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Abstract: Timely measurement of vertical foliage nitrogen distribution is critical for 

increasing crop yield and reducing environmental impact. In this study, a novel method with 

partial least square regression (PLSR) and vegetation indices was developed to determine 

optimal models for extracting vertical foliage nitrogen distribution of winter wheat by using 

bi-directional reflectance distribution function (BRDF) data. The BRDF data were collected 

from ground-based hyperspectral reflectance measurements recorded at the Xiaotangshan 

Precision Agriculture Experimental Base in 2003, 2004 and 2007. The view zenith angles 

(1) at nadir, 40° and 50°; (2) at nadir, 30° and 40°; and (3) at nadir, 20° and 30° were selected 

as optical view angles to estimate foliage nitrogen density (FND) at an upper, middle and 

bottom layer, respectively. For each layer, three optimal PLSR analysis models with FND as 

a dependent variable and two vegetation indices (nitrogen reflectance index (NRI), 

normalized pigment chlorophyll index (NPCI) or a combination of NRI and NPCI) at 

corresponding angles as explanatory variables were established. The experimental results 

from an independent model verification demonstrated that the PLSR analysis models with 

the combination of NRI and NPCI as the explanatory variables were the most accurate in 

estimating FND for each layer. The coefficients of determination (R2) of this model between 
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upper layer-, middle layer- and bottom layer-derived and laboratory-measured foliage 

nitrogen density were 0.7335, 0.7336, 0.6746, respectively. 

Keywords: winter wheat; nitrogen; vertical distribution; bi-directional reflectance distribution 

function (BRDF) 

 

1. Introduction 

Nitrogen is a key factor for plant photosynthesis, ecosystem productivity and leaf respiration [1–3]. 

Determining the optimal amount of nitrogen fertilization to match the demands of crop growth is  

critical for improving grain yield and reducing environmental impacts [4,5]. Nitrogen stress may affect 

the light use efficiency and consequently influence long-term changes in vegetation biomass and carbon 

sequestration [6]. Excessive nitrogen fertilization on farmland can also cause crop lodging, groundwater 

contamination, atmospheric pollution and other environmental problems [7]. In addition, the 

transmission of nitrogen in response to nitrogen stress is generally from the bottom-layer to upper-layer 

in the crop [8]. Nitrogen deficiencies usually exhibit in the bottom layer leaves, while excessive nitrogen 

will affect the upper layer leaves first. Thus, fertilization should ideally be given according to crop 

nutrition status as reflected by vertical foliage nitrogen distribution, which is critical for early assessing 

crop growth status.  

Traditional methods of measuring foliage nitrogen, such as the Kjeldahl method are time-consuming 

and labor intensive [9]. The Soil and Plant Analyzer Development (SPAD) which can obtain chlorophyll 

meter values is used to measure foliage nitrogen based on the close relationship between foliage 

chlorophyll and foliage nitrogen concentration [10,11], but the relationship may be nonlinear at high 

nitrogen levels [12], and consequently the method cannot estimate foliage nitrogen concentration 

regionally. Remote sensing technology provides an alternative for timely detecting the foliage nitrogen 

status at large scales.  

Many spectral vegetation indices derived from canopy spectra have been used to retrieve foliage and 

canopy nitrogen status, such as Normalized Difference Vegetation Index (NDVI) and Ratio Vegetation 

Index (RVI) [13–17]. Bausch et al. [18] showed that plant nitrogen status could be effectively assessed 

by the Nitrogen Reflectance Index (NRI). Daughtry et al. [12] proposed a vegetation index named 

Modified Chlorophyll Absorption Ratio Index (MCARI) and applied it for canopy chlorophyll and 

nitrogen measurements. To reduce the sensitivity to variation in leaf area index (LAI) and soil 

background, a combined index, the ratio of Modified Chlorophyll Absorption Ratio Index to the second 

Modified Triangular Vegetation Index (MCARI/MTVI2), is successfully used to assess the foliage 

nitrogen [19,20]. Chen et al. [20] reported that the Double-peak Canopy Nitrogen Index (DCNI) was a 

good indicator of nitrogen in winter wheat and corn. Many other indices associated with plant pigments 

such as Normalized Difference Red Edge index (NDRE) and Red-Edge Chlorophyll Index (RECI) were 

also used to invert the plant nitrogen. Both Photochemical Reflectance Index (PRI) and Structure 

Independent Pigment Index (SIPI) were found sensitive to nitrogen treatment [21,22]. Filella et al. [23] 

confirmed that the Normalized Pigment Chlorophyll Index (NPCI) offered a potential way for 

measuring nitrogen status of wheat. Most of these studies with those indices focus on assessing canopy 
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nitrogen, which normally cannot be a comprehensive approach to assess the crop nitrogen status.  

