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Abstract: In this paper, an algorithm of direction finding is proposed in the presence of
unknown mutual coupling. The preliminary direction of arrival (DOA) is estimated using
the whole array for high resolution. Further refinement can then be conducted by estimating
the angularly dependent coefficients (ADCs) with the subspace theory. The mutual coupling
coefficients are finally determined by solving the least squares problem with all of the ADCs
utilized without discarding any. Simulation results show that the proposed method can
achieve better performance at a low signal-to-noise ratio (SNR) with a small-sized array and
is more robust, compared with the similar processes employing the initial DOA estimation
and further improvement iteratively.
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1. Introduction

Direction finding of multiple sources has received tremendous attention in the field of radar, sonar,
mobile communication, and so on. High resolution algorithms, such as Multiple Signal Classification
(MUSIC) [1] and Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT) [2],
can distinguish closely-spaced sources by the use of subspace theory and, therefore, have been widely
used in the past few decades [3]. In spite of the potential advantages of the eigenstructure methods,
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their direct application to real systems is difficult, due to the critically required precise knowledge of
the array manifold. In other words, the performance of the super-resolution techniques is strongly
dependent on the array manifold accuracy. In practice, the array manifold is inevitably affected by
mutual coupling, position perturbation and array gain or phase uncertainties. This results in significant
distortion of the amplitude and phase of the signals received from the array. The direct employment
of the eigenstructure-based methods leads to a serious degradation of direction finding [4–7]. Array
calibration is an effective way to alleviate the deviation of direction of arrival (DOA) estimation.

Several calibration algorithms have been discussed in the last few decades. The earliest investigation
was made by Schmidt [8] and Weiss [9]. They measured and stored the array manifold directly by
interpolation. However, a large amount of memory is required, and the size and cost of the system could
obviously be increased. In order to overcome the drawbacks of the above scheme, a kind of calibration
method was proposed using a set of calibration sources in known locations. The maximum-likelihood
approach [10] can be used to estimate the calibration matrix for array error compensation. Similarly,
the algorithm in [11] was developed utilizing an iterative least mean squares approach. Although these
techniques can obtain high accuracy and a large scope of calibration, it is impractical to set a collection
of calibration sources and get their DOAs exactly as prior knowledge.

An approach to mitigate the influence of array errors is to calibrate the array by the use of the received
signals. Such methods for estimating the DOA, unknown coupling, gain and phase simultaneously
are called self-calibration. Friedlander and Weiss proposed to use an iterative process to acquire the
parameters and DOA [12,13]. Svantesson formulized it as an optimization problem and solved the
problem iteratively to estimate the mutual coupling coefficients for coupling compensation in the linear
array of dipoles [14]. However, the result will converge to the local optimum if the initial values deviate
far from the real ones. Alternatively, another kind of method was proposed conducting multidimensional
search based on subspace fitting. The maximization of a posteriori (MAP) estimator proposed in [15]
and [16] is one of these algorithms. Although it does not have the problem of convergence, non-linear
multidimensional optimization in these methods is computationally consuming, and the convergence rate
is relatively slow.

In recent years, several algorithms have been developed based on the characterization of the mutual
coupling matrix (MCM). In [17], Ye obtained the initial estimation of DOA by setting the instrumental
sensors on each side of the array. As a result, a one-dimensional search of the spatial spectrum can
be performed directly using the original array data. Moreover, the result can be refined iteratively by
estimating the mutual coupling coefficients for compensation. In [18], the signals received from the
middle subarray were directly exploited for the traditional MUSIC, whereas the MCM is assumed to be
a complex symmetric Toeplitz matrix. In order to increase the performance of DOA estimation, another
method [19] proposed recently takes advantage of the special structure of MCM to parameterize the
steering vector. It achieves the estimation of DOA using the whole array and improves the result by
mutual coupling compensation.

In this paper, we assume that the MCM is a band-symmetric Toeplitz matrix with finite non-zero
elements. By using the parameterized steering vector in [19], the preliminary DOA estimates can be
obtained with the whole array. Further compensation of mutual coupling is then made by estimating the
ADC first with the orthogonality of the subspace and the mutual coupling coefficients following with
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the full information of the ADCs. Simulation results show that the proposed algorithm has satisfactory
performance compared with the methods in [17] and [19], especially when the SNR is low and small
number of sensors exist.

