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Abstract: The major problem in an advanced driver assistance system (ADAS) is the 

proper use of sensor measurements and recognition of the surrounding environment. To 

this end, there are several types of sensors to consider, one of which is the laser scanner.  

In this paper, we propose a method to segment the measurement of the surrounding 

environment as obtained by a multi-layer laser scanner. In the segmentation, a full set of 

measurements is decomposed into several segments, each representing a single object. 

Sometimes a ghost is detected due to the ground or fog, and the ghost has to be eliminated 

to ensure the stability of the system. The proposed method is implemented on a real 

vehicle, and its performance is tested in a real-world environment. The experiments show 

that the proposed method demonstrates good performance in many real-life situations. 

Keywords: laser scanner; obstacle detection; segmentation; advanced driver assistance 

system (ADAS) 
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1. Introduction 

With the recent developments in vehicular technology, advanced driver assistance system (ADAS) 

concept has spread rapidly; however, many problems still remain to be addressed before the field of 

ADASs can be widely expanded. The biggest problem in ADAS is the use of sensor measurements and 

recognition of the surrounding environment. To this end, several types of sensors have been 

considered, including radar and a visual or infrared (IR) camera. Unfortunately, however, none of the 

sensors are sufficient for ADAS, and each has its own shortcomings.  

For example, radar returns relatively accurate distances to obstacles, but its bearing measurements 

are not accurate. Radar cannot recognize object classes, and also suffers from frequent false  

detections [1–4]. A visual camera is another ADAS tool. This type of camera returns a relatively 

accurate bearing to the obstacle, but its distance measurement is not reliable. The camera is capable of 

object recognition, but it also exhibits a high false detection rate. Thus, most of the current systems 

combine several sensors to compensate for the drawbacks of each sensor and to obtain reliable 

information about the nearby environments [5–9].  

Recently, the laser scanner has received attention within the ADAS community, and it is considered 

to be a strong candidate for the primary sensor in ADAS [1,10]. The strong points of the laser scanner 

are its ability to accurately determine both near and far distances as well as the bearing to an obstacle. 

In addition, the object detection of a laser scanner is reliable and robust, and it can recognize object 

classes to some extent through determination of the contour of the surrounding environment.  

Thus, unlike a camera or radar, a laser scanner can be used as the sole sensor for ADAS without 

being combined with other sensors. Further, if the laser scanner is combined with other sensors, it can 

compensate for all the drawbacks, thereby improving the recognition accuracy.  

Because the range and bearing measurements of the laser scanner are sufficiently accurate,  

in this paper, the laser scanner is considered as a single sensor for ADAS. In this paper, the laser 

scanners are divided into three types according to the number of layers; single-layer, multi-layer, and 

three-dimensional (3D) laser scanners. A single-layer laser scanner consists of only one layer, a multi-layer 

laser scanner is composed more than one but fewer than eight layers, and a 3D laser scanner is 

composed of eight or more layers. A single-layer laser scanner can obtain 2-dimensional (2D) 

information, a 3D laser scanner can get 3D information, and a multi-layer laser scanner can get limited 

3D information. In general, the information from a laser scanner is proportional to the number of 

layers, but a 3D layer scanner is expensive and difficult to install on the vehicle. However, single-layer 

and multi-layer laser scanners can be implemented inside a vehicle’s body [11]. Therefore, the  

3D layer scanner is not yet suitable for ADAS, and the multi-layer laser scanner is currently more 

suitable for ADAS. 

The remainder of this paper is organized as follows: in Section 2, an outline of the obstacle 

recognition system using a laser scanner is described. Related works are described in Section 3. The 

segmentation for a multi-layer laser scanner and the ghost elimination are explained in Section 4. The 

proposed system is installed on a vehicle and is applied to actual urban road navigation. The 

experimental results are presented in Section 5. The discussion about robustness is described in  

Section 6. Finally, some conclusions are drawn in Section 7. 
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2. System Outline 

The system aims to detect obstacles through the processes of segmentation, classification, and 

tracking. Figure 1 shows the outline of the system developed in this paper.  

Figure 1. System Outline. 

 

In the segmentation step, the proposed system receives a full scan (a set) of measurement points 

from a multi-layer laser scanner and decomposes the set into several segments, each of which 

corresponds to an object. In the segmentation step, the outliers are removed to avoid performance 

degradation. In the classification step, the segment features are computed and classified [12–14]. In the 

tracking step, the location and velocity of the segment are estimated over time. Segmentation is the 

essential step to execute classification or tracking [15–18]. In this paper, we focus on the methods for 

segmentation and outlier elimination. 