In comparison with a single view from vertical canopy, multi-angular observations can acquire more 

rich plant information by considering more canopy parameters. They have been used to detect  

foliage disturbances in forest ecosystems and to retrieve chlorophyll vertical distribution in winter  

wheat [24,25]. Therefore, in this study, we proposed a method for assessing vertical foliage nitrogen 

distribution in winter wheat by bi-directional reflectance difference function (BRDF) data. 

Winter wheat is a major crop in China. A method that can accurately and timely assess a vertical 

foliage nitrogen distribution at Zadoks 41, Zadoks 65 and Zadoks 73 would be helpful to improve the 

economic benefits and reduce environment impact in winter wheat. Therefore our objectives for this 

analysis are to: (1) determine sensitive vegetation indices and viewing angles to estimate foliage 

nitrogen density for each layer (bottom, middle and top) of winter wheat and (2) select an optical  

model from three partial least square regression (PLSR) models for assessing foliage nitrogen density at 

each layer. 

2. Experimental Section 

2.1. Experimental Design 

Field experiments were conducted in winter at the Xiaotangshan Precision Agriculture Experimental 

Base in 2003, 2004, and 2007. It is located in Changping district, northeast of Beijing City (40°11' N, 

116°27' E), China. The soil at the field site is classified as a silt clay loam with a mean annual rainfall of 

507.7 mm and a mean annual temperature of 13 °C [26]. The spectral data collected in 2003 were used to 

develop vegetation indices that were significantly correlated with foliage nitrogen density. The 2007 

data were used to establish vertical distribution (for an upper layer, middle layer and bottom layer) 

nitrogen inversion models, while the data collected from 2004 were used to validate the proposed 

models. In the experimental base, eight widely cultivated winter wheat varieties with different canopy 

structures were investigated, including three-erectophile varieties (Jing 411, Laizhou 3279, and I-93), 

two-planophile varieties (Chaoyou 66, and Jingdong 8), and three-horizontal varieties (Linkang 2, 9428, 

and Zhouyou 9507).  

2.2. Data Acquisition 

2.2.1. In Situ Canopy Reflectance Spectra 

An ASD FieldSpec Pro spectrometer (Analytical Spectral Devices, Boulder, CO, USA) with a  

25° field-of-view fiber optic adaptor was used to measure the canopy reflectance between 10:00 a.m. and 

14:00 p.m. (Beijing local time) under clear sky conditions on 8 May 2003 (Flowering, Zadoks 65). All 

canopy reflectances were measured at a height of 1.3 m above ground, and a BaSO4 calibration panel 

was used to calibrate radiance and reflectance before and after taking a measurement. From different 

numbers of fields for each of the eight wheat varieties, a total of 60 spectral measurements were taken. 

Since the fields of each variety were relatively homogeneous, in situ spectra were measured from a plot 

of about 1 m×1 m per field. Each spectral measurement from a plot was calculated by averaging 20 scans 

to represent the spectrum for the plot/field for later analysis. 
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2.2.2. Canopy BRDF Reflectance Spectra 

The same spectral instrument used for measuring in situ canopy reflectance spectra was used to take 

canopy bi-directional reflectance function (BRDF) reflectance spectra under cloud-free conditions 

between 10:00 a.m. and 14:00 p.m. (Beijing local time) at a principal plane and a cross-principal plane 

on 28 April (Booting, Zadoks 41), 9 May (Flowering, Zadoks 65), and 16 May (Milk development, 

Zadoks 73), in 2004. The similar canopy BRDF reflectance spectra were taken on 28 April, 11 May, and 

16 May, in 2007. In accordance with the measuring method introduced by Huang et al. [26], a rotating 

bracket was used to fix the spectral instrument (Figure 1). View zenith angles were from −60° to 60° 

with 10° intervals. The negative angles represented face-to-the-sun, while the positive angles represented 

back-to-the-sun. Twenty spectra were taken at each view angle. 