The remainder of the paper is organized as follows. Section 2 is devoted to the problem formulation.
Section 3 addresses the direction finding with initial estimation of DOA and coupling compensation by
using the subspace theory and all of the parameters estimated. Section 4 gives the concluding remarks.

2. Problem Formulation

We consider a uniform linear array (ULA) consisting of M sensors with K narrowband far-field
sources s1(t), s2(t), . . . , sK(t) received. The sources come from directions θ1, θ2, . . . , θK with respect to
the normal line of the array. Assume that the distance between adjacent sensors is d and the wavelength
of the carrier is λ. With the interactions between sensors, the mutual coupling effect cannot be ignored.
The M × 1 output vector of the array is then given by:

x(t) = CAs(t) + n(t) (1)

where x(t) = [x1(t), x2(t), . . . , xM(t)]T, s(t) = [s1(t), s2(t), . . . , sK(t)]T and n(t) =

[n1(t), n2(t), . . . , nM(t)]T denote the received signal vector, source signal vector and noise vector,
respectively. The notation [·]T denotes the transposition. A = [a(θ1), a(θ2), . . . , a(θK)] is the array
manifold matrix, in which a(θk) = [1, β(θk), β2(θk), . . . , βM−1(θk)]T is the steering vector with
β(θk) = exp{−j2πd sin θk/λ}. C ∈ CM×M is the MCM, which is generally considered to be
independent of the angle [20]. It indicates the interactions between arbitrary two sensors of the array.
Equation (1) is obtained under the assumption that the additive sensor noises ni(t), i = 1, . . . ,M are
independent and identically distributed (i.i.d.) white Gaussian with the common variance σ2. si(t) and
ni(t) are zero-mean wide-sense stationary random processes.

Several studies of the coupling model [12,21] have shown that the coupling between a pair of
sensors is nearly the same. Therefore, the MCM is a banded symmetric Toeplitz matrix for the
ULA. Furthermore, based on the fact that the mutual coupling between two sensors is inversely
proportional to their distance, the coefficient will be zero if two sensors are several wavelength apart. Let
cij = cji = c|i−j| denote the mutual coupling coefficient between the i-th and the j-th element of the
ULA, and assume that there are P distinct non-zero elements in the MCM with the self coupling c0
normalized as one. Then, the M ×M matrix C can be expressed as:

C = Toeplitz{1, c1, . . . , cP−1,0M−P} (2)

where Toeplitz{·} denotes a symmetric Toeplitz matrix constructed by the P × 1 vector
c = [1, c1, . . . , cP−1]

T. Define:

am(θ) = Ca(θ) (3)

as the equivalent steering vector of the direction θ. From Equation (1), the covariance matrix of the
received signals is:

Rx = E[x(t)xH(t)] = CARsA
HCH + σ2I = AmRsA

H
m + σ2I (4)
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where (·)H denotes the Hermitian transpose operation, Rs = E[s(t)sH(t)] is the covariance matrix of
s(t) and Am = [am(θ1), am(θ2), . . . , am(θK)] is the equivalent array manifold matrix. As demonstrated
in [2], the above equation can be rewritten as:

Rx = [Es,En]Λ[Es,En]H (5)

using the eigenvalue decomposition (EVD) of Rx, where Λ = diag{Λs,Λn} is a matrix with M

eigenvalues at the diagonal in descending order and zero elsewhere. Es ∈ CM×K and En ∈ CM×(M−K)

are the eigenvectors corresponding to the K largest eigenvalues and the M − K smallest eigenvalues,
respectively. According to the well-known subspace-based algorithm [1], the signal subspace spanned
by the column of Am = CA is orthogonal to the noise subspace spanned by that of En. Therefore,
we have:

‖EH
n am(θ)‖2 = 0 (6)

If the MCM is known, the directions of sources θ1, θ2, . . . , θK can be estimated based on the spectrum
function P (θ) = 1/‖EH

n am(θ)‖2. However, the vector c is usually unknown, under which circumstance
the traditional DOA estimation approach cannot be used, and a new method should be investigated for
direction finding.

