
 

Sensors 2014, 14, 19731-19766; doi:10.3390/s141019731 
 

sensors 
ISSN 1424-8220 

www.mdpi.com/journal/sensors 

Review 

Recent Advances in the Field of Bionanotechnology: An Insight 
into Optoelectric Bacteriorhodopsin, Quantum Dots, and Noble 
Metal Nanoclusters 

Christopher Knoblauch 1, Mark Griep 2 and Craig Friedrich 1,* 

1 Department of Mechanical Engineering-Engineering Mechanics, Multi-Scale Technologies Institute, 

Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA;  

E-Mail: cjknobla@mtu.edu 
2 U.S. Army Research Laboratory, Weapons and Materials Research Directorate, Aberdeen Proving 

Grounds, MD 21005, USA; E-Mail: mark.h.griep.civ@mail.mil 

* Author to whom correspondence should be addressed; E-Mail: craig@mtu.edu;  

Tel.: +1-906-487-1922. 

External Editor: Yoke Khin Yap 

Received: 29 August 2014; in revised form: 8 October 2014 / Accepted: 15 October 2014 /  

Published: 22 October 2014 

 

Abstract: Molecular sensors and molecular electronics are a major component of a recent 

research area known as bionanotechnology, which merges biology with nanotechnology. 

This new class of biosensors and bioelectronics has been a subject of intense research over 

the past decade and has found application in a wide variety of fields. The unique characteristics 

of these biomolecular transduction systems has been utilized in applications ranging from 

solar cells and single-electron transistors (SETs) to fluorescent sensors capable of sensitive 

and selective detection of a wide variety of targets, both organic and inorganic. This review 

will discuss three major systems in the area of molecular sensors and electronics and their 

application in unique technological innovations. Firstly, the synthesis of optoelectric 

bacteriorhodopsin (bR) and its application in the field of molecular sensors and electronics 

will be discussed. Next, this article will discuss recent advances in the synthesis and application 

of semiconductor quantum dots (QDs). Finally, this article will conclude with a review of 

the new and exciting field of noble metal nanoclusters and their application in the creation 

of a new class of fluorescent sensors. 
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1. Introduction 

Molecular sensing and molecular electronics is a diverse area that can include molecular conformational 

changes, changes in charge distribution, changes in optical absorbance and emission, or changes in 

electrical conductivity along or across simple or complex-shaped molecules, all in response to a target 

input. Each of these approaches can be integrated into a transduction system that provides a measurable 

and desired change in response to a specific or range of inputs. The ability to integrate such transduction 

mechanisms with biomolecules or to use biomolecules as the source of such materials provides, to 

varying extent, biocompatibility with other systems. In this review, we provide a summary of several 

biomolecular transduction systems and their applications. Specifically, the systems are bacteriorhodopsin 

and its integration with optoelectric sensing systems, semiconductor quantum dots and their application 

in sensors and electronics, and noble-metal nanoclusters. 

2. Optoelectric Bacteriorhodopsin 

Bacteriorhodopsin (bR) is an optoelectric protein found in the cytoplasmic membrane of the Archaean 

halophile Halobacterium salinarum (H. salinarum). The protein is a light-driven proton pump that upon 

absorption of light at or near a wavelength of 570 nm translocates a proton from the cytoplasmic to the 

extracellular side of the cell membrane. This proton movement creates a charge difference across the 

membrane and has found use in sensor applications. 

2.1. Bacteriorhodopsin Source 

Bacteriorhodopsin is the bacterial analog of the visual rhodopsin found in the mammalian eye. bR is 

a 7-helix transmembrane protein that exists in a trimer configuration within the cell membrane, consists 

of 248 amino acids, and has a molecular weight of approximately 26 kDa [1]. The phospholipid cell 

membrane is approximately 6 nm thick and bR makes up approximately 75% of the membrane by weight. 

H. salinarum thrives and produces bR in high salinity and low oxygen environments. In its natural state, 

the proton pumping process is used as the energy source to drive the conversion of ADP to ATP for utilization 

by the cell. Through this proton translocation, a pH difference up to 4 across the membrane has been reported. 

This represents a charge ratio of 10,000:1 across a 6 nm thick membrane. 

The host bacterium was thought to have been discovered in 1971 as Halobactrium halobium [2]. Prior 

to that, in 1940, the organism was apparently noticed and later named Halobacterium Elazari-Volcani. 

Through continued research it was found that several organisms with different names given by different 

researchers were indeed the same and collectively named H. salinarum in 1996 [3] with a strain 

designator of R1 [2]. A number of strain variants have been developed over the years to induce the cell 

to over-produce bR protein in the membrane. 
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When used for sensor applications, the cell is lysed and the contents digested and centrifuged to help 

in purification. The cell membrane is broken into fragments by sonication and these membrane fragments, 

each containing many bR molecules, are called Purple Membrane (PM) due to the royal purple color of 

the membrane patch. The membrane patches are typically 0.5 µm in the lateral dimension making them 

very flexible which allows attachment to irregular surfaces but also allows the patch to fold onto itself 

possibly reducing the net electrical effect of the proton charge translocation across the membrane. PM 

and bR are extremely robust and maintain function up to 80 C in solution, 140 C dry, pH from 2 to 12, 

are stable in most non-polar organic solvents, and in the dried state have a shelf life of years. These 

properties are the reason bR continues to be a material of interest for optical-electrical conversion 

applications such as sensors. 

2.2. Bacteriorhodopsin Function 

H. salinarum is a salt-loving extremophile bacteria and is cultured as such. The protocol described 

by Oesterhelt and Stoeckenius [4] has been widely used and modified for various bacteria strains [5]. 

Table 1 [5] shows the makeup of a typical growth medium. The medium should be well mixed to ensure 

dissolution of all reagents and the pH adjusted to 7.2 with 5 M NaOH. The medium must be autoclave 

sterilized and can then be stored at 4 °C. After inoculation with the bacteria, it is cultured in a sealed 

flask, under light with constant agitation, and at 40 °C. The logarithmic growth phase of the culture 

typically takes 5–7 days and can be followed using optical absorbance of the growth medium. 

Table 1. Reagents required to prepare H. salinarum growth medium [5]. 