Figure 1. Rotating bracket for observing BRDF canopy reflectance. 
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2.2.3. Foliar Nitrogen Vertical Distribution and Foliage Nitrogen Density 

The vertical foliar nitrogen distribution sampling method used in this study was similar to the vertical 

foliar chlorophyll distribution sampling method used in Huang et al. [25]. The wheat was collected in the 

plot where the spectral measurement was taken, placed in black plastic bags, and then transported to 

nearby laboratory. The wheat leaves were separated into three layers (upper-layer, middle-layer and 

bottom-layer) and the foliage nitrogen concentration of all layers in 2004 and 2007 were determined 

using the Kjedahl method. Then the 2007 nitrogen density was calculated by using Equation (1) below. 

Since the leaf dry weight for each layer of 2004 was not measured and only specific leaf weight SLW 

(g·m−2) for each layer was measured, the 2004 nitrogen density was calculated using Equation (2) below: 

N density = 
%

100

N leafdryweight

samplingarea

×
×

 (1)

N density = %N × SLW × LAI × 100 (2)

where, %N means nitrogen concentration; LAI means leaf area index. The leaves of each layer were 
dried at 105° for 10 min and then at 65° for 5 h to obtain the leafdryweight . 

2.3. Data Analysis 

A correlation analysis was conducted to examine the sensitivity of vegetation index to foliage 

nitrogen density. The results were assessed in terms of coefficient of determination (R2) between 

vegetation index and nitrogen density. Correlation analysis was conducted on a dataset of 60 samples 

collected on 8 May 2003. Nine VIs were first calculated from measured spectra at different view 

angles according to equations in Table 1. Note that here both MCARI and MTVI2 were combined into 

a ratio index. These VIs are related to leaf pigment, light use efficiency, and red edge characteristics as 

aforementioned. R2 values between foliage total nitrogen density and the nine commonly used VIs 

were presented in Table 2. The PLSR was performed to develop multivariate models to measure 

foliage nitrogen density at three layers. As PLSR algorithm has been described in many studies in 

detail and the good performance on the agricultural remote sensing has been shown [27,28], so we 

don’t repeat it here. For each layer, three PLSR analysis models were established with three types of 

vegetation indices as explanatory variables (VIs) and foliage nitrogen density (FND) as a dependent 

variable. R2 and root mean square error (RMSE) were calculated to measure the strength of a 

relationship between VIs and FND and to assess the accuracy of an estimation of N density.  

According to the correlation analysis results of single VIs with FND in Table 2, NDVI showed the 

best relationship with foliage total nitrogen density (R2 = 0.63), followed by NRI (R2 = 0.61) and 

NPCI (R2 = 0.60). However, NDVI has been noted to saturate at higher vegetation densities and is 

insensitive at low densities [13]. We did not consider the three VIs: PPR, DCNI and MCARI/MTVI2 

into PLSR modeling analysis due to their R2 too low. Therefore, only the remaining six VIs were 

considered in PLSR modeling analysis. After examining different PLSR modeling results of FND with 

the six VIs at each vertical layer, three PLSR analysis models were the best for each layer with FND as 

a dependent variable and three types of VIs (NRI, NPCI or a combination of NRI and NPCI) at 

corresponding angles as explanatory variables. 
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Table 1. Vegetation indices analyzed in this study. 

Index Name Description Reference 

NDVI 
Normalized difference 

vegetation index 
(R800 − R680)/(R800 + R680) 

Rouse et al., 

(1974) [29]  

NRI 
Nitrogen reflectance 

index 
(R570 − R670)/(R570 + R670) 

Filella et al., 

(1995) [23] 

PPR Plant pigment ratio (R550 − R450)/(R550 + R450) 
Metternicht et al., 

(2003) [30] 

SIPI 
Structure insensitive 

pigment index 
(R800 − R445)/(R800 − R680) 

Peñuelas et al.,  

(1995) [31] 

NPCI 
Normalized pigment 

chlorophyll index 
(R680 − R430)/(R680 + R430) 

Peñuelas et al., 

(1994) [32] 

SRPI 
Simple ratio  

pigment index 
R430/R680 

Peñuelas et al., 

(1994) [32] 

R810/R560 
Ratio vegetation index  

of 810 nm and 560 nm 
R810/R560 

Shibayama and  

Akiyama (1989) [33] 