3. Direction Finding and Mutual Coupling Compensation

In this section, we first reformulate the equivalent steering vector by parameterizing the MCM.
Then, we solve the DOA estimation problem in the presence of unknown mutual coupling by applying
the whole array data for better performance [19,22]. For further refinement, a new mutual coupling
compensation algorithm is proposed by utilizing the special structure of the reformulated MCM with no
information lost.

3.1. DOA Estimation Using the Whole Array

Let rk represents the k-th element of the M × 1 equivalent steering vector am(θ). By combining
Equations (2) and (3), am(θ) can be expressed as:

am(θ) = [r1, r2, ..., rM ]T (7)

where:

rk = [g1 +
∑k−1

i=1 ciβ
−i(θ)]βk−1(θ), k = 1, . . . , P − 1

rk = g0β
k−1(θ), k = P, . . . ,M − P + 1

rk = [g−1 +
∑M−k

i=1 ciβ
i(θ)]βk−1(θ), k = M − P + 2, . . . ,M

For notational clarity, we set
∑0

1 ciβ
±i(θ) = 0, g1 =

∑P−1
i=0 ciβ

i(θ), g−1 =
∑P−1

i=0 ciβ
−i(θ) and

g0 = 1 +
∑P−1

i=1 ci(β
i(θ) + β−i(θ)) in the above equations. In the case of g0 6= 0, we can extract g0 out

of rk and describe am(θ) as [19]:

am(θ) = g0Γ(θ)a(θ) (8)
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where: Γ(θ) = diag{µ1, . . . , µP−1, 1, . . . , α1, . . . , αP−1} with M − 2(P − 1) ones,

µk = rkβ
1−k(θ)/g0, k = 1, . . . , P − 1 (9)

and:

αk = rk+(M−P+1)β
1−k(θ)/g0, k = 1, . . . , P − 1 (10)

where µk and αk are the ADCs. They are functions of ck and β(θ). It has been shown from
Equations (8)–(10) that the angularly independent MCM is transformed into an angularly-dependent
expression g0Γ(θ). Since Γ(θ) is a diagonal matrix with 2(P − 1) unknown variables and a(θ) is a
vector, it is feasible to exchange their elements and to reduce the number of ones in Γ(θ) as follows [19]:

am(θ) = g0T(θ)v(θ) (11)

v(θ) = [µ1, . . . , µP−1, 1, α1, . . . , αP−1]
T is an (2P − 1)× 1 vector, and:

T(θ) =



1

β(θ)
. . .

βP−1(θ)
...

βM−P (θ)
. . .

βM−1(θ)


(12)

is an M × (2P − 1) matrix with an (M − 2P + 2) × 1 vector and two (P − 1) × (P − 1) diagonal
matrices locatedat the diagonal, respectively.

Considering the subspace principle given in Equation (6) and am(θ) in Equation (11), we have the
following equation on condition that g0 6= 0:

vH(θ)Q(θ)v(θ) = 0 (13)

where Q(θ) = THEnE
H
nT(θ) is a (2P − 1) × (2P − 1) matrix. As mentioned in [19] and [22], when

θ is consistent with any one of the K incoming angles, Q(θ) is rank deficient. Therefore, the following
spectrum function with the determinant of Q(θ) as the sensitive factor provides an effective means of
DOA estimation:

P (θ) =
1

det{Q(θ)}
(14)

It is worth noting that Q(θ) does not contain any information of c. Therefore, the spectrum function
given above can be employed even if the mutual coupling is unknown. Compared with the algorithm
in [17], this spectrum function takes advantage of the whole array. People do not need to extract
the middle array for mutual coupling eliminating. As a result, no information is lost in the spectrum
estimation. This method is available only if:

K ≤M − 2P + 1 (15)

in which circumstance, the (M −K)× (2P − 1) matrix EHT(θ) is full column rank.
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3.2. Mutual Coupling Compensation

