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Abstract: The study develops an integrated humidity microsensor fabricated using the 

commercial 0.18 μm complementary metal oxide semiconductor (CMOS) process. The 

integrated humidity sensor consists of a humidity sensor and a ring oscillator circuit  

on-a-chip. The humidity sensor is composed of a sensitive film and branch interdigitated 

electrodes. The sensitive film is zinc oxide prepared by sol-gel method. After completion of 

the CMOS process, the sensor requires a post-process to remove the sacrificial oxide layer 

and to coat the zinc oxide film on the interdigitated electrodes. The capacitance of the sensor 

changes when the sensitive film adsorbs water vapor. The circuit is used to convert the 

capacitance of the humidity sensor into the oscillation frequency output. Experimental 

results show that the output frequency of the sensor changes from 84.3 to 73.4 MHz at  

30 C as the humidity increases 40 to 90 %RH. 
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1. Introduction 

Humidity sensors are widely used in industrial, electronic, and biomedical equipment. Conventional 

humidity sensors have the disadvantages of large volume and high cost. On the contrary, the advantages of 

humidity microsensors include small volume, low cost, high performance and easy mass-production [1]. 

Recently, microelectromechanical system (MEMS) technology was employed to develop various 

microsensors, including several humidity microsensors. For instance, Wang et al. [2] proposed a 

resistive humidity sensor fabricated using the MEMS technology. The sensing material of the humidity 

sensor was a quaternary acrylic resin. The sensor had a humidity hysteresis of 1%–2% in the humidity 

range of 11–98 %RH. Kim et al. [3] also used MEMS technology to manufacture a humidity microsensor 

that consisted of a top electrode with branch structure, a bottom electrode and a sensing layer. The 

sensing layer was polyimide that was etched by O2 plasma to increase its sensitivity. Liang et al. [4] 

presented a resistive humidity microsensor made by a micromachining process. The sensor was composed 

of a sensitive ZnO-In2O3 film and Pt interdigitated electrodes. The sensing material of ZnO-In2O3 was 

deposited by radio-frequency sputtering. 

Zinc oxide can be applied as a piezoelectric, gas-sensing and photoelectric material. Many studies have 

utilized zinc oxide as the sensitive material of humidity microsensors. For instance, Zhang et al. [5] 

fabricated a humidity microsensor on a Si substrate. The sensitive material of the sensor was zinc oxide 

prepared by a vapor phase method. The humidity sensor could operate at room temperature.  

Chang et al. [6] presented a humidity microsensor manufactured by MEMS technology. The sensing 

material of the sensor was high-density ZnO nanowires. The humidity sensor had a linear output at  

80 °C. Hong et al. [7] employed MEMS technology to develop a surface acoustic wave humidity 

microsensor. The sensitive material was ZnO nanorods synthesized by a hydrothermal method. The 

sensitivity of the sensor was 9.4 kHz/%RH at 25 °C. Tsai et al. [8] used a hydrothermal growth method 

to make a ZnO nanosheet humidity microsensor. The sensor had a good response at room temperature, 

and the humidity hysteresis was less than 5%. Kiasari et al. [9] proposed a resistive humidity 

microsensor, and its sensitive material was zinc oxide nanowires deposited by chemical vapor deposition 

(CVD). The ZnO structures and performances of the humidity microsensors [5–9] are summarized in  

Table 1. These microsensors [5–9] were not integrated with readout circuit on-a-chip. Microsensors with 

readout circuit on-a-chip have the benefits of low package cost, low noise, low interference and high 

performance [1]. In this study, we fabricate a humidity microsensor integrated with a ring oscillator circuit 

on-a-chip. The fabrication of ZnO sensitive film in this work is easier than those sensors [5,6,8,9], and the 

response time is faster than that reported by Tsai et al. [8] and Kiasari et al. [9]. 

Table 1. ZnO structures and performances of the humidity sensors in [5–9]. 