3. Related Works 

A laser scanner detects the closest obstacle for a bearing angle and returns the angle-wise distance 

to the obstacle. The output of the laser scanner can be modeled by the following set of pairs: 

{ }1 2 3, , , ,t t t t t
N

Z p p p p=   (1)

( )     1, ,,t t t
i i ip for i Nr θ= =   (2)

1     2, ,t t
i i for i Nθ θ −> =   (3)

where N  denotes the number of scanner measurement points as shown in Figure 2; the superscript t  

denotes the measurement time; and t
ir  and t

iθ  denote the distance and bearing to the obstacles, 

respectively. Equation (3) refers to a property of the laser scanner, and it implies that the scanner scans 

the environment from left to right. As stated in Section 2, segmentation is the first step for the object 

detection by the laser scanner. A scan of the measurements, as given in Equations (1) and (2), is 

decomposed into several groups called segments, as shown in Figure 2. 

In general, the segmentation methods can be classified into two kinds: the geometric shape method 

and the breakpoint detection (BD) method. The first method assumes the geometric shapes of the 

segments, such as a line or an edge, and decomposes the scanner measurements into the predetermined 

shapes [19,20]. The BD method decomposes the scanner measurements into segments based on the 

Euclidean distance between the consecutive points t
ip  and 1

t
ip −  [21] or using a Kalman filter [22]. 

Methods using BD based on the distances between consecutive points are the most popular and are 

widely used for laser segmentation [23–27].  
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Figure 2. Segmentation by a single-layer laser scanner. (a) example of laser scanner 

measurement; (b) result of segmentation. 

 

In the distance-based BD, if the distance between two consecutive points is greater than a threshold

thdD , two points are likely to belong to different objects and a breakpoint is selected between the two 

points as shown in Figure 2a.  
In Figure 2, the laser scanner returns 12 data points ( 1

tp - 12
tp ) and the segment nS  originates from 

the n th object ( 1,2,3n = ). The performance of the BD segmentation depends on the choice of a 

threshold thdD , and several methods have been developed for the selection of thdD . In [23], the 

threshold thdD  is determined by: 

{ }0 1 1
min ,t t

thd i i
D C C r r−= +  (4)

where 1 12(1 cos( )t t
i iC θ θ −= − −  and 0C  denotes the sensor noise. In [24], Lee et al., employed 

Equation (5) to select the break points in [17]. 

1

1

t t
i i

thd t t
i i

r r
D

r r
−

−

−=
+

 (5)

Borges et al., recently proposed the adaptive breakpoint detector (ABD) in [25]. In the ABD, the 
threshold thdD  is determined by: 

( )
( )1

sin
3

sin
t

thd i rD r θ σ
λ θ−

Δ= ⋅ +
− Δ

 (6)
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which adaptively depends on 1
t

ir −  and θΔ  as shown in Figure 3. In Equation (6), 1
t t
i iθ θ θ −Δ = − , where 

λ  is chosen on the basis of user experience, and rσ  is the sensor noise associated with r .  

Figure 3. Adaptive Breakpoint Detector (ABD).  

 

All of the previous segmentation methods, however, were based on a single-layer laser scanner, and 

to our knowledge, no research has been reported regarding the segmentation for a multi-layer laser 

scanner. This is one of the contributions of this paper. 

4. Segmentation for Multi-Layer Laser Scanner 

4.1. ABD Segmentation for Multi-Layer Laser Scanner 

A multi-layer laser scanner has multiple layers and returns the measurement points as shown in 

Figure 4.  

Figure 4. Multi-layer laser scanner (a) scan data and (b) corresponding image. 
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Figure 4a shows the laser scanner measurements depicted on the x - y  plane, and Figure 4b shows 

the scanner measurements superimposed on the camera image after calibration [28]. In the figure, the 

information of the different layers is represented by different colors. In the multi-layer laser, each data 

point t
ip  is not a pair but a triplet consisting of the distance t

ir  and bearing t
iθ  to the obstacle and the 

layer information t
il . The output of the multi-layer laser scanner is modeled by:  

( )     1, ,, ,t t t t
i i i ip for i Nr lθ= =   (7)

1     2, ,t t
i i for i Nθ θ −≥ =   (8)

1 1   where t t t t
i i i il l θ θ− −≥ =  (9)

where a four layer laser scanner, the IBEO LUX2010 [29], is used, and: 

{ }1, 2,3, 4t
il ∈  (10) 

Equations (8) and (9) refer to the property that the scanner scans the laser from left to right and from 

bottom to top, respectively. The left points are measured before the right points and at the same t
iθ , 

and the lower layers are measured before the upper layers. The direct application of a standard ABD to 

multi-layer segmentation would lead to the loss of layer information and would lead to inefficient 

segmentation.  