Reagent Concentration Per 1 Liter 

NaCl 4.28 M 250 g 
MgSO4 (anhydrous) 81.1 mM 9.77 g 

KCl 26.8 mM 2 g 
NH4Cl 93.5 mM 5 g 

Sodium citrate, 2H2O 10.2 mM 3 g 
Glycerol 137 mM 1 mL 
KH2PO4 0.735 mM 0.1 g 

CaCl2 (anhydrous) 1.4 mM 0.2 g 
Bacteriological peptone -- 10 g 

After culturing, the medium is centrifuged to isolate whole H. salinarum cells from the medium 

appearing as a red pellet. The pellet is then placed in distilled or deionized water which lyses the cells 

releasing the contents into solution. The coiled DNA causes the solution to become viscous. The DNA 

is digested using DNase 1 at room temperature using a stir plate for 24 h. Further centrifuging of this 

solution causes large cell debris to be separated and the supernatant is collected as it contains PM along 

with small cell debris. Centrifuging of the supernatant separates the PM from the lighter cell debris 

forming a purple to red color pellet while the yellow-color supernatant is discarded. This step is repeated 

until the supernatant is clear. Re-suspending this pellet in water produces a royal purple liquid which is 

introduced into a linear sucrose gradient for the final purification step. The purple band of the sucrose 

gradient is pipetted out and this material is the purified PM used for sensor applications. 
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2.3. Purple Membrane Deposition 

For a pH in the range of approximately 5–12, the intracellular side of the PM patch is more electrically 

negative than the extracellular side. This provides an easy method for aligning and depositing the  

PM patches for sensor applications. The charge density, and therefore the electronegativity, can be 

changed by changing the pH of the suspension carrying the PM [6,7]. The presence and the ability to 

change the electrical characteristic are important for orienting and depositing PM by electrodeposition,  

Langmuir-Blodgett, or ionic self-assembly techniques. 

2.3.1. Electrodeposition 

Because of the spatial charge difference on the two sides of the PM patches, they can be oriented by 

applying a DC-field to the suspension containing them. This not only orients the patches but also causes 

them to deposit on one of the electrodes with the more negatively charged cytoplasmic side toward the 

positive electrode [7]. While the method is easy and quick, there is no control over the number of layers 

deposited. The method is good for thick layers containing hundreds to thousands of PM layers [8]. 

The process uses two electrically conductive planar electrodes such as copper, brass, or indium tin 

oxide on glass which allows light to be transmitted to the deposited material. The parallel electrodes are 

typically spaced apart by approximately 1 mm using an elastomer O-ring placed on the bottom electrode. 

The suspension of PM in water is deposited within the O-ring forming a seal and the top electrodes 

placed on the O-ring and in contact with the suspension for electrical connectivity. Four V DC can be 

applied for 30 s to one minute which orients and deposits the PM onto the positive, bottom electrode. 

The excess water can then be pipetted away and the bottom electrode lightly rinsed. The PM adheres 

well enough while wet and the electrode can then be allowed to dry in air. It is best if drying takes place 

in approximately 50% relative humidity to keep the film from cracking and delaminating due to 

excessively rapid drying. 

2.3.2. Electrostatic Layering 

Ionic attraction can be used to orient the dipolar PM [9,10] using poly(dimethyldiallylammonium 

chloride) (PDAC). The surface of the bottom electrode is first left with a negative charge by etching with 

dilute KOH. PM layers can then be built up by alternating incubation in either the PM suspension or 

PDAC solution with a wash and dry step after each incubation step. This process was used for up to  

12 layers [10] but the orientation and number of monolayers was difficult to confirm. 

2.3.3. Langmuir-Blodgett Layering 

The Langmuir-Blodgett (LB) technique provides a high degree of control over the orientation and 

deposition of PM onto a substrate. LB utilizes a sub-phase liquid on which a known amount of PM 

suspension is carefully applied with a syringe. Because of the lipid content and amphiphilic nature of 

the PM, the patches will orient themselves and spread into a thin disconnected layer. An LB trough has 

a fixed barrier and computer controlled moveable barrier to compress and maintain a uniform and 

unbroken PM layer. As a substrate is withdrawn up through the sub-phase and PM layer, the single layer 

of patches floating on the sub-phase adhere as a single layer on the substrate. A delicate measuring balance 
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lifts the substrate while measuring the force. The output of the balance is used to drive the moveable 

barrier which compresses the PM layer on the sub-phase maintaining an unbroken film [11–20]. There are 

also variations to the basic process that combine LB with electrodeposition [21,22] and several horizontal 

deposition techniques [23–26]. While the LB technique provides excellent control over PM orientation 

and layer numbers, it is a necessarily slow process so that the PM film remains properly compressed by 

the barriers providing an unbroken film for deposition onto the substrate. 

2.3.4. Molecular Orientation Deposition 

The bR protein spans the entire thickness of the cell membrane and extends slightly beyond both sides 

of the membrane. This exposes sites for binding other molecules to the bR, particularly one or more 

amino terminus on the extracellular side and carboxyl terminus on the intracellular side. These sites are 

well suited for binding biotin and streptavidin [27,28]. Biotin is a small molecule with a molecular 

weight of 244 Da (also known as vitamin B7) while streptavidin is a large molecule with a molecular 

weight of 53 kDa. Streptavidin has four binding sites for biotin and this conjugate forms one of the 

strongest covalent bonds found in nature with Ka~1015 M−1.  

The bR can be biotinylated at lysine 219 at a pH of approximately 9 [29,30] and forms the binding 

sites for streptavidin. Biotin can also be deposited onto a substrate by LB or other methods [31,32] and 

then incubated in a solution of streptavidin leaving exposed streptavidin binding sites. This construct is 

then incubated in PM patches with biotinylated bR which orients and strongly binds the patches. This 

technique also allows a finite density and number of PM patches due to the finite number of  

biotin-streptavidin binding sites [28,33–35]. In [32] this method produced a peak voltage output of 157.2 mV 

while non-oriented films produced 7.8 mV. Surface plasmon resonance was used to determine that 81% 

of the PM patches had the same orientation after binding. 

2.4. Purple Membrane Patterning 

Several methods for patterning purple membrane on a substrate have been reported. These methods 

generally fall into one of two processes: deposition of a broad film of purple membrane followed by an 

energetic removal process; or by a lithographic process whereby purple membrane is selectively deposited 

or removed by a chemical process. 

2.4.1. Patterning by Energetic Removal 

Laser ablation has been shown to pattern a broad film of purple membrane. Haronian and Lewis [36] first 

deposited a film of PM onto a conductive gold coated substrate. Then using an electron microscope grid 

they exposed the film to an ArF excimer laser [37] which ablated the PM from between the parallel 30 µm 

openings of the grid. After the grid was removed gold was sputtered creating a conductive top layer. The 

parallel grid was reapplied perpendicular to the original direction and again laser-ablated creating an 

addressable array of 30 µm square pixels. 

Anton [38] used a 30 keV focused ion beam (FIB) to create a pattern in a film of PM first deposited 

by electrodeposition. The FIB system used a CAD-type beam raster generator with programmed current 

and pixel dwell time to selectively remove the PM as shown below (Figure 1). The left figure shows a 
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regular square array of holes where PM was removed. The right figure shows a more irregular but deeper 

and more well-defined pattern. One drawback to this method is that gallium will be deposited within the 

PM that can change or destroy its photoelectric function. However, Monte Carlo modeling estimated that 

the penetration depth of the ion beam in the PM extended to approximately 60 nm with the bulk of the 

deposition occurring at approximately 40 nm depth with 20 nm of lateral scattering. 