Reference 
ZnO 

Fabrication 
ZnO 

Structure 
Response/Recovery 

Time (s) 
Humidity Range 

(%RH) 

[5] 
Vapor phase 

transport 
Nanorod & 
nanowire 

3/10 12–97  

[6] Sputtering Nanowire － 25–90  
[7] Sol-gel  Nanorod － 10–90  
[8] Sputtering Nanosheet 600/3 12–96  
[9] CVD Nanowire 60/3 0–60  

This work Sol-gel Nanowire 44/61 40–90  
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The commercial CMOS process has been utilized to manufacture various microactuators and 

microsensors [10,11]. Microsensors made by this process can integrate with readout circuits on-a-chip [12]. 

The humidity microsensor with a readout circuit on-a-chip proposed by Hu et al. [13], was fabricated 

using the commercial 0.18 μm CMOS process. The humidity sensor was a resistive type, and its sensitive 

material was titanium dioxide. The resistance of the sensor was converted into the output voltage by the 

readout circuit. In this work, we use the same process to develop a capacitive humidity microsensor with 

a ring oscillator circuit on-a-chip. Zinc oxide is adopted as the sensitive material of the sensor, because 

it has good sensitivity to water vapor [5–9]. The capacitance of the sensor is converted into the oscillation 

frequency output by the ring oscillator circuit. The output frequency has a potential for application in 

wireless communication system. The sensor requires a post-process [14] to coat the sensitive ZnO 

material. This post-process includes etching the sacrificial oxide layer and depositing the ZnO film. 

2. Structure of the Integrated Humidity Sensor 

Figure 1 shows the schematic structure of the integrated humidity sensor chip that contains a humidity 

sensor and a ring oscillator circuit. The humidity sensor is of the capacitive type. The ring oscillator 

circuit is used to convert the capacitance of the humidity sensor into the frequency output. The humidity 

sensor consists of branch interdigitated electrodes and a sensitive film. The interdigitated electrodes are 

constructed from the aluminum metal of the CMOS process. The length, width and thickness of the 

interdigitated electrodes are 320 µm, 10 µm and 6 µm, respectively. The gap between the electrodes is 

10 µm. The area of the chip is about 1 mm2. The sensitive film of the sensor is zinc oxide, and the film 

is coated on the interdigitated electrodes. When the sensitive film absorbs or desorbs humidity vapor, 

the sensor produces a variation in capacitance.  

Figure 1. Schematic structure of the integrated humidity sensor. 

 

Figure 2 illustrates the five-stage ring oscillator circuit for the humidity sensor. The five-stage ring 

oscillator circuit converts the capacitance variation of the humidity sensor into the output frequency. The 

oscillation frequency fsensor of the ring oscillator circuit is given by Equation (1) [15,16]:  
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(1)

where τsensor the delay time associated with the humidity sensor; τinv is the delay time associated with the 

inverters; Csensor is the humidity sensor capacitance; Cload is the load capacitance; and V and Iave are the 

threshold voltage and average current, respectively. According to Equation (1), the oscillation frequency 

of the ring oscillator circuit changes as the capacitance of the humidity sensor varies. The professional 

circuit simulation software, HSPICE (Synopsys Inc., Mountain, CA, USA), is utilized to simulate the 

output frequency of the ring oscillator circuit. In the simulation, the bias voltage of 3 V was adopted and 

the load capacitance was 0.5 pF. The capacitance of the humidity sensor changed from 50 to 350 pF. 

Figure 3 shows the simulated results of the output frequency for the ring oscillator circuit. The results 

showed that the oscillation frequency of the circuit changed from 87 to 72 MHz as the capacitance 

increased from 50 to 350 pF. 

Figure 2. Ring oscillator circuit for the humidity sensor. 

 

Figure 3. Simulation results of output frequency for the ring oscillator circuit. 
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3. Preparation of Zinc Oxide 

The sensitive material of zinc oxide was prepared by the sol-gel method. The preparation steps were 

as follows [17]: zinc acetate (0.11 g) was dissolved in iso-propanol (100 mL), and the mixture was 

denoted solution A. Sodium hydroxide (0.5 g) and poly(vinyl pyrrolidone) (2 g) were added to  

iso-propanol (50 mL), and the misture was denoted solution B. Solution B and hexamethylenetetramine 

(0.7 g) were added to solution A with vigorous stirring at 75 C for 2 h. The mixture was transferred into 

a teflon-lined stainless steel autoclave, sealed and maintained at 120 °C for 12 h. After the reaction, the 

resulting products were filtered, and washed with deionized water and ethanol. Finally, the zinc oxide 

film was coated on the substrate, followed by calcination at 350 °C for 2 h. 