Once we get the DOA estimates, further refinement can be conducted based on the angularly
dependent expression of am(θ) as shown in Equation (11). We assume θ̂ is the DOA estimated from
Equation (14) and that no blind angles exists (i.e., g0 6= 0). Based on the fact that the noise subspace is
orthogonal to the column subspace of am(θ̂), we have:

EH
nT(θ̂)v(θ̂) = 0(M−K)×1 (16)

Notice that the P -th element of v(θ̂) is one, and the others are ADCs to be estimated. Denote
Q(θ̂) = EH

nT(θ̂) = [q1, . . . ,qP−1,qP ,qP+1, . . . ,q2P−1], where qj, j = 1, . . . , 2P − 1 is the j-th
column of Q(θ̂). By replacing the columns of Q(θ̂) and the associated elements of v(θ̂), Equation (16)
can then be reformed as:

Q′(θ̂)v′(θ̂) = 0 (17)

where Q′(θ̂) = [qP ,q1, . . . ,qP−1,qP+1, . . . ,q2P−1] and v′(θ̂) = [1, µ1, . . . , µP−1, α1, . . . , αP−1]
T.

Moreover, extracting qP from Q′(θ̂), Equation (17) can be expressed as:

Q′(:, 2 : 2P − 1)v′(2 : P ) = −qP (18)

Consequently, we can get the estimates of µk and αk by solving the above equation as:

v′(2 : P ) = −Q′(:, 2 : 2P − 1)]qP (19)

where (·)] represents the pseudo inverse operation.
Now, we estimate the mutual coupling coefficients by utilizing the estimated ADCs µ̂k, α̂k. Based

on the observation of µk, αk in Equations (9) and (10), it is not difficult to find that they are the linear
functions of ck, k = 1, . . . , P − 1. Let B(θ̂) be the coefficient matrix between c′ = [c1, . . . , cP−1]

T and
[µ̂1, . . . , µ̂P−1, α̂1, . . . , α̂P−1]

T. Then, we have:

B(θ̂)c′ = vg (20)

where:

B(θ̂) =



β(θ̂) β2(θ̂) β3(θ̂) . . . βP−2(θ̂) βP−1(θ̂)

β(θ̂) + β−1(θ̂) β2(θ̂) β3(θ̂) . . . βP−2(θ̂) βP−1(θ̂)

β(θ̂) + β−1(θ̂) β2(θ̂) + β−2(θ̂) β3(θ̂) . . . βP−2(θ̂) βP−1(θ̂)
...

...
... . . . ...

...
β(θ̂) + β−1(θ̂) β2(θ̂) + β−2(θ̂) β3(θ̂) + β−3(θ̂) . . . βP−2(θ̂) + β2−P (θ̂) βP−1(θ̂)

β(θ̂) + β−1(θ̂) β2(θ̂) + β−2(θ̂) β3(θ̂) + β−3(θ̂) . . . βP−2(θ̂) + β2−P (θ̂) β1−P (θ̂)
...

...
... . . . ...

...
β(θ̂) + β−1(θ̂) β2(θ̂) + β−2(θ̂) β−3(θ̂) . . . β2−P (θ̂) β1−P (θ̂)

β(θ̂) + β−1(θ̂) β−2(θ̂) β−3(θ̂) . . . β2−P (θ̂) β1−P (θ̂)

β−1(θ̂) β−2(θ̂) β−3(θ̂) . . . β2−P (θ̂) β1−P (θ̂)



(21)
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can be obtained easily if θ̂ is estimated and:

vg = [µ̂1g0 − 1, . . . , µ̂P−1g0 − 1, α̂1g0 − 1, . . . , α̂P−1g0 − 1]T (22)

From Equations (20) and (22), we can see that g0 must be determined before the estimation of
ck. Although containing the unknown mutual coefficient, g0 can be easily obtained by employing the
particular composition of µ̂k, α̂k. Notice that µ̂1 and α̂P−1 have the complementary elements of g0. We
can therefore get g0 by:

ĝ0 = 1/(µ̂1 + α̂P−1) (23)

where µ̂1 and α̂P−1 have been acquired from Equation (19).
Combining Equations (23) and (22), the mutual coupling coefficient vector c′ can be determined by

solving Equation (20) as:

c′ = B](θ̂)vg (24)

For better performance, all of the DOAs estimated in the above subsection can be used to form
the extended coefficient matrix B̃. Let B̃ = [BT(θ̂1), . . . ,B

T(θ̂K)]T and ṽg = [vT
g1, . . . ,v

T
gK ]T with

B(θ̂i) and vgi as the matrix and vector evaluated at the i-th estimated DOA θ̂i. Then, the extension of
Equation (20) will be:

B̃c′ = ṽg (25)

Solving Equation (25) by the least squares, we can get a more precise estimation of c′ as:

c′ = B̃]ṽg (26)

The above approach provides us a means of mutual coupling compensation. That is to say, once
the vector c′ is determined, the matrix C can be formed by locating its element on the corresponding
sub-diagonal. Therefore, DOA estimation can be further obtained by searching the peak of:

P (θ) =
1

‖EH
nCa(θ)‖2

(27)

The performance can be further improved by repeating the above procedure. The proposed algorithm
for DOA estimation and mutual coupling compensation can be summarized as follows.

(1) Get L snapshots of the received signal x(t) at t = t1, . . . , tL, and form the following matrix as:

X = [x(t1),x(t2), . . . ,x(tL)]

(2) Generate the covariance matrix using the above data matrix by:

R̂x = XXH/L

(3) Conduct the EVD of R̂x, and get the noise subspace Ên.
(4) Scan the direction from −90◦ to 90◦ with 1◦ as the step size. Calculate the special spectrum using

Equation (14), and obtain the initial estimation of DOA θ̂1, . . . , θ̂K .
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(5) For each θ̂i, estimate the ADCs µ̂k, α̂k for k = 1, . . . , P − 1 based on Equation (19). Then,
calculate Equations (23) and (22) to obtain the values of g0 and vg, respectively.

(6) Form the matrix B̃ and ṽg by B(θ̂i) and v̂gi, i = 1, . . . , K, and solve Equation (26) to get the
parameters in the coupling matrix C.

(7) Enhance the DOA estimation with the estimated Ĉ and Equation (27).
(8) Repeat Step (5) to Step (7) to get a more precise estimation of directions.

4. Simulation Results

In this section, simulations will be conducted to validate the performance of the proposed method.
Consider two independent sources from the far-field incident on the ULA from θ1 = −10◦ and θ2 = 20◦.
Sensors are located in the array with equal spacing d = λ/2. The number of effective mutual coupling
coefficients is P = 3. Here, we set c = [1, 0.43301 − 0.25i, 0.14142 − 0.14142i], which is used in the
second simulation of [17], to guarantee g0 6= 0 at any direction θ.

In the first simulation, we evaluate the performance of DOA estimation in Step (4) without mutual
coupling compensation. Assume that the array number is M = 7 and that the snapshot number is 500.
The root mean squared error (RMSE) is used to compare the DOA accuracy of different algorithms. It
can be calculated, in general, by:

RMSE =

√√√√ Ns∑
n=1

K∑
i=1

(θi − θ̂i,n)2/(KNs)

where θ̂i,n is the i-th estimated direction obtained from the n-th Monte Carlo experiment, K = 2 is the
number of sources and Ns = 200 is the number of Monte Carlo experiments.

The RMSE as a function of SNR is illustrated in Figure 1a. The method used in our proposed
algorithm is superior at low SNRs compared with the method in [17], since the whole array is utilized.
As the SNR increases, the RMSE of DOA estimation decreases gradually for all of the methods. When
the SNR is greater than 10 dB, the accuracy of the two methods with unknown C is almost the same.
Figure 1b shows the effect of the array size on RMSE when SNR = −5 dB. Notice that the choice of
M should satisfy Equation (15). It can be seen that our method slightly outperforms the method in [17]
when M ≤ 10.