Figure 1. Electrodeposited PM patterned by FIB [38].  

 

2.4.2. Non-Energetic and Lithographic Patterning 

Several processes for patterning PM without exposing it to high energy have been demonstrated. 

Libertino [39] patterned PM on silicon by first thermally growing a 25 nm thick silicon dioxide film on 

a silicon wafer, followed by a 200 nm thick layer of polysilicon. This was then masked and plasma etched 

down to the silicon dioxide. The mask had openings and features ranging from 600 nm to 2 mm. The PM 

was allowed to deposit onto the oxide in the bottom of the openings in the polysilicon layer by soaking 

in a suspension of PM and deionized water for 10 min and then drying with nitrogen. By this method, the 

PM patches in the layer would not have been directionally oriented. A photoresponse measurement was 

not reported. 

Crittenden [40] demonstrated a soft lithography process using a gold coated polydimethylsiloxane 

(PDMS) master resembling a microfluidic channel geometry. After the PDMS master was patterned,  

it was coated with 70 nm of gold. Adhesive tape was then applied to the master and removed taking the 

gold from the top portion of the lands between the channels. This left gold on the bottom and sidewalls 

of the PDMS microchannel master. The PDMS master and an ITO-coated substrate were then pressed 

together and a suspension of PM in water was injected into the channels of the PDMS master. Approximately 

5 V DC was applied for 5–30 s between the gold and ITO surfaces providing for electro-orientation and 

deposition of the PM. The patterned PM was rinsed and dried. Through scanning force microscopy it 

was shown that the PM was deposited and patterned but a photoresponse was not measured. It was 

estimated that there were 10 monolayers of PM deposited. 

Anton [5] demonstrated a lift-off optical lithography process for PM that was applied to conductive 

and non-conductive substrates, and was used to modulate MOSFETs with light as will be described in 

the next section. In this process, if the substrate was non-conducting then a gold or chrome-gold layer 

was applied to create a conductive layer. Then similar to standard MEMS-type processes, photoresist 
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was spun onto the substrate and patterned by optical lithography using a chrome mask. After development 

of the resist, openings remained that extended down to the conductive layer. A thick film of PM suspension 

in deionized water was deposited over the area of interest and an ITO-glass wafer placed as the top 

electrode. Standard electrodeposition was performed immobilizing the PM within the openings in the 

patterned resist, followed by drying. The photoresist and remaining PM film was removed by a brief 

acetone soak that dissolved the resist and with it removed any PM on the resist. It is important to note 

here that PM is quite stable in acetone so the PM that was electrodeposited in the resist openings 

remained. The reference also provides results of typical lateral features down to 5 µm. 

2.5. Purple Membrane Applications 

The durability, patterning options, and photoelectric properties of bR in PM make it a very useful 

transduction material for electronic and molecular sensing applications. The three applications described 

are for bio-based solar cells, transistor modulation by light, and as a sensor medium where the bR action 

is modulated in the presence of a molecular target. However, the traditional process for extracting and 

purifying PM is slow and therefore relatively expensive requiring equipment and knowledgeable technical 

support. Shiu et al. [41] describe a process to reduce a substantial portion of the time and processing 

requirements to purify PM. The first several process steps remain the same up to and including lysing of 

the cells and digestion with DNAse. In the traditional process there would be several steps of 

ultracentrifuging and then final separation across a sucrose gradient. Shiu et al. demonstrated using 

aqueous two-phase separation (ATPS) to eliminate the relatively delicate sucrose gradient step. In ATPS, 

the cell lysate after the DNAse step is mixed with potassium phosphate solution, dibasic and a PEG 8000 

solution for one hour. The aqueous phases were then separated by a 15 min centrifuge forming the purple 

band that was extracted similar to when using a sucrose gradient. The extracted PM in DI water was 

centrifuged for 30 min and designated ATPS1. An additional 15 min centrifuge step removed additional 

debris and was noted as ATPS2. This process reduced the PM extraction process from approximately 27 h 

after cell lysis to approximately 2.5 h. In their optical absorption measurements, ATPS2 was 

approximately 2.5% less pure and ATPS1 8% less pure than that from a sucrose gradient. The bR in PM 

yield measured by hydroxylamine bleaching was slightly higher in both ATPS approaches compared to 

a sucrose gradient. This newer process could be used to help reduce the cost of PM for larger applications. 

2.5.1. Bio-Based Solar Cells 

Because bR is a proton pumping protein dispersed in the purple membrane it has been shown to  

be operable in a bio-based solar cell. There have been a number of reported studies however for brevity 

three will be mentioned here. Bertoncello et al. [22] looked at the potential of using PM and compared 

it with other solar scavenging technologies including silicon, gallium arsenide, indium phosphate, and 

several polymer based technologies. Their analysis showed that light sensitive proteins might operate 

with a maximum theoretical conversion efficiency of 25%, the highest of the technologies that were 

compared. This was calculated by comparing the work of charge translocation through the cell membrane 

with the incident photon energy. Their analysis also suggested an average specific power of 250 W per square 

meter and average specific power density of 2103 W per kilogram. These values were predictions and 

not demonstrated by operating solar cell-type structures.  
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Thavasi et al. [42] demonstrated a bio-sensitized solar cell (BSSC) similar in structure to the more 

widely explored dye-sensitized solar cells (DSSCs). They used FTO-coated glass as the basic electrode 

structures. The working electrode was coated with nanoparticles of TiO2 upon which PM was immobilized. 

The counter electrode had a thin aluminum film. The electrolyte was lithium-iodide and iodine in a KCl 

buffer at pH 8 similar to that used in DSSCs. The output of the cell produced a short-circuit current of 

0.089 mA per square cm and an open-circuit voltage of 0.35 V under broad spectrum excitation of 40 mW 

per square cm. 

Al-Aribe et al. [43] described dry and wet PM films used in a photovoltaic cell. They used a  

self-assembled monolayer with biotin binding on a gold coated substrate. The PM monolayer was 

covered with an ITO electrode for the dry cell. The wet cell used a gold-coated porous substrate between 

two reservoirs with KCl. The dry cell showed a response of 9.73 mV per square cm and the wet cell 

showed 41.7 mV and 33.3 µA, both per square cm. 

Others have shown that the photoelectric output of bR can be enhanced by scavenging more of the 

solar spectrum than only at the absorption peak of bR at 570 nm. Yen et al. [44] investigated such an 

increase by incorporating a Nafion membrane to pass the expelled proton from the bR, and by selecting 

and capping a specific nanoparticle to enhance the blue absorption of the longer-lived M-intermediate 

of the normal bR photocycle. This part of the bR photocycle is responsible for the reprotonation back to 

the ground state and this enhancement can result in a larger current. In this work, they found that a 40 nm 

cuboid silver nanoparticle capped with 40 nm thick poly(vinylpyrrolidone) (PVP) with a molecular weight 

of 55,000 gave the highest stable current and largest spectral overlap with the M-intermediate absorption. 