In order to develop a new segmentation method for the multi-layer scanner, two important 

properties of the multi-layer laser scanner should be considered: 

(1) Two points at the same bearing but on different layers can belong to different objects. An 

example is the situation given in Figure 4. In the figure, both a sedan and a bus lie in the same 

bearing, but the sedan is closer to the scanner than the bus. From the box bounded in red dotted 

lines in Figure 4b, the points in the lower three layers belong to the sedan, but the points in the 

top layer belong to the bus. Thus, it must be determined whether or not two data points, t
ip  and 

t
jp , with consecutive bearings and consecutive layers belong to the same object.  

(2) The measurement sets are not complete, and there are many vacancies in the θ - l  plane. When 

the scanner input is plotted on the θ - l  plane, the ideal output will look like a grid as in Figure 

5a, but the actual output appears as in Figure 5b. Thus, the grid-type segmentation using a 

nested for-loop cannot be used. 

Figure 5. Scan points of the multi-layer laser scanner on the θ - l  plane. (a) ideal output 

(b) actual output. 
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A layer-wise independent segmentation process can be considered; however, in our experience, this 

method does not work well and requires multi-layer segmentation. In multi-layer laser segmentation, 

we will say that two points t
ip  and t

jp  are connected if they belong to the same object. Unlike  

single-layer scanner segmentation, we consider not only the connectivity between the points with 

consecutive bearings, but also the connectivity between the points with consecutive layers. The 

foremost requirement in multi-layer segmentation is that the algorithm should operate in a single scan 

with the running time ( )O N , and the algorithm must not trace back to the old previous points, making 

it 2( )O N  or higher, where N  is the number of measurement points.  

In this paper, an ( )O N  fast segmentation method is presented. When each data point t
ip  is given, a 

candidate set i  composed of previous data points t
jp  ( j i< ) is built, and the connectivity of the 

point t
ip  is tested only with the elements in i , thereby implementing an ( )O N  implementation.  

In our segmentation method, the candidate set i consists of the newest data points in each layer. 

Therefore, the maximum size of the candidate set i  is four in this case. Figure 6 illustrates the ABD 

segmentation process.  

Figure 6. ABD segmentation for multi-layer laser scanner. 

 

In Figure 6, we assume that eight data points ( 1
tp − 8

tp ) have already been received. 2
tp , 4

tp , 5
tp , 6

tp , 

and 8
tp  belong to the segment 1S , and 1

tp , 3
tp , and 7

tp  belong to 2S , as in Figure 6a. This situation 

occurs as in Figure 4, in which two vehicles are in the same direction but at the different distances. The 

candidate set 9  is composed of 1
tp , 6

tp , 7
tp , and 8

tp . The four points in 9  are the newest points in 
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each layer at this time and the points in the set will be checked when a new point 9
tp  arrives. The 

points in 9  are indicated by the green circles in Figure 6a. 

In Figure 6b, 9
tp  is presented, and its connectivity with the elements in 9  is determined in turn 

from the first to the fourth layers (in order of 8
tp , 6

tp , 7
tp , and 1

tp ) with using an ABD. Here, we 

assume that the data point 9
tp  is assigned to the first segment as in Figure 6c. For example, if 

9 8
t t

thdDp p ≤− , then 9
tp  is assigned to the segment of 8

tp , which is 1S , and further connectivity 

determinations with 6
tp , 7

tp , and 1
tp  are cancelled. Figure 6d–f show the segmentation of 10

tp . First, 

10  is computed by: 

