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Abstract: Radix Angelicae Sinensis, known as Danggui in China, is an effective and 

wide applied material in Traditional Chinese Medicine (TCM) and it is used in more than  

80 composite formulae. Danggui from Minxian County, Gansu Province is the best in 

quality. To rapidly and nondestructively discriminate Danggui from the authentic region of 

origin from that from an unauthentic region, an electronic nose coupled with multivariate 

statistical analyses was developed. Two different feature extraction methods were  

used to ensure the authentic region and unauthentic region of Danggui origin could be 

discriminated. One feature extraction method is to capture the average value of the 

maximum response of the electronic nose sensors (feature extraction method 1). The other 

one is to combine the maximum response of the sensors with their inter-ratios (feature 

extraction method 2). Multivariate statistical analyses, including principal component 

analysis (PCA), soft independent modeling of class analogy (SIMCA), and hierarchical 
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clustering analysis (HCA) were employed. Nineteen samples were analyzed by PCA, 

SIMCA and HCA. Then the remaining samples (GZM1, SH) were projected onto the 

SIMCA model to validate the models. The results indicated that, in the use of feature 

extraction method 2, Danggui from Yunnan Province and Danggui from Gansu Province 

could be successfully discriminated using the electronic nose coupled with PCA, SIMCA 

and HCA, which suggested that the electronic-nose system could be used as a simple and 

rapid technique for the discrimination of Danggui between authentic and unauthentic 

region of origin.  

Keywords: Radix Angelicae Sinensis; electronic nose; authentic region; multivariate 

statistical analyses 

 

1. Introduction 

Danggui is one of the most popular traditional Chinese medicines, which has been used in 

Traditional Chinese Medicine (TCM) for thousands of years, mainly to nourish blood, regulate 

menstruation, promote blood circulation, and relieve pain [1]. It was first cited in the Shennong’herbal 

classical (200–300 A.D, Han Dynasty), a classical masterpiece of TCM. The official drug of Danggui 

is the roots of Angelica sinensis (Oliv.) Diels (Angelica ploy morpha maxim.var.sinensis Oliv.), 

Umbelliferae. The quality of this kind of Danggui has been proven important in clinical applications 

over thousands of years. Among them, Danggui cultivated in Minxian County, Gansu Province, China, 

is regarded as the authentic herb according to traditional experience and Gansu Province is therefore 

considered the authentic region (AR) of origin of Danggui [2]. However Danggui is also cultivated in 

several other places, such as Yunnan Province and Shandong Province, which are called unauthentic 

regions (URs) of origin. Danggui from UR have been used in clinical trials, and was not effective 

enough compared with Danggui from the AR. Traditionally, AR and UR Danggui can be 

distinguished by experienced Danggui farmers, but this method is obviously dependent on highly 

subjective judgments. Analytical methods to discriminate AR from UR of Danggui include thin-layer 

chromatography (TLC), GC-MS [3], HPLC [4,5], CE-DAD [6], and although these methods have 

made significant contributions to the studies of Danggui, however, they can’t effectively distinguish 

AR Danggui from UR material. Therefore, a rapidly applicable and nondestructive analysis method is 

still needed to discriminate AR Danggui from UR Danggui.  

An electronic nose is used for detecting volatile compounds and it consists of four parts: a sampling 

system, an array of gas sensors, and a computer with an appropriate pattern-classification algorithm, 

capable of qualitative or quantitative analysis of complex gases or odors. Sensors, a key part of 

electronic nose, include quartz crystal microbalances, polymer composites, surface acoustic waves, 

conductive polymers and calorimetric sensors [7,8]. 

The measurement principle of an electronic nose is based on the change in electric resistance of the 

sensors when volatile compounds are present. The metal oxide sensors are semiconductors and are 

gas-sensitive oxygen in the air is chemisorbed on vacancies in the lattice of the bulk material and 

removes electrons from the conducting band: 
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sensor electron t + (1/2)O2     O−（s） 

In the presence of a gas or a fragrant molecule (G), this chemisorbed oxygen (O−) reacts irreversibly 

to produce combined molecules (GO): 

G(g) + O− (s)    GO(g) + sensor electron 

The liberated electrons reduce the potential barrier of the oxide grains, which increases the electron 

mobility. The resistance of the sensors thus decreases in the presence of volatile compounds. The size of 

the response depends on the nature of the detected molecules, their concentration and the type of metal 

oxide used. The response time depends on the reaction kinetics, the volume of headspace measured and 

the flow rate of the gas [9,10]. 