The current density was 0.2 uA per cubic cm and was stable for up to 6 h of continuous illumination 

giving a reported 50-times higher current density than pure bR in a wet electrochemical system. 

Karna et al. [45] used semiconductor quantum dots (QDs) bound to the PM by the biotin-streptavidin 

system. QDs were chosen to scavenge blue light and radiate it at approximately 570 nm for use by the 

bR photocycle. Open circuit voltage measurements showed a 35% increase compared to PM without 

attached QDs. The voltage with QDs was approximately 0.3 V in a system with a glass substrate, coated 

with ITO and either TiO2 nanotubes or ZnO nanowires, then PM. 0.1 M KCl was the conductive medium. 

This work showed a second method of scavenging short wavelengths using bound quantum dots and a 

system that has been adapted for sensing applications as will be shown subsequently. 

2.5.2. PM Integration with Electronics 

There have been demonstrations of using PM to modulate the throughput of conventional transistors 

and nanotransistors by having the PM act as the gate input to the devices. This shows a further integration 

of the material for optoelectronic and/or chemo-electronic sensors. Somewhat similar applications have 

been demonstrated using PM in optical detectors. Fukuzawa [46] for example, took advantage of the fact 

that the M-intermediate of the bR photocycle can be greatly delayed using the PM in a high-pH environment. 

Normally with broad spectrum illumination the 570 nm light initiates the photocycle with 410 nm light 

returning the bR to the ground state from the M-intermediate state. In this work, a rectangular PM area, 

4 mm × 15 mm was made by eletrodeposition. The PM had been treated with a borate buffer of pH 9 

prior to drying to delay the transition from the M-state back to the ground state. Two electrodes were 

imparted to the rectangle by using two triangular top electrodes that were electrically isolated from each 



Sensors 2014, 14 19739 

 

 

other. A narrow vertical 4mm stripe of pulsed 570 nm light was moved across the two electrodes. The 

variable photovoltage in each triangular top electrode was measured and an algorithm was used to sense 

the location of the stripe as it moved with good agreement between actual and measured positions. This 

demonstration showed an example that PM can be used in dynamic optical applications such as one- and 

two-dimensional photodetectors. 

There has been a body of work showing that PM can be integrated with transistors to modulate those 

devices under variable illumination. Xu et al. [47] and Bhattacharya et al. [48] describe the integration 

of PM onto the gate electrode of GaAs field-effect transistors. With 594 nm light from a He-Ne laser 

variable from zero to approximately 70 mW per square mm, the device showed a response of 3.8 A/W 

of excitation. Later, Xu et al. [49] demonstrated a similar application using an InP-substrate and device 

architecture of InGaAs/InAlAs with oriented PM on the gate. In this case the extended Ti/Au gate was 

1mm diameter and the PM was 50 um thick. Under variable optical power of 594 nm wavelength, the 

device showed a response of 175 V/W of optical power and a 16 dB dynamic range. Shin et al. [50] 

showed an n-channel silicon MOSFET with PM on the extended Ti/Au gate electrode with a biasing 

capability. Using variable power 594 nm light a response of 4.7 mA/W was shown. 

Anton et al. [51,52] demonstrated the photolithographic lift-off process to integrate PM onto extended 

Au gates of conventional MOSFETs. In this work the extended gate pads varied from 250 µm square to 

4 mm square. This work showed the extreme sensitivity possible with this type of architecture. A yellow 

LED array was used for illumination with optical power measured specifically at 570 nm. At a LED-device 

distance of 300 mm and an optical power of 1.6 µW per square cm, the induced photovoltage of the PM 

was measured to be 0.5 mV and the MOSFET current throughput was 0.5 nA. Even at these extremely 

low values, the current waveform correlated with the flashing of the LED array. 

Pushing the device sizes even smaller, Walczak [32] and Walczak et al. [53,54] integrated PM onto 

the gates of multiple quantum dot-based room-temperature single electron transistors (SETs). In this 

work, the SET devices were fabricated using focused ion beam deposition of 8 nm and larger tungsten 

quantum dots in the active area between larger electrodes. The PM was illuminated with a yellow LED 

array with a flash period ranging from 2.5 s to a very long 83 s. In each case the change in SET drain 

current was approximately 0.6 nA for 2.5 s to 1 nA for 83 s. An electrical analogy model was also presented 

for these devices from measurements taken of resistance and capacitance of the PM under changes of 

illumination intensity. There was good agreement between the model and measured PM photovoltage. 

2.5.3. PM for Sensing Applications 

The utility of PM-based sensors has also been shown. For example, Sharkany et al. [55] showed 

several methods for using the changes in optical properties of PM in the presence of relative humidity 

and the presence of ammonia. In the former work, they dispersed PM into a gelatin with triethanolamine 

added for greater photosensitivity and then deposited this onto glass slides or the end faces of 600 μm 

quartz fibers. The changes in PM absorption were measured at 412 nm and 570 nm with a spectrometer 

with 570 nm LED illumination. For changes in relative humidity (RH), the reported 412 nm absorption 

changes varied from approximately 0.17 at 12% RH up to approximately 0.37 at 90% RH after which 

the change decreased. In the presence of ammonia, the optical transmission of 412 nm light increased by 

approximately 35% compared to an absence of ammonia. 
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Korposh et al. [56] later showed the change in absorbance changes in ammonia concentration from 

zero (air only) to 10,000 ppm using optical fibers with an exposed end covered with a PM, gelatin, and 

triethanolamine mixture as above. They showed static conditions where the absorbance change stabilized 

after 120 s and also dynamic changes where the test chamber was exposed to increasing ammonia 

concentrations with 50% RH air introduced periodically to flush ammonia from the chamber. In all cases 

the response generally showed a first-order response with a reported detection limit of 5 ppm. 

Other applications of PM for sensing have expanded to methods for stopping or starting the bR photocycle 

and subsequent photovoltage in the presence of a target species. Griep [57] and Griep et al. [58–62] 

developed a method whereby streptavidin-coated semiconductor quantum dots are attached to a biotinylated 

site of the bR just above the membrane lipid bilayer. The quantum dot is selected so it will fluoresce 

near 570 nm when illuminated with UV light which did not initiate the bR photocycle. A dark quencher 

molecule was attached to the QD with a very short linker molecule allowing energy to be non-radiatively 

transferred from the QD to the dark quencher via FRET coupling. The dark quencher was chosen such 

that the target molecule of interest preferentially displaced the dark quencher if the target was present in 

the environment. Under conditions with a lack of target, the bR activity does not operate due to a lack 

of proper illumination as the 570 nm output of the QD is quenched. In the presence of the target, the 

linker is severed permitting the QD to fluoresce and initiating the photocycle with a measurable output. 

This was shown to be effective for a system with maltose binding protein where the quencher was 

displaced in the presence of maltose. A 1mM concentration of maltose was demonstrated. 