The surface morphology of the zinc oxide film was measured by scanning electron microscopy (SEM, 

JSM-6700F, JEOL, Tokyo, Japan). Figure 4 shows a SEM image of the zinc oxide film. The zinc oxide 

film is nanowire structures that can increase its sensitivity due to have a large surface area. The 

composition of the zinc oxide film was tested by the energy dispersive spectrometer (EDS). Figure 5 

shows the EDS analysis of the zinc oxide. The main elements of the film are zinc and oxygen. The results 

depicted that the zinc oxide film consisted of zinc 75.97 wt% and oxygen 24.03 wt%.  

Figure 4. SEM image of the zinc oxide film. 

 

Figure 5. Elements of the zinc oxide film measured by EDS. 
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4. Fabrication of the Integrated Humidity Sensor 

The integrated humidity sensor chip was manufacture using the commercial 0.18 μm CMOS process 

of TSMC (Taiwan Semiconductor Manufacturing Company, Taipei, Taiwan). Figure 6 shows the 

process flow of the integrated humidity sensor. 

Figure 6. Process flow of the integrated humidity sensor, (a) after the CMOS process;  

(b) etching the sacrificial oxide layer; (c) coating the sensitive ZnO film. 

 

Figure 6a illustrates the cross-sectional view of the integrated humidity sensor after the CMOS 

process. The material of the interdigitated electrodes was aluminum metal. The silicon dioxide between 

the interdigitated electrodes was the sacrificial layer. After completion of the CMOS process, the 

humidity sensor required a post-process to etch the sacrificial layer and to coat the sensitive film of zinc 

oxide on the interdigitated electrodes. Figure 6b indicates that the sacrificial layer of silicon dioxide is 

etched. The sacrificial oxide layer was removed using the buffer etch oxide (BOE) etchant [18,19], and the 

interdigitated electrodes were exposed. The silicon dioxide etch must to be timed in order to avoid  

over-etching. The etching rate of BOE for silicon dioxide was about 960 Å/min [20]. The etching time 

of the silicon dioxide was 45 min. Figure 7 shows a SEM image of the humidity sensor after the etching 

process. The image depicts that the interdigitated electrodes of the sensor were exposed. Figure 6c shows 

that the sensitive material of ZnO is deposited. A precision-control micro-dropper was utilized to drop the 

sensitive material of ZnO onto the interdigitated electrodes. Finally, the zinc oxide was sintered in air at 

350 °C for 2 h. Figure 8a shows an optical image of the humidity sensor before the post-process.  

Figure 8b is an optical image of the humidity sensor after the post-process. 
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Figure 7. SEM image of the humidity sensor. 

 

Figure 8. Optical image of the humidity sensor: (a) before the post-process; (b) after the 

post-process. 

 

5. Results and Discussion 

A spectrum analyzer, a test chamber (HRMB-80, Taichy Technology Ltd., New Taipei, Taiwan) and 

an LCR meter were employed to test the characteristics of the integrated humidity sensor. The 

capacitance variation of the humidity sensor was measured by the LCR meter. The output frequency of 

the humidity sensor was recorded by the spectrum analyzer. The humidity and temperature of the test 

chamber could be tuned. The test chamber could supply a humidity range of 30–95 %RH and a 

temperature range of 25–100 °C. 

To understand the capacitance variation of the humidity sensor, the sensor without the ring oscillator 

circuit was tested under different humidity. The humidity sensor without the circuit was set in the test 

chamber. The test chamber provided different humidity to the sensor, and the LCR meter recorded the 

capacitance variation of the sensor. Figure 9 shows the capacitance variation of the humidity sensor at 

different temperatures. The measured results showed that the capacitance of the sensor was increased 

from 56 pF to 215 pF as the humidity changed from 40 to 90 %RH at 30 °C. When the temperature 

increased to 75 °C, the capacitance changed from 91 pF to 328 pF as the humidity varied from 40 to  

90 %RH. Figure 10 shows the response and recovery characteristics of the humidity sensor at 30 °C. 