Using the initial DOA estimates, we now proceed to get the mutual coupling vector
c. In the second simulation, we consider the same scenario. Define the RMSE of c as√∑Ns

n=1

∑P−1
k=1 (ck − ĉk,n)2/[Ns(P − 1)], where ĉk,n represents the estimated coupling coefficient in

the n-th Monte Carlo experiment. From Figure 2a, we can see that the proposed method can obtain
significant improvement of the coupling coefficient estimation when the SNR is lower than 3 dB. Besides,
it is robust compared with the method in [17] and [19].

Now, we keep the SNR at −5 dB and vary the snapshots from 10 to 960. Figure 2b shows that
the proposed method can achieve higher accuracy compared with the other two algorithms. From the
estimation of the coupling matrix in Steps (5) and (6), it is not difficult to find that the full use of µ̂k, α̂k

leads to the superior performance of the mutual coupling estimation.
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Figure 1. (a) RMSE of direction of arrival (DOA) versus SNR with a Monte Carlo
experiment of 200 runs for array number M = 7 and snapshots L = 500; (b) RMSE of DOA
versus the array number M with a Monte Carlo experiment of 200 runs for SNR = −5 dB
and snapshots L = 500.
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Figure 2. (a) RMSE of mutual coupling matrix (MCM) estimates versus SNR with a Monte
Carlo experiment of 200 runs for array number M = 7 and snapshots L = 500; (b) RMSE
of MCM estimates versus snapshots with a Monte Carlo experiment of 200 runs for array
number M = 7 and SNR = −5 dB.
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In the third simulation, we investigate the DOA estimation obtained by mutual coupling
compensation. We consider two sources incoming from θ1 and θ2 = θ1 + ∆θ with SNR = 0 dB arriving
at the ULA for M = 7 and L = 500. Define:

|θ1 − θ̂1|+ |θ2 − θ̂2| < |θ̂2 − θ̂1|

as the decision condition of whether the angles θ̂1, θ̂2 can be identified or not. Then, we conduct
Ns = 200 Monte Carlo experiments for each algorithm and record the distinguishable ones. Denote
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ns as the number of experiments satisfying the above inequality. The curve of Probability = ns/Ns with
respect to the angle interval is presented in Figure 3a. Compared with the initial estimation of DOA, as
shown in Step (4), the proposed method improves the accuracy dramatically by refinement with mutual
coupling compensation. Ye’s method [17] is inferior to the new method, because only the middle array
is used. Figure 3b–d illustrates the RMSE of the DOA estimation with respect to the SNR, snapshots
and array size, respectively. As expected, the results are very promising. It is the full use of x(t), µ̂k and
α̂k that leads to the good performance of the proposed method. In the above simulations, the number
of sensors is assumed to be seven. It is worth mentioning that similar results can be obtained for bigger
M , as long as it satisfies M ≤ 10 for P = 3. The only difference is that the superiority is less obvious.

Figure 3. (a) Probability of DOA identification versus the angle interval for SNR = 0 dB,
M = 7 and snapshots L = 500; (b) RMSE of DOA versus SNR with M = 7 and snapshots
L = 500; (c) RMSE of DOA versus snapshots with M = 7 and SNR = 0 dB; (d) RMSE of
DOA versus the array number with SNR = 0 dB and snapshots L = 500.
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In the fourth simulation, we will investigate the effect of mutual coupling on the DOA estimation.
First, consider a signal impinging on the ULA from −10◦. Mutual coupling between the adjacent two
sensors exists, i.e., P = 2. Then, define rsi = C(i, :)a(θ), i = 1, ...,M as the response of the i-th
element to the received signal. rs1 is presented in Figure 4a with the amplitude and phase of the coupling
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coefficient varying. The figure illustrates that when the phase stays near zero, the response becomes
higher as the amplitude increases. When the phase grows into the range of [π/2, π], the result will be
the inverse to that of [0, π/2). The effect of coupling is to some extent similar to the beamforming. Any
change of the amplitude and phase could make the response different.