Winder [31] and Winder et al. [60,63] showed a similar architecture and the selectivity to the target. 

In this work, a maltose binding protein and PM hybrid was constructed. The addition of sucrose to the 

environment did not elicit a response, but a 175 mV change in the hybrid sensor was observed with the 

addition of 1 mM of maltose. This work shows the utility of both a PM/bR hybrid with a target-specific 

linked molecule and that the hybrid can have excellent selectivity to the target. 

3. Semiconductor Quantum Dots 

The development and application of QDs has accelerated rapidly in recent years, providing highly 

tunable nanoscale materials with applicability towards a wide-range of engineering fields. Although the 

toxic materials used to synthesize semiconductor QDs make them unsuitable for biocompatible 

applications, their unique properties make them ideal for a multitude of sensing applications. One  

highly sought after characteristic for semiconductor QDs in particular are their optical properties. 

Semicondunctor QDs have the innate ability to absorb photons with energy over a wide range of the 

spectrum from ultraviolet to the visible and exhibit bright, atom-like narrow emission bands in the visible 

that can be further tuned by changing the size or composition of the particles [64–66]. With the electron 

and hole pair confined in all three dimensions the bandgap can be controlled through manipulation of 

the QDs diameter, with a smaller crystal size producing a higher energy bandgap. The tunability of the 

semiconductor QDs bandgap relies both on the material composition and the diameter of the QD colloid, 

typically ranging from 2 to 10 nm. Assembled as both core and core/shell structures of mixed metal 

dichalcogenide and alloyed structures, they can be easily tuned to fit energy spectra spanning from the UV 

to nIR wavelengths and extremely high quantum yield efficiencies.  
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The innate properties of QDs make them desirable source of photons for the study of the photo-assisted 

structural changes and dynamics of biomolecules [67–69]. Furthermore, these QDs exhibit exceptionally 

high chemical and physical stability, low-photobleaching, and the ability to bind with both organic and 

biomolecules. These characteristics in conjunction with their nanoscale dimensions and ease of surface 

functionalization have made them a prime material for applications in the biomedical field including drug 

delivery, biosensors, cellular targeting, biolabeling, therapeutics, and fundamental biological studies. Even 

with their impressive properties, however, a gap in the fundamental understanding of how these 

engineered QDs interact with biomolecules and in a biological environment has proven to be a major 

obstacle to the implementation of QDs in biomedical applications. The interactions are complex, 

involving a wide-array of variables including the basic properties of the QD (size, capping agents, surface 

structure, shape, atomic composition, crystallinity, etc.), type of biomolecule (enzymes, DNA, proteins, 

organelles, etc.), effects of suspension environment (pH, ionic strength, polar/nonpolar, temperature, 

stability, charge states, etc.), and the dynamic behavior of the formed interfaces. With the trend towards 

in vivo QD sensor applications, additional emphasis towards understanding the role of ligand length, 

charge, and QD size on cytotoxicity must be considered [70,71]. 

3.1. Quantum Dot Bioconjugation 

To take advantage of the unique properties of QDs in a diverse array of sensor applications and 

environments, careful selection and preparation of the functional surface coatings must be addressed. 

Depending on the application environment, biomolecule of interest, and desired sensing mechanism, 

numerous QD bioconjugation strategies exist as shown in Figure 2, including direct covalent linkages, 

polyhistidine-metal-affinity coordination, electrostatic adhesion, and chemoselective ligation [72]. 

The proper application of these varying conjugation schemes provides a pathway to control  

critical criteria of the biomolecules attachment including valency, affinity, biomolecular orientation, 

QD-biomolecuar spacing, and orientation of the target binding spot. Biomolecular orientation with 

proteins, for example, can take advantage of the terminal amine and carboxyl groups for site directed 

attachment on the QD via carbidomide linkage chemistry. Similar methodologies can be utilized with 

synthetic oligonucleotides and aptamters, and can utilize broader linkage chemistries at a site-specific 

locations on the biomolecule using thiol, polyhistidine, and biotinylation (for biotin-streptavidin 

conjugation) [73]. 

Another common conjugation strategy that allows control of spatial separation and material 

orientation is electrostatic layer-by-layer (LBL) deposition. As mentioned previously, by controlling the 

surface charge on the materials, to ideally be greater than ± 30 meV, monolayers can rapidly be adsorbed 

to oppositely charged surfaces. The LBL layering strategy has proven to be a common methodology 

employed to achieve QD biofunctionalization in sensor applications [62,74,75], with monolayer 

formations comparable to that of Langmuir-Blodgett deposition [76]. The ease of deposition of QD 

systems has made sensor platforms feasible in both the aqueous suspension and solid substrate forms, 

allowing for the utilization of the inherent QD sensor mechanisms in virtually any environment. 
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Figure 2. Bioconjugation schemes for QD functionalization including (a) thiol coordination; 

(b) polyhistidine groups; (c) amine/carboxyl moieties; (d) PEG; (e) hydrophobic interactions; 

(f) electrostatic adhesion; (g) nickel mediated polyhistidine; (h) maleimide covalent linkage; 

(i) active esters; and (j) biotin-streptavidin complexes. Figure used with permissions of 

publisher [73]. 

 

3.2. Quantum Dot Sensor Mechanisms 

The optimization of QD synthesis, functionalization and deposition strategies has opened up pathways 

to apply and tune the inherent sensor potential of QD materials. Currently four main mechanisms are 

employed that utilize the highly sensitive nature of a tailored QD bandgap, including Förster Resonance 

Energy Transfer (FRET), Bioluminescent Resonant Energy Transfer (BRET) [77], Charge Transfer [78], 

and chemiluminescence [79]. 

By far the most common route to create QD sensor platforms utilize the phenomena of fluorescence 

resonance energy transfer (FRET), also referred to as Förster resonance energy transfer. Commonly used 

in bioimaging to serve as a molecular-level ruler, allowing Angstom-level resolution [80,81], it has proven 

to be a versatile mechanism to harness the QDs quantized bandgap properties for multiple sensor designs. 