DCNI 
Double-peak canopy 

nitrogen index 

((R720 − R700)/(R700 − R670))/ 

(R720 − R670 + 0.03) 

Chen et al.,  

(2010) [20] 

MCARI 
Modified chlorophyll 

Absorption ratio index 
(R700 − R670 − 0.2(R700 − R550))*(R700/R670) 

Daughtry et al., 

(2000) [12] 

MTVI2 
Modified triangular 

vegetation index 

1.5(1.2(R800 − R550) − 2.5(R670 − R550))/ 

sqrt((2R800 + 1)2 − (6R800 − 5sqrt(R670)) − 0.5) 

Haboudane et al., 

(2004) [34] 

MCARI/MTVI2 Combined index MCARI/MTVI2 
Eitel et al. 

(2007) [19] 

Table 2. Coefficients of determination (R2) between foliage total nitrogen density and 

vegetation indices at VZAs of 0°. 

Index R2 

NDVI 0.627 
NRI 0.610 
NPCI 0.604 
SRPI 0.603 
R810/R560 0.602 
SIPI 0.592 
PPR 0.0891 
DCNI 0.0120 
MCARI/ MTVI2 0.0067 

3. Results and Discussion 

3.1. Selection of Vegetation Indices (VIs) and View Zenith Angle (VZA) 

Based on the results in Table 2 and considering the saturation phenomenon of NDVI, NRI and 

NPCI might be used to estimate foliage nitrogen density. In order to assess vertical foliage nitrogen 

distribution, we analyzed the sensitivity of VIs at each view angle to foliage nitrogen density for each 

layer. We found significant correlations between the FND at the upper layer and NRI at VZAs of 40° 
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and 50°. For the middle layer, there existed significant correlations between FND and NRI at VZAs of 

30° and 40°. In addition, the values of NRI at VZAs of 20° and 30° were of linearly significant relation 

to FND at the bottom layer. Table 3 lists the correlation results of NRI with FND at different view 

angles at each layer. However, the spectra collected at nadir were the most easily obtained and were 

used in practice. Therefore, VIs derived (1) at nadir, 40° and 50°; (2) at nadir, 30° and 40°; and (3) at 

nadir, 20° and 30° view angles were selected to estimate the FND at an upper layer, a middle layer, 

and a bottom layer, respectively. 

Table 3. Coefficient of determination (R2) between foliage nitrogen density of each layer 

and NRI at each view angle (n = 20). 

         Layer 
View Angle (°) 

Upper Layer Middle Layer Bottom Layer 

20 0.515 0.484 0.308 
30 0.577 0.566 0.334 
40 0.595 0.536 0.260 
50 0.581 0.497 0.277 
60 0.519 0.411 0.174 

3.2. PLSR Prediction Models for FND 

According to the previous conclusions, the R2 values of the three optimal PLSR analysis models 

were listed in Table 4. It could be inferred from Table 4 that models with a combination of NRI and 

NPCI as explanatory variables performed the best for each layer compared with other two models. 

Table 4. Coefficients of determination (R2) of three PLSR analysis models with foliage 

nitrogen density at each layer as a dependent variable and VIs at corresponding view 

angles as explanatory variables. The 2007 data were used (n = 20). 

           Layer 
Index 

Upper Layer Middle Layer Bottom Layer 

NPCI 0.439 0.513 0.327 
NRI 0.774 0.608 0.372 
NPCI and NRI 0.818 0.642 0.617 

3.3. The Validation of the FND-Prediction Model 

To further test which model can provide the best results for each layer, the data collected in 2004 

were applied to validate the three optimal models. By comparison, we found that the PLSR analysis 

models with the combination of NRI and NPCI as the explanatory variables created the highest R2  

and lowest RMSE for each layer (Table 5). The best validation results for each layer were shown in 

Figure 2.  
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Table 5. Validation results from the three optimal PLSR analysis models for estimating 

foliage nitrogen density at each layer (n = 13) 

      Layer 
Index 

Upper Layer Middle Layer Bottom Layer 

R2 RMSE R2 RMSE R2 RMSE 

NPCI 0.4899 0.358 0.350 0.347 0.328 0.280 
NRI 0.5366 0.345 0.627 0.231 0.532 0.265 
NPCI and NRI 0.7335 0.225 0.734 0.192 0.675 0.245 

Figure 2. The best validated models (n = 13) for each layer: (a) upper layer, (b) middle 

layer, and (c) bottom layer. 