The results showed that the humidity sensor had a response time of 44 s and a recovery time of 61 s. 
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Figure 9. Measured capacitance of the humidity sensor at different temperatures. 

 

Figure 10. Response and recovery characteristic of the humidity sensor. 

 

The output frequency of the humidity sensor with the ring oscillator circuit was measured. The ring 

oscillator circuit converted the capacitance variation of the humidity sensor into the oscillation frequency 

output. The sensor with the circuit was set in the test chamber. The power supply provided a bias voltage 

of 3 V to the circuit. The spectrum analyzer detected the output frequency of the sensor. Figure 11 shows 

the output frequency of the integrated humidity sensor. In this measurement, the temperature was kept 

at 30 °C, and the humidity changed from 40 to 90 %RH. The measured results revealed the output 

frequency of the sensor varied from 84.3 to 73.4 MHz as the humidity increased 40 to 90 %RH, and the 

humidity hysteresis was less than 1%. 
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Figure 11. Measured output frequency of the integrated humidity sensor at 30 °C. 

 

To characterize the influence of temperature, the integrated humidity sensor was tested under different 

temperatures. Figure 12 shows the measured output frequency of the humidity sensor at different 

temperatures. The results showed that the output frequency of the sensor decreased from 84.3 MHz at 

30 C to 80 MHz at 75 C when the humidity was 40 %RH, and the output frequency also decreased 

from 73.4 MHz at 30 C to 71 MHz at 75 C as the humidity was 90 %RH. Thereby, when the temperature 

increased, the output frequency of the sensor reduced.  

Figure 12. Measured output frequency of the humidity sensor at different temperatures. 

 

Hu et al. [13] reported a humidity sensor manufactured by the CMOS process. The sensitive film was 

nanoparticle titanium dioxide. The response and recovery times of the humidity sensor were 58 s and  

65 s, respectively. The sensitive film in this work was zinc oxide that has nanowire and porous structures. 

Thereby, the response and recovery times in this work are faster than that of Hu [13]. Dai [21] utilized 

the commercial CMOS process to fabricate a humidity sensor with three-stage ring oscillator circuit. 
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The sensing material of the sensor was polyimide and the sensitivity was 14.5 kHz/%RH at 25 °C. This 

work proposed a humidity sensor with five-stage ring oscillator circuit and the sensitivity was  

230 kHz/%RH at 30 °C. A comparison to Dai [21], the sensitivity of the sensor in this work exceeds that 

of Dai [21]. André et al. [22] presented an airflow sensor with a five-stage ring oscillator circuit. The 

oscillation frequency of the ring oscillator was 270 kHz at 0.6 V bias voltage, and the power consumption 

was about 1 μW. The oscillation frequency of the ring oscillator in this work was 84.3 MHz at 3 V bias 

voltage, and the power consumption was 20 mW. The power consumption in this work is higher than 

that of André et al. [22].  

6. Conclusions 

An integrated humidity sensor has been fabricated using the commercial 0.18 μm CMOS process and 

a post-process. The integrated humidity sensor contained a humidity sensor and a ring oscillator circuit. 

The humidity sensor was a capacitive type. The sensor generated a change in capacitance when it sensed 

water vapor. The ring oscillator circuit converted the capacitance variation of the sensor into the output 

frequency. The humidity sensor consisted of branch interdigitated electrodes and a sensitive film. The 

sensitive film was zinc oxide that prepared by the sol-gel method. The post-process included a wet 

etching to remove the sacrificial oxide layer and a zinc oxide film to coat on the interdigitated electrodes. 

The experimental results revealed that the output frequency of the sensor changed from 84.3 to 73.4 MHz 

at 30 C when the humidity increased 40 to 90 %RH.  
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