2. Materials and Methods 

2.1. Experimental Materials 

Twenty one samples were collected from their original growing locations. Samples 1–3 from 

Yunnan Province were collected by Shude Yang, Yunnan University of Traditional Chinese Medicine. 

Samples 4–20 from Gansu Province were collected by Fude Yang, Gansu University of Traditional 

Chinese Medicine. Sample 21 from Shandong Province was collected by Weixin Wang. All the 

samples were verified by Yuning Yan, Beijing University of Traditional Chinese Medicine, Shude Yang 

and Fude Yang. Details of the samples are listed in Table 1. 

Table 1. Sample details. 

NOs Place Origin Mark Sample Name 

1 Yunnan Province Dali Single root Y1 
2 Yunnan Province Dali Single root Y2 
3 Yunnan Province Lijiang Single root Y3 
4 Gansu Province Dangchang Single root GDS1 
5 Gansu Province Dangchang Single root GDS2 
6 Gansu Province Dangchang Single root GDS3 
7 Gansu Province Minxian Single root GMS1 
8 Gansu Province Minxian Many roots GMM1 
9 Gansu Province Minxian Single root GMS2 

10 Gansu Province Minxian Many roots GMM2 

11 Gansu Province Minxian Single root GMS3 

12 Gansu Province Minxian Many roots GMM3 
13 Gansu Province Weiyuan Single root GWS1 
14 Gansu Province Weiyuan Many roots GWM1 
15 Gansu Province Weiyuan Single root GWS2 
16 Gansu Province Weiyuan Many roots GWM2 
17 Gansu Province Zhangxian Single root GZS1 
18 Gansu Province Zhangxian Many roots GZM1 
19 Gansu Province Zhangxian Single root GZS2 
20 Gansu Province Zhangxian Many roots GZM2 
21 Shandong Province Heze Single root SH 
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2.2. Electronic Nose (EN) 

A FOX-3000 (Alpha MOS, Toulouse, France) was used in this study. It consists of a sampling 

apparatus, an array of sensors, an HS-100 autosampler, air generator equipment and software (Alpha 

Soft V11, Burlington, MA, USA) for data recording and analyzing the data. The sensor array was 

composed of 12 metal oxide sensors divided into three chambers: T, P and LY [11]. Table 2 shows a 

list of sensors used and their main applications.  

Table 2. The components and main application of sensors of α-FOX3000 EN. 

No. Name Main Application 

S1 LY2/LG Oxidizing gas 
S2 LY2/G Ammonia,Carbon monoxide 
S3 LY2/AA Ethanol 
S4 LY2/GH Ammonia/Organic amines 
S5 LY2/gCTL Hydrogen sulfide 
S6 LY2/gCT Propane/Butane 
S7 T30/1 Organic solvents 
S8 P10/1 Hydrocarbons 
S9 P10/2 Methane 

S10 P40/1 Fluorine 
S11 T70/2 Aromatic compounds 
S12 PA/2 Ethanol, Ammonia/Organic amines 

2.3. Experiment Procedure 

2.3.1. Optimization of Headspace Time and Headspace Temperature 

To select the highest intensity response to optimize the main parameters, different headspace times 

(600, 900 and 1200 s) and headspace temperatures (40, 60 and 80 °C) were investigated. The response 

intensity corresponding to different headspace times and temperatures are listed in Tables 3 and 4. 

Table 3. The response intensity of sensors at different temperatures. 

Temperture  

(°C) 

LY2

/LG 

LY2/

G 

LY2/

AA 

LY2/

GH 

LY2/

gCTL 

LY2/

gCT 
T30/1 P10/1 P10/2 P40/1 T70/2 PA/2 

40 0.26 −3.12 −3.4 −2.42 −2.43 −0.68 0.88 0.93 0.76 0.91 0.92 0.99 

60 0.02 −0.49 −0.53 −0.41 −0.42 −0.09 0.44 0.55 0.36 0.47 0.43 0.68 

80 0.02 −0.61 −0.62 −0.53 −0.55 −0.11 0.45 0.59 0.37 0.49 0.47 0.75 

Table 4. The response intensity of sensors for different times. 

Time  

(s) 

LY2

/LG 

LY2/

G 

LY2/

AA 

LY2/

GH 

LY2/

gCTL 

LY2/

gCT 
T30/1 P10/1 P10/2 P40/1 T70/2 PA/2 

1200 0.09 −1.48 −1.53 −1.21 −1.21 −0.28 0.62 0.7 0.5 0.62 0.62 0.83 

900 0.05 −0.82 −0.84 −0.66 −0.66 −0.15 0.76 0.83 0.61 0.78 0.8 0.95 

600 0.03 −0.34 −0.36 −0.27 −0.26 −0.06 0.46 0.52 0.37 0.47 0.41 0.58 
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Sixty three samples (three samples for each sampling point) were involved in the experiment. 