(a) (b) 

(c) 
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3.4. Discussion 

In this study, we confirmed that PLSR is an effective statistical approach with multiple view angle 

observation data for estimating wheat N density. Many previous studies have proven that PLSR is an 

effective statistical approach. For example, Liu et al. [35] demonstrated that PLSR was the most 

effective approach to predict disease severity compared with other statistical methods. Cho et al. [36] 

reported that PLSR models, based on original, derivative and continuum-removed spectra, produced 

lower prediction errors compared with NDVI and red-edge position (REP) models. To efficiently 

utilize spectral information derived from multi-angular remote sensing, in fact, Thomas et al. [37] had 

used their multi-angular high spectral resolution remote sensing data to study crop canopy disturbance 

at different stages. The method applied in this study that combined PLSR modeling technique with 

BRDF observation data has further demonstrated the potential of multi-angular remote sensing for 

extracting information of the vertical foliage nitrogen distribution in winter wheat. 

The result from this study has shown that the model with the combination of NRI and NPCI as the 

explanatory variables is accurate to assess the foliage nitrogen density (FND) at each vertical layer, 

and it performed best at an upper layer according to the R2 and the equations for regression lines. Our 

results indicated that the model was better if taking more spectral variables (VIs in this time) and 

multi-angular information into consideration, and that the spectral information from an upper layer 

(some time also considering a middle layer as in this study) was more easily to record, which is 

consistent with the point of view of Wang et al. [8] mentioned the information from middle layer.  

The data collected at different view angles contain different layer crop characteristics, and thus 

multi-angular observations can acquire more rich plant information by viewing relatively full canopy 

structural characteristics than a single view at a nadir direction. The result from this study is critical for 

developing a simple method to early assess crop growth status and can also provide a reference for 

developing multi-angle airborne or space-borne sensors in the future. 

However, there were still many shortcomings in this study. Those drawbacks need to be overcome 

or improved in the future. More experiments should be carried out in different crops by considering 

different environment factors to further generalize and improve the performance of models. And the 

effect of crop background (soil, crop residue, etc.) reflectance and LAI on spectral response should be 

considered. Since this study only used the data of observed cross-principal plane, future studies should 

consider the application of more observation planes such as a combination of cross-principal plane and 

principal plane for obtaining more comprehensive spectral information from crops. Principal plane 

contains more information about the plant than other planes, but there are more directional effects than 

in a cross-principal plane [38]. Other directional factors such as solar zenith angle, solar azimuth angle 

and view angles also have effects on spectral response [39], and they have not been considered in this 

paper. However, their influences on crop spectra should be further investigated in future. In addition, 

our experimental results need to be further calibrated in different areas. Due to limitations of the 

experimental condition and time, in this study, we did not fully consider the different types of 

explanatory variables into PLSR analysis models. 
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4. Conclusions 

Based on analyses of linear relationships between foliage total nitrogen density and vegetation 

indices (VIs), Nitrogen Reflectance Index (NRI) and Normalized Pigment Chlorophyll Index (NPCI) 

were found to be suitable for a retrieval of FND. Further analyzing the linear correlation of NRI at 

each view angle to FND at each layer, the VIs (NRI and NPCI) (1) at nadir, 40° and 50°; (2) at nadir, 

30° and 40°; and (3) at nadir, 20° and 30° were selected to estimate FND at an upper layer, a middle 

layer and a bottom layer, respectively. Three optimal PLSR analysis models with FND as the 

dependent variable and three types of vegetation indices (NRI, NPCI or the combination of NRI and 

NPCI) at corresponding angles as the explanatory variables were established for each vertical layer. 

The result of an independent model verification demonstrated that the PLSR analysis models with the 

combination of NRI and NPCI at corresponding angles as the explanatory variables were the most 

accurate in estimating FND for each layer. The coefficients of determination (R2) were 0.73, 0.73 and 

0.67, and the root mean square errors (RMSE) were 0.23, 0.19 and 0.24 for the upper layer, middle 

layer and bottom layer, respectively. This study might provide a basis for using BRDF data and PLSR 

modeling approach to assess foliage nitrogen vertical distribution over a large area. 
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