Figure 4. (a) The response of 1thelement with a single signal from −10◦ incident on the
array; (b) RMSE of DOA versus |c1| with φ = π/3 and φ = 5π/6; (c) RMSE of DOA versus
φ with |c1| = 0.15 and |c2| = 0.35; (d) RMSE of the proposed method versus SNR with
different coupling coefficients.
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The RMSE as a function of the amplitude of c1 is presented in Figure 4b with the phase φ fixed at π/3
and 5π/6, respectively. From this, we can see that the results get better with the increase of |c1| on the
condition that φ = π/3. The situation gets worse for φ = 5π/6, since the response becomes gradually
lower. Figure 4c demonstrates the RMSE as a function of the phase with |c1| fixed at 0.15 and 0.35,
respectively. The error increases slightly as the phase grows from zero to π, which coincides with the
response shown in Figure 4a. Figure 4d presents the RMSE of the proposed method versus SNR with
different coupling coefficients. In this experiment, we assume that there are two signals from −10◦ and
20◦ impinging on the ULA and set the four coefficients as c1 = [1,−0.2801 − 0.254i,−0.14 − 0.14i],
c2 = [1,−0.125+0.108i,−0.066+0.858i], c3 = [1, 0.2801+0.254i, 0.14+0.14i] and c4 = [1, 0.125+
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0.108i, 0.066 + 0.858i]. From Figure 4d we can conclude that the proposed algorithm could achieve
better performance when the coupling coefficient has a smaller phase and greater amplitude.

In the fifth simulation, we access the performance of DOA estimation when signals impinge on the
ULA with different angle intervals. Figure 5a presents the response of every element to DOA with
c = [1, 0.43301 − 0.25i, 0.14142 − 0.14142i]. Figure 5b illustrates the influence of the angle interval
to the initial estimation in Step (4). It is shown that not only the angle interval, but also the initial
DOA will affect the accuracy of estimation seriously. As long as the DOAs locate in the main lobe
of the middle element, the gain of the array will not decline rapidly. Figure 5c gives the RMSE of
DOA estimation versus SNR with different angle intervals. With the same initial DOA, the performance
obviously decreases when the interval becomes bigger.

Figure 5. (a) The response of different elements versus DOA; (b) RMSE of DOA
estimation versus the angle interval; (c) RMSE of DOA estimation versus SNR with different
angle intervals.

−100 −50 0 50 100
−15

−10

−5

0

5

10

θ(deg)

2
0
lo

g
1
0
|r

s
|

 

 

element1

element2

element3

element4

element5

element6

element7

(a)

0 20 40 60 80
0

0.5

1

1.5

2

2.5

∆ θ(deg)

R
M

S
E

(D
e
g
)

 

 

with unknown C−[−20°,60°]

with unknown C−[−10°,70°]

(b)

−10 −5 0 5 10 15
0

1

2

3

4

5

6

SNR(dB)

R
M

S
E

(D
e
g
)

 

 

with known coupling[−10
°
,20

°
]

with unknown coupling[−10
°
,20

°
]

proposed method[−10
°
,20

°
]

with known coupling[−10
°
,40

°
]

with unknown coupling[−10
°
,40

°
]

proposed method[−10
°
,40

°
]

(c)

In summary, the proposed method can achieve more precise estimates of DOA as opposed to Ye’s
method [17] and Liao’s method [19], especially when the SNR is low and the array size is close to the
minimum available value ofM = K+2P−1. The reservation of the information obtained guarantees the
good performance of the proposed algorithm. The experiments of the mutual coupling effect show that
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the coupling coefficient, initial DOA and the angle interval could have an influence on the performance
of DOA estimation at the same time.

5. Conclusions

This paper addresses the DOA estimation in the presence of unknown mutual coupling. Based
on the subspace theory, the initial DOA is first estimated using the whole array without calibration
sources and auxiliary sensors, which leads to high accuracy. With the assumption that no blind angles
exist in the space, mutual coupling compensation is further conducted by estimating the coupling
coefficients indirectly from the angular-dependent coefficients. Finally, with all of the ADCs utilized
without discarding any, the mutual coupling coefficients are determined by solving the least squares
problem. Simulations show that the proposed method can achieve better performance at low SNR with
a small-sized array. The robustness of the method can be verified, as well.
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