The basic FRET principles require an overlapping donor emission and acceptor absorbance energy 

bands. Serving as an energy donor, energy from the excited-state QD can be transferred non-radiatively 

to the acceptor molecule. Therefore some of the energy that would have been given off by the donor 

molecule through electromagnetic radiation is now transferred to the acceptor molecule by resonance 
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through the dipole moments of the two molecules. The degree of FRET seen in a specific donor/acceptor 

pair is directly related to their separation distance, donor emission and acceptor absorbance spectral 

overlap, and orientation of the donor/acceptor dipole moments. Calculation of the FRET efficiency between 

a donor and acceptor requires the determination of the most telling parameter, the Förster radius; which 

is defined as the distance between the donor and acceptor where 50% of the donor’s energy is transferred 

via FRET. The Förster distance (R0) is defined as:  

R0
6 = (8.8 × 1023) (κ2) (ηD

4) (ΦD) J(λ) (1.1) 

where κ is the dipole orientation factor, ΦD is the quantum yield of the donor, J is the normalized overlap 
integral between the donor and acceptor, and η is the refractive index of the medium. After the Förster 
radius is determined, the FRET efficiency of the donor/acceptor pair at various separation distances can 
be determined; a value which indicates the percentage of non-photonic emission from the donor, which 
is also the percentage of energy transferred to the acceptor through electron resonance. FRET efficiency 
(E) can be calculated using the equation: 

E = (R0
6)/(R0

6 + R6) (1.2)

Numerous optical detection techniques have been created to translate the high sensitivity provided by 

FRET in sensor applications [82–88]. Utilizing the QD as the energy donor, sensing mechanisms have 

been achieved through modulation in separation distance, or presence of, a FRET coupled acceptor. A 

typical QD-biomolecular FRET coupled sensor is activated through the association or disassociation of 

the energy coupled FRET acceptor at the QD surface. The association of the acceptor within FRET coupling 

proximity, typically less than 10 nm, facilitates coupling and can be directly monitored thru alterations 

in the QD optical emission [84]. QD-biomolecule FRET has been successfully used to develop and 

demonstrate QD-based biomolecular detection systems [68,69,89]. Additional incorporation of FRET 

tethers [82] and non-traditional FRET approahes [83] have opened up unique in vivo sensor/imaging [85], 

drug delivery [86], automated chemical analysis review [90], nanomedicine [91,92], and nucleic acid 

diagnostics [93]. 

Although not as well-known as FRET, a new sensing mechanism known as bioluminescent resonant 

energy transfer has emerged [94–96]. Rather than achieving the excited donor state through 

electromagnetic excitation, the BRET mechanism relies on achieving electron excitation through  

bio-chemical reactions. Following electron excitation, the same mechanism for electron relaxation 

occurs as electromagnetic radiation emission seen in FRET. Utilizing the BRET approach, new 

multiplexed sensor platforms specifically tailored to reactive biomolecular species have been developed [77]. 

3.3. Quantum Dot—Optical Protein Coupled Sensors 

A new approach to QD sensors is to utilize the FRET coupling mechanism to not only detect the 

presence of the energy acceptor molecule, but for the energy acceptor to utilize the donated QD energy 

to enhance its innate biomolecular function. This biomolecular enhancement has been demonstrated in 

QD-bacteriorhodopsin FRET coupled hybrid systems. While the application of bR can be hindered due 

to its relatively limited spectral activation range in the visible spectrum, coupling bR to inorganic QDs 

capable of capturing a broader spectral range and transferring the captured energy directly to the bR retinal. 

Recent studies have shown that bR molecules and colloidal QDs together have the ability to participate 
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in FRET coupling [97] and has been optimized for maximal FRET energy conversion [97–99]. The spectra 

displayed in Figure 3 demonstrates the spectra overlap of the 1st QD absorption peak, occurring  

at 544 nm, with the bR570 nm absorption peak; which is the optimal region for FRET coupling. 

Figure 3. FRET coupling energy bands of bR (purple solid) and size-selected CdSe/ZnS 

QDs (green dashed), with overlapping QD emission (green solid).  

 

Bioconjugation schemes including zero-length EDC linkers and biotin-streptavidin complexes have 

been employed to create QD-bR hybrid materials. To utilize bR’s optoelectronic properties, which are 

dominantly powered by the QD energy coupling in this hybrid system, the aforementioned LBL deposition 

methodology has been employed to create a nanoscale hybrid QD-bR electrode system. Utilizing the 

maltose binding protein-dark quencher sensor methodology developed by Medintz et al., a maltose 

sensing prototype system was developed for the QD-bR system where the sensor is monitored directly by 

changes in bR optocelectronic response. As shown in Figure 4, this sensor system is highly sensitive to 

target detection and can be analyzed in near real-time utilizing simple electronic platforms.  

As shown in the bR photocurrent output in Figure 4, the formation of a QD-dark quencher FRET  

pair diminishes the amount of QD energy available for the bR photocycle, ultimately reducing the bR 

photocurrent output by over 50%. Addition of the target maltose molecule competitively displaces the 

dark quencher molecule from the MBP binding pocket, largely restoring the QD-bR energy transfer 

relationship. In the prototype sensing system, the detection of maltose was signaled by the instantaneous 

increase in the bR photocurrent output, reaching near original magnitudes prior to dark quencher addition. 

The biosensing prototype operates when the energy transfer relationship is altered upon target binding, 

demonstrating the applicability of a QD-bR hybrid system for sensor applications. The electrical nature 

of this sensing substrate will allow for its efficient integration into a nanoelectronics array form, potentially 

leading to a small-low power arrayed-sensing platform. 
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Figure 4. QD-bR hybrid sensor with (a) base bR-QD bioelectronic platform output;  

(b) output following the addition of a MBP layer to create the bR-QD-MBP electrode;  

(c) dropping the bR’s photoelectric output upon dark quencher binding; and (d) restoration 

of the bR photovoltage to near original magnitudes; (e) Legend for materials.  

 

4. Noble Metal Nanoclusters 

Nanomaterials have been an extremely popular research area in the past decades and have  

found applications in a wide variety of fields due to their size-dependent mechanical [100–102],  

electrical [103,104], and optical [105,106] properties that are not possible in bulk materials. In the biology 

and biomedical field, nanomaterials and nanostructures have been intensely researched, particularly for their 

size dependent fluorescent properties, which can be utilized for bioimaging and sensing applications [107]. 

Semiconductor quantum dots (QD) [108–111] and noble metal nanoparticles (NP) [112–115] have been the 

subject of intense research as a replacement to small molecule dyes and fluorescent proteins due to their 

excellent photostability and fluorescence tunability. However, the large size of NPs and the toxicity of 
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the heavy metals used to create QDs limit their biocompatibility, making them unsuitable for in vivo 

applications [116]. 

Noble-metal nanoclusters (NCs) typically have sizes smaller than 2 nm and have been extensively 

researched as a new type of fluorophore [117–121]. Unlike NPs, whose size is comparable with  

the electron mean-free path (e.g., 20 nm for Au) and whose absorbance is based on surface plasmon 

resonance [112], noble metal NCs have sizes comparable with the Fermi wavelength (~0.5 nm for Au 

and Ag), and exhibit fluorescence based on discrete electronic states [122]. Due to their small size and 

molecular-like properties, noble metal NCs are typically regarded as the “missing link” between atomic 

and nanoparticle behavior [123]. The fluorescent properties of noble metal NCs are very similar to those 

of the semiconductor QDs previously discussed, however, unlike QDs noble metal NCs are extremely 

biocompatible, making them suitable for in vivo applications. This greatly improves the potential 

biolabeling and biosensing applications of noble metal NCs over their semiconductor QD counterparts. 