Samples (0.1 g) were accurately weighed and placed in a 10 mL glass jar, sealed and loaded in the 

autosampler tray. The headspace time and temperature were 900 s and 40 °C, respectively. The 

injection volume was 500 μL, the injection rate 500 μL/s and the stirring rate 250 rpm. The acquisition 

time was 200 s. When the measurement was finished, the cleaning phase was activated, which lasted 

1200 s. The main purpose was to clean the test chamber and return the sensors to their baseline values. 

2.3.2. Electronic Nose Response to Samples 

Figure 1 shows the typical signal of 12 sensors to sample GZM1. Each curve represents one 

sensor’s conductivity induced by electrovalve action, when a volatile gas reaches the measurement 

chamber. The EN sensor response of samples, also called odor intensity, is calculated using the 

following expression [11]: 

R = (R0 − RT)/R0 

where R is the EN sensor response, RT is the value of the conductance of metal oxide sensors, and R0 is 

the value of metal oxide sensors at time 0 s. After a low level in THE initial period, the conductivity 

increased continuously, and then stabilized after a few seconds. 

Figure 1. A typical response of 12 gas sensors during the measurement of a sample (GZM1). 

 

2.3.3. Repeatability 

The repeatability of the sample GZM1 was measured and analyzed in five parallel tests, and the 

relative standard deviation (RSD, n = 5) for each sensor was calculated; the result of each sensor was 

less than 5%. Details of the repeatability of the GZM1 measurements is listed in Table 5. 
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Table 5. Repeatability for sample GZM1. 

 LY2/LG LY2/G LY2/AA LY2/GH LY2/gCTL LY2/gCT 

Sample Mean RSD Mean RSD Mean RSD Mean RSD Mean RSD Mean RSD 

GZM-1 0.224 2.187 −1.630 −0.460 −1.820 −0.412 −0.624 −0.785 −0.864 −0.567 −0.130 0.000 

 T30/1 P10/1 P10/2 P40/1 T70/2 PA/2 

Sample Mean RSD Mean RSD Mean RSD Mean RSD Mean RSD Mean RSD 

GZM-1 0.690 0.000 0.500 0.000 0.404 1.213 0.360 0.000 0.698 0.573 0.766 1.044 

Note: RSD (%) 

2.3.4. Statistical Processing 

In this study multivariate statistics methods such as PCA, SIMCA and HCA were used. PCA was 

applied to determine whether the metal oxide sensor array is able to extract sufficient important 

information from the table for monitoring the test material [12]. PCA can analyze, classify, and reduce 

the dimensionality of numerical datasets in a multivariate analysis [13,14]. SIMCA was applied to 

identify whether each sample belongs to the class or not, according to the established model. SIMCA 

is a statistical method for supervised classification of data, which provides good or bad, qualified or 

unqualified results [15]. The method requires a training data set consisting of samples with a set of 

attributes and their class memberships. Training samples are used to build a model, and they are in the 

acceptable region and other samples are located outside the acceptable region [16]. A certain sample is 

projected onto the model to validate the model. If the sample is in the acceptable region, it belongs to 

the class. If not, the sample is unknown [17,18]. HCA is a standard unsupervised statistical procedure. 

It provides a better alternative for accurate representation and classification of highly-dimensional 

data, and it uses the full dimensionality of the data to create a classification dendrogram [11]. HCA 

was used to study the connections among factors and the scale of each factor. 

3. Results and Discussion 

3.1. Feature Extraction Method 1 (FEM1) 

The maximum responses of sensors were extracted and analyzed in FEM1. The maximum response 

was captured because in the combination of sensors in the raw data array, each sensor response curve 

extremum is similar to the steady state response, related to the amount and properties of gas samples, 

which is relatively stable and has good repeatability for a set of data. So we chose the average value of 

the maximum response as the extraction method 1. 

3.1.1. Raw Data Analysis 

According to the producing provinces, samples were divided into two groups, the Gansu group and 

Yunnan group. The average value of maximum response of the electronic nose sensors and RSD of 

each group were calculated. The results are shown in Table 6. The maximum of the absolute value of 

RSD of Danggui in the Gansu group was 23.583%, and the minimum was 9.494%. The maximum 

RSD of Danggui in the Yunnan group was 14.118%, and the minimum was 6.351% (response values 

below 0.2 were not included). This indicated that the group differences of Danggui in the Gansu group 
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were bigger than in the Yunnan group with FEM1. The samples of Danggui in the Gansu group were 

collected from different regions (although all the regions were in Gansu Province), had different 

storage times and different morphological characteristics and all of these factors may affect the 

formation of odor characteristics. 