{ } { }
{ }

10 9 9 6

1 7 8 9
       , , ,

t t

t t t t

p p

p p p p

= ∪ −

=

 
 (11)

in Figure 6d, where ∪  and −  denote set union and subtraction, respectively. As before, the 
connectivity of 10

tp  with 8
tp , 9

tp , 7
tp , and 1

tp  is tested in turn (in order of 8
tp , 9

tp , 7
tp , and 1

tp ). If 

10 8
t t

thdDp p >−  and 10 9
t t

thdDp p >−  but 10 7
t t

thdDp p ≤−  as in Figure 6e, then 10
tp  is assigned to the 

segment of 7
tp , which is 2S , and further connectivity determination with 1

tp  is cancelled, as in  

Figure 6f.  
In a similar way, 11

tp  is segmented in Figure 6g–i. As before, 11  is updated by:  

{ } { }
{ }

11 10 10 7

1 8 9 10       , , ,

t t

t t t t

p p

p p p p

= ∪ −

=

 
 (12)

as in Figure 6g. The connectivity of 11
tp  is tested with the elements 8

tp , 9
tp , 10

tp  and 1
tp  in 11  in turn. 

If all of the distances between 11
tp  and the elements in 11  are larger than thdD  by 11

t t
thdj Dp p >−   

( 1,8,9,10j = ), as in Figure 6h, then a new segment 3S  is created, and 11
tp  is assigned to 3S  

(Figure 6i).  
Table 1 shows the proposed segmentation algorithm for the multi-layer laser scanner. In the table, 

Nseg denotes the number of segments, and N and L denote the number of data points and the number of 

layers, respectively. 1S  and 1  are initialized with empty sets, and the segmentation proceeds from 

1
tp  to t

Np .  
In the i th iteration, the connectivity of t

ip  with the elements in i  is tested from the bottom layer 

to the top layer. The connectivity exist when the distance between t
ip  and t

jp  is smaller than threshold, 

thdD . t
jp  is one of elements in i  and thdD  is calculated using an ABD. If the t

jp  is the first matching 

connected point, the t
ip  is assigned to nS . nS  is the segment that contains the first matching point t

jp .  

If t
ip  is not close enough to any elements in i  and t

ip  is not connected to any segment, then it 

means that t
ip  belongs to a new segment and we increase Nseg by one. At the end of each iteration, we 

update the candidate set 1i+  using i  and t
ip . 

4.2. Robust Segmentation through Ghost Elimination  

When the above ABD segmentation is applied to actual roads, ghost segments are sometimes 

detected. Here, a ghost segment refers to a segment that does not actually exist but that is detected by 

the laser scanner. Figures 7 and 8 show examples of ghost segments. These ghosts pose a serious risk 
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to safe driving. Most ghost segments are caused by (1) laser reflections from the ground surface;  

or (2) lights from vehicles or fog. The false determination of a ghost segment seriously degrades the 

subsequent object classification performance. 

Table 1. ABD segmentation for multi-layer laser scanner. 

_ _ _ _ _ _ ( )tS ABD Segmentation for multi laayer laser sacanner Z=   

1 1S ← ∅ , 1 ← ∅ , 0segN ←   

2   1    i to N=for do  

3 ( )  , ,t t t t
i i i iSelect p r lθ=   

4       i
t
jall p ∈for do  // i  is candidate set  

5 ( )  , ,t t t t
j j j jSelect p r lθ=  

6 ( )  using   , at t
thd i jCalculate D by ABDp p   

7     t t
thdi j Dp p ≤−if then  // check the connectivity 

8 { }     tt
n n j niS S where p Sp← ∪ ∈  // t

ip  is added to the segment nS   

9 break  
10 endif   

11 endfor  

12 
1

    
segN

t
i n

n

p S
=

∉if then  // if t
ip  is not connected any other point in i  

13 1seg segN N← +  

14 { }
seg

t
N iS p←  // t

ip  belong to new segment, 
segNS  

15 endif  

16 ( )1   , t
i i iUpdate from p+   

17 endfor  

a ABD is the adaptive breakpoint detector. 

Figure 7. Ghost detection caused by reflection from the ground surface. (a) uphill road  

(b) flat road. 
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Figure 7. Cont. 

 

Figure 8. A ghost caused by moisture. (a) rainy weather (b) foggy weather. 

 

Ghosts that are caused by reflections from the ground surface often occur when vehicles travel over 

bumpy roads or when they go up- or downhill. Ghost segments are detected on only one layer, usually 

the first layer, within a 40-m distance of the scanner, and experience rapid change, appearing and 

disappearing and changing shape. Ghosts that are caused by headlights or tail lights or by nearby fog 
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are also detected on only a single layer within a 20-m distance of the scanner, do not have a uniform 

shape, and are detected intermittently. 

