 

fsε is the energy consumption of the signal power amplifier per square meter, DAE is the energy 

consumption of processing one-unit bit data, and ampε is the energy consumption of transmitting  

one-unit bit data to the sink node. 

To evaluate the performances of MOCADMA, simulation results are compared to those of  

CoCMA [15], MA [18] and iMA [19] using the same parameters shown in Table 1, and all the results 

are from the experiments repeated 30 times. 

For MOCADMA, the M N×  virtual cells dividing the target area at the initial stage bridge the 

problem space of WSNs and the solution space of chromosomes. In the simulation experiments, we 
consider 400 sensor nodes with no sensing error ( r 0e = ) and 64 points of interest randomly and 

uniformly deployed in a 100 m × 100 m target area. Figure 1 shows the average sensing coverage 

degree (SCD) versus different dividing of virtual cells and indicates that the average SCD has the 

maximum value at 6N =  when 6M = , 8N =  when 8M = , 12N =  when 12M = , and 13N =  when 
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14M = . As Figure 2 shows, we can get the best dividing of virtual cells having maximum average SCD 

if M N≈ . 

Table 1. Parameters used in simulations 

Parameter Value 

Network size: n  400≤  
Number of points of interest 64  
Crossover probability: pcross 0.6 

Mutation probability: pmutation 0.1 
Maximum iterations 8000≤  

Communication radius 20 m~80 m 
Packet length: K  300 bit 

Number of clusters: C  40≤  
Node initial energy: 0E  10 J 

Maximum ideal sensing radius: ri  15 m 
Sensing error value: re  ≤1 m 

λ  1 

elecE  50 nJ/bit 

fsε  100 pJ/bit/m2 

DAE  5 nJ/bit 

ampε  0.0013 pJ/bit/m4 

1δ  1 

2δ  1 

Figure 1. Average SCD versus different dividing of virtual cells. 
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In the fitness function of MOCADMA, α  and β  ( 1β α= − ) are the node utilization weighting 

coefficient and the energy balance weighting coefficient, respectively. In the next simulation 

experiments, we assume that 8N = , 8M = , or 10N = , 10M = , or 13N = , 14M = . Figures 3 and 4 depict 
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the network lifetime (rounds) versus different values of α  when r 0e =  and r 1e = , respectively, and we 

can see that the network has a maximum lifetime (rounds) when 0.4α ≈  ( 0.6β ≈ ). 

Figure 2. The best dividing of virtual cells having maximum average SCD. 
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Figure 3. Network lifetime versus different values of α  with r 0e = . 
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In a hostile environment, the sensing error often exists in the applications of WSNs, so we consider 
it ( re ) in computing the probability of sensing the point of interest by one sensor node eventually used 

in the fitness function of MOCADMA. Figure 5 shows the average SCD versus different values of re  

and indicates that the average SCD decreases with the increase of re . It is clearly seen that the more 

uncertainty from the sensing error causes more difficulties for network coverage. 
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Figure 4. Network lifetime versus different values of α  with r 1e = . 
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Figure 5. Average SCD versus different values of re . 
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Figure 6 presents the average SCD versus network size with the fixed number of points of interest 
where 0.4α = , 0er = . As Figure 6 shows, when 64 points of interest randomly and uniformly are 

deployed in the 100 m × 100 m target area, and the number of deployed sensor nodes varies from 50 to 

400, the average SCD increases with the increase of network size ( n ). 



Sensors 2014, 14 20514 

 

 

Figure 6. Average SCD versus network size with the fixed number of points of interest. 

50 100 150 200 250 300 350 400
10

20

30

40

50

60

70

80

n

A
ve

ra
ge

 S
en

si
ng

 C
ov

er
ag

e 
D

eg
re

e 
(%

)

 M=8,N=8   
 M=10,N=10
 M=14,N=13

 

In the next simulations, we verify the feasibility of MOCADMA in WSNs and consider 400 sensor 

nodes and 64 points of interest randomly and uniformly deployed in the 100 m × 100 m target area. To 

evaluate the performance of the MOCADMA, an LEACH-based clustered routing protocol [26] is 

applied to the WSNs, and CoCMA [15], MA [18] and iMA [19] are re-implemented. In addition, the 

design of CoCMA, MA and iMA didn’t allow the sensing error, so we only consider the WSNs with 
no sensing error ( r 0e = ) in the simulation experiments. Figure 7 depicts the SCD versus network 

lifetime in rounds ( 0.4α =  in MOCADMA). We note that all the algorithms have good capabilities in 

maintaining the sensing coverage, but MOCADMA has maintained the sensing coverage degree at 

100% until the 3800th additional round which is a significant improvement over other algorithms. As 

Figure 7 shows, the network lifetime is prolonged to 7000 more rounds by the MOCADMA, which 

lasts about 800 rounds longer compared to CoCMA and iMA. 

Figure 7. SCD versus network lifetime in rounds. 
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Figure 8 displays the percentage of node death versus network lifetime in rounds ( 0.4α =  in 

MOCADMA). The MOCADMA, CoCMA, iMA, and MA lose their 50% of nodes at the 5516th, 

5142nd, 4889th, and 4103rd round, respectively. The simulation result demonstrates that the proposed 

MOCADMA significantly prolongs the lifetime of the network compared to other three methods. The 

proposed MOCADMA divides the WSNs at the early stage and helps form the clusters earlier than 

other three methods that save much energy, get the multi-objective Pareto-optimal solutions of 

network coverage by the fitness function presented in Equation (17) that has a quick-convergence 

characteristic, so the longer network lifetime can be obtained. The simulation results show that 

MOCADMA can achieve higher network coverage while improving the energy efficiency and 

effectively prolonging the network lifetime. 

Figure 8. Percentage of node death versus network lifetime in rounds. 
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Figure 9. Performances of the dynamic local search strategy in the different cases. 
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Finally, we analyze the dynamic local search strategy of MOCOAMA through the simulation 

experiments with the same conditions as the previous experiments. In the normal case, there are tabu 

search algorithm, hill climbing search algorithm and adaptive directional local search strategy in the 

pool of local search algorithms, but when only one of those algorithms is in the pool, MOCOAMA 

would have a different performance. Figure 9 shows the performances of the dynamic local search 

strategy in the different pools, and the normal case of MOCOAMA has a better SCD than other cases. 

The better performance in the normal case may be due to the fact that MOCOAMA can dynamically 

use the advantages of the multiple local search algorithms. 

7. Conclusions 

This paper presents a multi-objective coverage optimization algorithm for WSNs, called 

MOCOAMA, which uses a memetic algorithm and gets the Pareto optimal solutions of the coverage 

problem. MOCOAMA maps the alternative solutions into the chromosomes represented as the 

matrices and uses a fitness function over sensing coverage degree, network coverage, energy 

consumption and Pareto ranking. We also introduce the dynamic local search strategy and a local 

algorithm scheduling mechanism to improving some or all chromosomes in one population. The 

simulation results show that MOCOAMA can solve the 1-coverage multi-objective problems for 

WSNs, get optimal network coverage, effectively extending the network lifetime, and have a significant 

improvement over some related algorithms even when the sensing error exists in the network. 

In real applications, MOCOAMA depends on the sink which is assumed to have unlimited energy 

and finishes most of the problem-solving work according to the data sent from the sensor nodes, so 

how to reduce the dependence on the sink in designing memetic algorithm-based coverage algorithm 

shall be a challenging research task in the future. 
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