Table 6. The average value of the maximum responses of the sensors. 

Sample 

LY2/LG (s1) LY2/G (s2) LY2/AA (s3) LY2/GH (s4) LY2/gCTL (s5) LY2/gCT (s6) 

Mean 
RSD 

(%) 
Mean 

RSD 

(%) 
Mean 

RSD 

(%) 
Mean 

RSD 

(%) 
Mean 

RSD 

(%) 
Mean 

RSD 

(%) 

Gansu 

group 
0.190 12.815 −1.200 −22.489 −1.320 −23.583 −0.482 −16.996 −0.652 −18.448 −0.094 −24.271 

Yunnan 

group 
0.379 10.293 −0.622 −8.697 −0.876 n10.231 −0.958 −14.118 −1.030 −11.655 −0.054 −12.580 

Sample 

T30/1 (s7) P10/1 (s8) P10/2 (s9) P40/1 (s10) T70/2 (s11) PA/2 (s12) 

Mean 
RSD 

(%) 
Mean 

RSD 

(%) 
Mean 

RSD 

(%) 
Mean 

RSD 

(%) 
Mean 

RSD 

(%) 
Mean 

RSD 

(%) 

Gansu 

group 
0.587 13.364 0.389 18.402 0.329 14.859 0.275 19.783 0.566 16.844 0.675 9.494 

Yunnan 

group 
0.386 8.303 0.214 9.610 0.257 9.365 0.132 11.705 0.329 9.662 0.462 6.351 

3.1.2. Discrimination of Samples Using PCA 

By employing PCA, the total variance does not change with the mathematical transformation. The 

first variable which has the biggest variance is known as the first principal component (PC1). The 

second variable, irrelevant to the first variable, called the second principal (PC2). Figure 2 depicts the 

PCA plot of samples, and the contribution rates of PC1 and PC2 were 76.382% and 23.354%, 

respectively. The total contribution rate of PC1 and PC2 was 99.736%. From PC1, we can see that 

Danggui in the Gansu group has a large span (length), which indicates that samples in Gansu group 

have a highly discrete distribution with FEM1 and the differences of samples in the Gansu group is 

very apparent. From PC1, we can see that the samples in the Yunnan group fell in the Gansu group, we 

cannot discriminate them from each other; however, by combining PC2, Yunnan group and Gansu 

group could be clearly separated. 

3.1.3. Discrimination of Samples Using SIMCA 

Figure 3 shows that the model’s checking score was 98. The model separated the samples into two 

regions. The Gansu group was in the acceptable region, and the Yunnan group was outside the 

acceptable region. GZM1 and SH selected as the unknown samples were projected onto the model 

which showed that sample GZM1 was correctly project onto the acceptable region and sample SH was 

incorrectly projected onto the acceptable region. The results indicated that the model was not accurate 

enough for unknown samples. A more valid feature extraction method should be created. 
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Figure 2. Principal component analysis (PCA) scatter plot for samples (FEM1). 

 

Figure 3. Sample GZM1 and sample SH projected onto the SIMCA model (FEM1). 

 

3.1.4. Discrimination of Samples Using HCA 

The aim of HCA is to divide samples into a specific group by similarity criteria. Figure 4 depicts 

the dendrogram of HCA, which shows that the samples could be divided into two main different 

groups, from 3 to 43 was one group, and from 37 to 13 was the other group, however, Y1, Y2 and Y3, 

which came from Yunnan group couldn’t be distinguished from the Gansu group. 
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Figure 4. Hierarchical clustering analysis (HCA) dendrogram for samples (FEM1). 
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3.2. Feature Extraction Method 2 (FEM2) 

From above we can see that we can’t distinguish Gansu group from Yunnan group successfully with 

FEM1, so a new feature extraction method should be created. To some extent, the maximum response of 

sensors may have some limitations in reflecting the characteristics of the TCM odors. Sensors are made 

up of different precious metals, platinum, palladium, rhodium, and SiO2 (coated by precious metals). 