The two kinds of ghosts both exist only on a single layer and are detected within a short distance. 

Thus, our robust segmentation method is developed by considering the first property and applying it 

within a limited 40-m distance around the vehicle. For distances greater than 40 m, the ABD 

segmentation method explained in Section 4.1 is used. 
The robust segmentation method is similar to the ABD segmentation given in Section 4.1, with two 

main differences. The first difference is that when a point, t
ip , is presented in robust segmentation, the 

point is not segmented with a point on the same layer in i . The reason for this is that ghost points 

tend to gather only on a single layer. By not combining a new point with the points on the same layer, 

ghost points do not build a meaningful segment and thus are not considered. The second difference is 

that the candidate set i  consists of not one but two of the newest points in each other layer. To 

prevent an object from being divided due to a ghost, we determine the connectivity of up to two of the 

newest points in each other layer.  
Thus, i  in robust segmentation can have up to eight ( 2 4× ) elements. Figure 9 illustrates the 

robust segmentation process. When a new point, 9
tp , is presented, as in Figure 9a, a candidate set, 

{ }9 1 2 3 5 6 7 8, , , , , ,t t t t t t tp p p p p p p= , is given. When testing the connectivity of 9
tp  with other points in 

9 , we skip the test with 2
tp  and 6

tp  because they are on the same layer as 9
tp . Thus, the 

connectivities of 9
tp  are tested only with the five points { }1 3 5 7 8, , , ,t t t t tp p p p p  in 9 , as shown in  

Figure 9a. Figures 9b and c demonstrate the computation of 10  and 11  and the robust segmentation 

process when 10
tp  and 11

tp  are given, respectively.  

Figure 9. Robust segmentation for multi-layer laser scanner. 

 

The problem with this approach is that if an obstacle is very shallow and is detected only on a single 

layer, it may not be detected. However, this is rarely the case due to the sufficiently small angular 

resolution of the multi-layer laser scanner. In the case of the IBEO LUX2010, the vertical and 

horizontal angular resolutions are 0.8° and 0.125°, respectively, allowing an obstacle 20 m or more 

from the vehicle and larger than 0.56 m to be detected on more than two layers. If the obstacle is larger 

than 0.26 m, it will return more than six points. 

Table 2 shows the pseudo-code of the robust segmentation. In lines 4–14, when a new point, t
ip , is 

within 40 m of the scanner, the connectivity determination with the point on the same layer is skipped, 

as Figure 9. In lines 15–24, when a new point is far from the scanner, its connectivity with the point on 

the same layer is determined as the ABD segmentation. The processes of making new segment and 

updating candidate set, 1i+ , is same as the processes of ABD segmentation. End of this algorithm, 
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small segments are eliminated. The small segments mean the number of point is smaller than minN , 

and minN  denotes the minimum number of points required for an object. 

Table 2. Pseudo-Code of Robust Segmentation through Ghost Elimination. 

_ ( )tS Robust Segmentation Z=   

1 1S ← ∅ , 1 ← ∅ , 0segN ←  

2   1    i to N=for do  

3 ( )  , ,t t t t
i i i i

Select p r lθ=  

4  ( )  t
i thdr R≤if then  // t

ip  in a close area 

5       i
t
jall p ∈for do  // i  is candidate set 

6 ( )  , ,t t t t
j j j jSelect p r lθ=  

7  ( )  t t
j il l≠if then  // skip

t
jp  on same layer 

8 ( )  using   , at t
thd i jCalculate D by ABDp p  

9     t t
thdi j Dp p ≤−if then  // check the connectivity 

10 { }     tt
n n j niS S where p Sp← ∪ ∈  // t

ip  is added to the segment nS  

11 break  

12 endif  

13 endif  

14 endfor  

15 else  // t
ip  in a far area 

16       i
t
jall p ∈for do  // i  is candidate set 

17 ( )  , ,t t t t
j j j jSelect p r lθ=  

18 ( )  using   , at t
thd i jCalculate D by ABDp p  

19     t t
thdi j Dp p ≤−if then  // check the connectivity 

20 { }     tt
n n j ni

S S where p Sp← ∪ ∈  // t
ip  is added to the segment nS  

21 break  

22 endif  

23 endfor  

24 endif  

25 
1

    
segN

t
i n

n

p S
=

∉if then  // if t
ip  is not connected any other point in i  

26 1seg segN N← +  

27 { }
seg

t
N iS p←  // t

ip  belong to new segment, 
segNS  

28 endif   

29 ( )1   , t
i i i

Update from p+   

30 endfor  

31 Eliminate small segments in S  // S is the set of all segments nS  

a ABD is the adaptive breakpoint detector. 
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5. Experiment 

In this experiment, an IBEO LUX2010 multi-layer laser scanner and a camera are installed on a  

Kia K900 as shown in Figure 10. As previously stated, the LUX2010 has a total of four layers, and its 

horizontal and vertical resolutions are 0.125° and 0.8°, respectively. The camera is used to obtain the 

ground truth of the environment.  