Due to their extremely small size, high quantum yield (QY), and excellent biocompatibility and 

photostability [124], NCs have received a large amount of attention in the biomedical fields for 

bioimaging and sensing applications [120,122,125]. Further, since the fluorescence of NCs is based on 

discrete electronic states, they exhibit a size-dependent fluorescence based on the number of atoms 

included in the cluster. This fluorescence stems from the energy difference between the highest occupied 

molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) and the emission is 

caused by the transition between the sp-band (excited state) and the d-band (ground state). 

4.1. Nanocluster Synthesis 

The photoluminescence of noble metals was first reported over forty years ago by Mooradian [125], 

however, the extremely low quantum yield (QY) on the order of 10−10 severely limited the practical use 

of this observed phenomenon. However, spurred by the interesting biomedical applications of NPs and 

quantum dots, highly reproducible synthesis techniques have been developed for water-soluble noble 

metal NCs with quantum yields on the order of 10−2–10−1, making them practical for fluorescence based 

biolabeling and sensing applications.  

Noble metal nanoclusters generally consist from a few to a hundred atoms with sizes comparable to 

the Fermi wavelength [123]. Although Au [126–137] and Ag [138–143] are the most widely used metals 

in NC synthesis, synthesis methods have also been developed for Cu [144] and Pt [145,146]. In order to 

protect from aggregation, these atoms are bound to a protective ligand. Protective ligands include 

proteins [132], DNA [140], dendrimers [130], polymers [142], and thiols [126]. Aside from protecting 

against aggregation, the choice of ligand also influences the geometry and size of the NCs, allowing for 

tunable fluorescence properties. 

NC synthesis methods generally fall into two categories: the top-down and bottom-up approach [147]. 

The top-down approach generally involves etching a relatively large nanoparticle into smaller NCs while 

the bottom-up approach involves a chemical reaction to directly build up metal atoms on a ligand 

template. Key factors that influence the synthesis of high quality NCs are a strong interaction between 

the ligand and the metal ions, strict reducing conditions, and a relatively long aging time [124].  
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4.1.1. Au Nanocluster Synthesis 

One of the first major breakthroughs in the synthesis of nanoclusters was thiolate-protected Au  

NCs [126–129]. In thiolate-based NC synthesis, a thiol ligand (such as glutathione) forms a monolayer 

on the surface of a metal atom cluster, this subset of NCs are generally referred to as monolayer-protected 

clusters (MPCs) [121]. In 1998, Whetten et al. [126] developed a synthesis method to create 28-atom Au 

clusters protected by a glutathione (GSH) monolayer (Au28(SG)16). The synthesized clusters exhibited an 

emission at 800 nm (when excited at 500 nm) with a quantum yield of (3.5 ± 1) × 10−3 [129]. Following this 

research, Tsukuda et al. [128] discovered that synthesis of GSH-protected Au NCs actually produces 

multiple cluster sizes (termed “magic numbers”) which can be separated using polyacrylamide gel 

electrophoresis (PAGE). Using mass spectrometry, clusters of 18-, 21-, 25-, 28-, 32-, and 39- atoms were 

discovered and isolated.  

In 2003, Zheng et al. [130] developed a synthesis method to produce water-soluble 8-atom Au 

nanoclusters stabilized by a poly(amidoamine) (PAMAM) dendrimer. In order to prepare these NCs,  

0.5 µmol of G4-OH and 1.5 µmol of HAuCl4*nH2O were dissolved in 2 mL of distilled water, NaBH4 

was added as a reduction agent. This solution was then stirred for 2 days until the reaction was complete. 

This reaction resulted in both Au NCs as well as larger NPs, which were removed by centrifugation. 

These Au8 NCs exhibited a fluorescence emission peak at 450 nm upon excitation at 384 nm and had an 

impressive QY of around 41%. In a later paper Zheng et al. [131] reported that the size of these NCs 

could be tuned by altering the Au:PAMAM concentration ratio. Using this method, Au5, Au8, Au13, Au23, 

and Au31 NCs were created. It was also discovered that as the size of the NCs increased, the fluorescence 

emission peak exhibited a red-shift, allowing for a tunable fluorescence peak from UV to near IR. 

However, larger NCs also resulted in lower QY, as shown in Table 2. 

In 2008, Xie et al. [132] developed a one-pot, “green” technique to synthesize Au25 NCs using the 

common protein bovine serum albumin (BSA) as the protective ligand (Figure 5). The synthesis method 

involved adding 5 mL of aqueous HAuCl4 solution (10 mM, 37 °C) to 5 mL of BSA solution (50 mg/mL, 

37 °C), stirring vigorously for 2 min, and adding 0.5 mL of NaOH solution (1 M) to bring the pH of the 

solution to ~12. The solution was then incubated at 37 °C for ~12 h. This method produces Au25 NCs 

with a fluorescence emission peak at 640 nm with a UV-excitation (365 nm) and a QY of ~6%. Although 

the QY of this method is somewhat low compared to other methods, the simple, economical recipe, low 

synthesis time, large Stokes shift, and biocompatibility of this method have made it a very popular 

method for creating fluorescent NCs for bioimaging and sensing applications. 

Table 2. Measured PAMAM templated Au-NC photophysical properties [131]. 

Gold Excitation Emission QY Lifetime 

Cluster (FWHM) (eV) (FWHM) (eV) (%) (ns) 
Au5 3.76 (0.42) 3.22 (0.45) 70 3.5 
Au8 3.22 (0.54) 2.72 (0.55) 42 7.5 
Au13 2.86 (0.38) 2.43 (0.41) 25 5.2 
Au23 1.85 (0.21) 1.65 (0.26) 15 3.6 
Au31 1.62 (0.20) 1.41 (0.10) 10  
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Figure 5. Formation of BSA-AuNCs [132]. Reprinted with permission from [132]. 

Copyright (2014) American Chemical Society. 

 

In 2009, Cheng-An et al. [137] developed a top-down method to synthesize Au NCs protected  

by dihydrolipoic acid (DHLA) by etching larger NPs. The base NPs used in this synthesis method were  

6 nm diameter Au NPs (stabilized with didodecyldimethylammonium bromide (DDAB). These NPs 

were dissolved in a toluene solution, bringing the average diameter to approximately 5.5 nm. Adding a 

gold precursor (AuCl3 or HAuCl4) to the DDAB-toluene solution further dissolved the NPs to an average 

size of around 3 nm, which completely removed the surface plasmon absorption, resulting in NC behavior. 

In order to make the resulting NCs water-soluble for biological applications, the NCs were subjected to 

a ligand exchange with DHLA by adding a DHLA:TBAB solution to the AuNC:toluene solution and 

performing a centrifugation on the resulting mixture to isolate the AuNCs. The resulting AuNC@DHLA 

particles have an average diameter of around 1.5 nm with an emission peak at 650 nm (with excitation 

at 490 nm) and a QY of around 3.45% in methanol and 1.8% in water. 