The differences of metal materials and production processes may affect the response intensity of 

complex chemical components. The components and their absolute contents together determine the 

response intensity of each sensor. Due to the particularity of TCM, the same TCM may be seriously 

affected by many factors, which may make the differences in the absolute content of all kinds of aroma 

components big, then the response intensities of the sensors also have bigger differences. On the other 

hand, different odor characteristics are the reflection of aroma components which is the different 

combination of the amount and types of odors. The ratios between the odor components are important 

for the combination. Different metal oxide film sensors can sense different olfactory sensitivity 

components. The response intensity reflects the absolute content of the corresponding components and 

the amount of the volatile component can affect the absolute content of olfactory sensitivity components 

rather than the relative content. In a word, the ratios of the olfactory sensitivity components are relatively 

stable. Due to the fact metal oxide sensors have selectivity, the ratios of the different response intensities 

of sensors to some extent reflect the ratios of the olfactory sensitivity components. In this study we 

considered the maximum response for data processing and the inter-ratios of different sensors were 

calculated. Then we tried to combine the maximum responses of the sensors with their inter-ratios, 

which was called feature extraction method 2 (FEM2). Figure 5 shows the Radar plots for samples of 

the Yunnan group and Gansu group. It shows that the Yunnan group and Gansu group were nearly on the 

same track in the right part of the Radar plots where the positive reactions are shown, but in the left part 

where the negative reactions are reflected, the Yunnan group and Gansu group were not on the same 

track. The left parts indicated that there are many differences between them, so in FEM2, only the 

negative reactions data were calculated. 

Figure 5. Radar plots for samples. 
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3.2.1. Raw Data Analysis 

According to producing provinces, samples were divided into two groups, Gansu group and 

Yunnan group. The average value of the ratio of the maximum response of the sensors and RSD of 

each group were calculated. The results were shown in Table 7. The maximum of the absolute value of 

RSD of Danggui in the Gansu group was just 15.299%, and there were four RSDs below 5%. The 

results indicated that the differences in the Gansu group were narrowed. 

Table 7. The average value of inter-ratios of the maximum responses of the sensors. 

Sample 
s2/s3 s2/s4 s2/s5 s2/s6 s3/s4 

Mean RSD (%) Mean RSD (%) Mean RSD (%) Mean RSD (%) Mean RSD (%) 

Gansu group 0.910 2.112 2.490 12.037 1.840 8.784 12.910 3.992 2.730 12.012 

Yunnan group 0.712 1.647 0.655 5.727 0.604 3.344 11.480 4.064 0.919 4.382 

Sample 
s3/s5 s3/s6 s4/s5 s4/s6 s5/s6 

Mean RSD (%) Mean RSD (%) Mean RSD (%) Mean RSD (%) Mean RSD (%) 

Gansu group 2.010 8.705 14.130 4.571 0.742 3.689 5.280 15.299 7.080 11.777 

Yunnan group 0.848 2.031 16.130 3.426 0.923 2.568 17.570 4.987 19.030 3.486 

3.2.2. Discrimination of Samples Using PCA 

Figure 6 depicts the samples plot. The contribution rates of PC1 and PC2 were 96.529% and 

2.386%. The total contribution rate of PC1 and PC2 was 99.915%. A clear separation of samples was 

observed in the PCA plot. From PC1, we can see that the distribution of samples in the Gansu group 

was very concentrated. Samples can be clearly separated with PC1, and the distance between the two 

groups was large compared with Figure 2. 

Figure 6. Principal component analysis (PCA) scatter plot for samples (FEM2). 
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3.2.3. Discrimination of Samples Using SIMCA 

Figure 7 shows that the model’s checking score was 100, which indicated that it was a valid model. 

The model separated the samples into two regions. The Gansu group was in the acceptable region, and 

the Yunnan group was outside the acceptable region. GZM1, SH selected as the unknown samples 

were projected onto the SIMCA model. Figure 6 shows that Sample GZM1 was correctly projected 

onto the acceptable region and sample SH was correctly projected onto the unacceptable region, which 

indicated that the model was accurate enough for unknown samples. 

Figure 7. Sample GZM1 and sample SH projected onto the SIMCA model (FEM2). 

 

3.2.4. Discrimination of Samples Using HCA 

Figure 8 depicts the HCA dendrogram. The samples could be divided into two main different 

groups, the Gansu group and Yunnan group. The Gansu group included GDS, GMS, GMM, GWS, 

GWM, GZS and GZM, while the other contained Y1, Y2 and Y3. The results showed that the Yunnan 

group and Gansu group could be clearly separated. 

4. Conclusions 

With an optimized feature extraction method (FEM2), an electronic nose coupled with PCA, 

SIMCA and HCA is able to objectively analyze and successfully differentiate between Gansu group 

and Yunnan group Danggui samples. In conclusion, the use of an electronic nose in the discrimination 

between authentic region and unauthentic Danggui regions of origin is superior to the traditional 

methods. It provides a rapid, nondestructive, and accurate method for the categorization of complex 

aroma mixtures.  
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Figure 8. Hierarchical clustering analysis (HCA) dendrogram for samples (FEM2). 
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