Figure 10. Vehicle and laser scanner for the experiment. 

 

Figure 11 shows the segmentation results for six different scenarios. The first column shows the raw 

measurements from the IBEO scanner, and the second and third columns show the ABD and robust 

segmentation results, respectively. The fourth column contains the corresponding camera image with 

the scanner measurements superimposed.  

Figure 11a and b show the results when the road is flat and ghosts are not detected. Only vehicles 

appear in Figure 11a, while both vehicles and pedestrians appear in Figure 11b. In the two scenarios, 

ghosts are not observed, and it can be seen that the ABD and robust segmentations produce  

the same results.  

Figure 11c and d show the results when a ghost is detected that is created by the surface. In the 

figures, the dots in the red box are the ghost, detected by the bottom layer laser, which is indicated in 

blue. When the ABD segmentation method is applied (second column), the ghost forms an outlier 

segment and appears to be an obstacle. When the robust segmentation method is applied  

(third column), however, the ghost is successfully removed, leaving only the segments from the 

preceding vehicles. 

Figure 11e and f show the results in rainy, foggy test conditions. As in Figure 11c and d, the dots in 

the red box are detected by the second-layer laser, and appear to result from fog. When the ABD 

segmentation method is applied (second column), the ghost survives and could activate the brake 

system, which can lead to an accident. When the robust segmentation method is applied (third column), 

however, the ghost is successfully removed. For quantitative analysis, we gather samples from four 

scenarios as in Table 3 and apply the ABD and robust segmentation methods. 
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Figure 11. Segmentation results: (a) vehicle; (b) pedestrian; (c) ghost in uphill road;  

(d) ghost in flat road; (e) ghost created by rain; and (f) ghost created by fog. Result 1 

(second column)—ABD segmentation; Result 2—robust segmentation.  

 



Sensors 2014, 14 20414 

 

 

Table 3. The number of ghosts, inliers, total measurement. 

Circumstance Ghost Inlier Total 

Uphill road 4634 33,183 37,817 
Plat road 1278 40,792 42,070 
Rainy weather 2146 26,335 28,481 
Foggy weather 1511 36,964 38,475 

All the samples are clipped manually from the IBEO scan. In Tables 4–7, the results of the ghost 

elimination are described. The value of λ  in Equation (6) is changed from 10° to 15°. The 

experiments are conducted in uphill road, flat road, rainy weather, and foggy weather conditions and 

their results are shown in Tables 4–7, respectively. 

Table 4. Results of ghost elimination for uphill road. 

 ABD Segmentation Robust Segmentation 

λ  
Ghost 

Elimination 
Ratio (%) 

Inlier 
Survival 

Ratio (%) 

Computation 
Time (ms) 

Ghost 
Elimination 
Ratio (%) 

Inlier 
Survival 

Ratio (%) 

Computation 
Time (ms) 

10 19.033 99.702 42.057 98.425 98.333 47.676 
11 18.494 99.735 44.409 98.144 98.379 51.036 
12 18.062 99.756 45.243 97.820 98.457 51.829 
13 17.846 99.765 45.832 97.518 98.484 52.594 
14 17.717 99.765 44.417 97.195 98.505 50.557 
15 17.479 99.792 43.991 97.065 98.550 50.455 

Table 5. Results of ghost elimination for flat road. 

 ABD Segmentation Robust Segmentation 

λ  
Ghost 

Elimination 
Ratio (%) 

Inlier 
Survival 

Ratio (%) 

Computation 
Time (ms) 

Ghost 
Elimination 
Ratio (%) 

Inlier 
Survival 

Ratio (%) 

Computation 
Time (ms) 

10 42.097 99.980 30.193 98.513 99.909 31.147 
11 41.549 99.983 29.701 98.279 99.909 30.669 
12 40.141 99.983 29.386 98.122 99.909 30.413 
13 38.654 99.983 29.173 97.887 99.909 30.252 
14 38.419 99.983 29.117 97.731 99.909 30.111 
15 37.637 99.983 29.787 97.574 99.909 31.369 

In the tables, the ABD and robust segmentation methods are compared in terms of (1) ghost 

elimination ratio; (2) inlier survival ratio and (3) computation time. Here, the ghost elimination ratio 

and the inlier survival ratio are defined as: 

    
The number of  eliminated ghosts

Ghost elimination ratio = 100
The number of  ghosts

×
 

(13)

     
The number of  survived inliers

Inlier survival ratio = 100
The number of  inliers

×
 

(14)
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From the tables, the proposed robust method outperforms the ABD in all cases with the similar 

computation time.  

Table 6. Results of ghost elimination in rainy weather. 

 ABD Segmentation Robust Segmentation 

λ  
Ghost 

Elimination 
Ratio (%) 

Inlier 
Survival 

Ratio (%) 

Computation 
Time (ms) 

Ghost 
Elimination 
Ratio (%) 

Inlier 
Survival 

Ratio (%) 

Computation 
Time (ms) 

10 34.669 99.992 11.105 94.548 99.951 11.445 
11 34.669 99.992 11.157 94.548 99.958 11.425 
12 34.669 99.992 12.133 94.548 99.962 12.496 
13 34.669 99.992 12.270 94.548 99.962 12.554 
14 34.669 99.992 12.592 94.548 99.962 12.883 
15 34.669 99.992 12.885 94.548 99.966 13.208 

Table 7. Results of ghost elimination in foggy weather. 

 ABD Segmentation Robust Segmentation 

λ  
Ghost 

Elimination 
Ratio (%) 

Inlier 
Survival 

Ratio (%) 

Computation 
Time (ms) 

Ghost 
Elimination 
Ratio (%) 

Inlier 
Survival 

Ratio (%) 

Computation 
Time (ms) 

10 63.269 99.946 21.019 97.088 99.221 23.411 
11 63.203 99.946 20.161 97.022 99.261 22.484 
12 63.137 99.951 20.711 96.956 99.294 23.019 
13 63.071 99.954 20.983 96.889 99.294 23.375 
14 63.071 99.957 21.439 96.889 99.321 23.961 
15 62.674 99.959 22.869 96.823 99.359 25.473 

6. Discussion 

Obviously, the goal is to remove as many ghosts as possible while maintaining as many inliers as 

possible and, thus to keep both ratios high. It can be seen from Tables 4 to 7 that the results of robust 

segmentation are better than those of ABD segmentation in every condition. In particular, the proposed 

robust method demonstrates more than 95% of the ghost elimination ratio in a robust manner 

regardless of the weather or the road. The ABD, however, demonstrates 17% to 65% of the ghost 

elimination ratio depending on the weather or the road. When it rains or the car goes uphill and, thus, 

ghosts frequently occur, ABD fails in eliminating the ghosts but the robust method removes most of 

the ghosts well. Interestingly, the ABD also performs well in the foggy weather and the reason is that 

the ghosts are detected intermittently in the foggy weather and they tend not to form a segment. 

Further, the ghost elimination ratio is not much affected by the value of λ . The reason might be that 

the ghosts are very close to the sensors and they are far enough from the other obstacles.  

The inlier survival ratio is also an important factor because if the inlier is accidently removed by the 

algorithm, it will lead to a serious accident. The result of the inlier survival ratio is also shown in 

Tables 3–6. It can be seen that both of the segmentation methods have sufficiently high inlier survival 

ratios and the both algorithms do not accidently remove the important measurement points. 
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The ABD and robust segmentation methods are also compared in terms of computation time. The 

computation time in Tables 4 through 7 is obtained by computing the average over 100 frames. It can 

be seen that the robust method takes slightly longer time than the ABD but the extra time is not much. 

The reason is that the ghost tends to form a number of small segment and the elimination of them takes 

some time. 

7. Conclusions 

In this paper, a new object segmentation method for a multi-layer laser scanner has been proposed. 

For robust segmentation, efficient connectivity algorithms were developed and implemented with 

( )O N  complexity. The proposed method was installed on an actual vehicle, and its performance was 

tested using real urban scenarios. It was demonstrated that the proposed system works well, even under 

complex urban road conditions.  
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