4.1.2. Ag Nanocluster Synthesis 

In 2002, following in the footsteps of water-soluble gold nanoclusters, Dickson et al. [148] attempted 

to create Ag NCs using a PAMAM dendrimer as a stabilizing agent. Although synthesis of Ag NCs (Ag2 

and Ag8) was demonstrated prior in 2001 through photoactivation of silver oxide thin-films [149], little 

control of these surface bound nanoclusters was possible [148]. PAMAM encapsulated Ag NCs were 

created by dissolving 0.5 µmol of G4-OH and 1.5 µmol of AgNO3 into 1 mL of distilled water and 

adjusting to neutrality with acetic acid. Although this process was successful in creating Ag2 and Ag8 

NCs, they were very prone to aggregation in high concentrations or introduction to a buffer [138], resulting 

in the production of large Ag nanoparticles. 
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Figure 6. Excitation and emission spectra for ss-DNA encapsulated AgNCs. (A) Blue 

Emitters (5'-CCCTTTAACCCC-3') (B) Green Emitters (5'-CCCTCTTAACCC-3')  

(C) Yellow Emitters (5'-CCCTTAATCCCC-3') (D) Red Emitters (5'-CCTCCTTCCTCC-3') 

(E) near-IR emitters (5'-CCCTAACTCCCC-3') (F) Images of solutions A–D [140]. Reprinted 

with permission from [140]. Copyright 2014 American Chemical Society. 

 

In 2004, Dickson et al. [139] developed a synthesis technique to create Ag NCs using a DNA 

template. This synthesis technique involved combining AgNO3 and the 12-base oligonucleotide  

5'-AGGTCGCCGCCC-3', cooling the solution to 0 °C, and adding NaBH4 and vigorously shaking. 

Though mass spectral analysis, it was determined that this synthesis method produced Ag NCs in the 

range of 1–4 atoms. In 2008, Richards et al. [140] expanded on the idea of synthesizing Ag NCs using 

single-stranded DNA (ssDNA) as a template by exploring the effect of using different DNA sequences. 

The recipe consisted of adding a 6:1 molar ratio of AgNO3 to 50 µM of an oligonucleotide solution, the 

mixture was then reduced with NaBH4 after 15 min. It was found that the fluorescence emission could 

be tuned by altering the sequence of the DNA template. Blue emitters (λem = 485 nm) were created  

using a 5'-CCCTTTAACCCC-3' template, green emitters (λem = 520 nm) were created using  

5'-CCCTCTTAACCC-3', yellow emitters (λem = 572 nm) were created using 5'-CCCTTAATCCCC-3', 

red emitters (λem = 620 nm) were created using 5'-CCTCCTTCCTCC-3', and near-IR (NIR) emitters 

(λem = 705 nm) were created using 5'-CCCTAACTCCCC-3' (Figure 6). Although the yellow, red, and 

NIR emitters showed great photostability, the blue and green emitters did not, making them unsuitable 

for practical use. The QY of the yellow, red, and NIR emitters were also excellent (over 30%), as can be 

seen in Table 3. 
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Table 3. Photophysical parameters of DNA-templated Ag nanoclusters [140]. Reprinted 

with permission from [140]. Copyright 2014 American Chemical Society. 

Species Emission (nm) Lifetime (ns) Φ (%) ε (105 M−1 cm−1) 

blue 485 2.98 ± 0.01   
green 520 0.22 ± 0.01 16 ± 3  

yellow 572 4.35 ± 0.01 38 ± 2 2.0 ± 0.4 
red 620 2.23 ± 0.01 32 ± 4 1.2 ± 0.3 
NIR 705 3.46 ± 0.01 34 ± 5 3.5 ± 0.7 

4.1.3. Cu and Pt Nanocluster Synthesis 

Although the synthesis of Cu NCs is relatively scarce due to susceptibility to oxidation and difficulty 

of preparation [124], synthesis methods for Cu NCs using a variety of ligands have been developed.  

In 1998, Tomalia et al. [150] and Crooks et al. [151] simultaneously developed a synthesis method to 

create Cu NCs using a PAMAM dendrimer template. In 2011, Pradeep et al. [144] synthesized Cu NCs 

using a BSA template. These clusters were composed of 5- and 13-atom cores and had an emission peak 

at 410 nm (with an excitation at 325 nm), with a QY of 0.15. Synthesis methods  

for Cu NCs using dsDNA [152] and ssDNA [153] have also recently been developed. 

Synthesis strategies have also been developed for the creation of Pt NCs. In 2011, Tanaka et al. [145] 

created blue-emitting Pt NCs using a PAMAM dendrimer template and a NaBH4 reductant. These NCs 

were composed of five Pt atoms and showed and emission peak at 470 nm, with a QY of 18%. In 2013, 

Tanaka et al. [146] developed a synthesis method to create a green version of the Pt NCs while still using 

a PAMAM dendrimer template by using a milder trisodium citrate reductant. These clusters consist of 8 Pt 

atoms (as opposed to the five atoms contained in the blue emitting version) and had an emission peak at 

520 nm (with a 460 nm excitation) with a QY of 28%. 

4.2. Applications of Noble Metal NCs 

The unique fluorescent properties of NCs combined with the fact that they can be templated with a 

wide variety of ligands have made noble metal nanoclusters an excellent candidate for a wide variety of 

sensing and biolabeling applications. This section will provide a brief overview of a few of the recent 

advances in the application of noble metal NCs. 

4.2.1. Heavy Metal Sensing 

The environmental and health concerns associated with the presence of heavy metal ions has pushed 

the development of efficient, accurate, and economical sensing. The properties of noble metal NCs have 

spurred an intense research push into the creation of sensors for heavy metals in environmental and 

biological samples [154–163]. 

In 2007, Huang et al. [154] introduced a method of sensing mercuric ions (Hg2+) using  

11-mercaptoundecanoic acid (11-MUA)-protected gold nanoclusters (11-MUA AuNCs). Since the presence 

of Hg2+ caused aggregation of the 11-MUA AuNCs, it was found that the concentration of Hg2+ could 

be determined by measuring the amount of aggregation induced fluorescence quenching had occurred. 

The emission peak of the 11-MUA AuNCs was located at 530 nm (with excitation at 375 nm) with a 
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QY of approximately 3.1%. It was determined that the decrease in fluorescence had a logarithmic 

relation with the concentration of Hg2+ over the concentration range of 10 nM to 10 µM, with an LOD 

of 5nM, which is approximately half the maximum concentration allowed in drinking water by the 

Environmental Protection Agency (EPA). 

In 2010, Xie et al. [155] developed a method for the detection of Hg2+ using BSA-protected gold 

nanoclusters (BSA-AuNCs). It was found that in the presence of Hg2+, the emission peak of BSA-AuNCs at 

640 nm (excitation wavelength of 470 nm) could be quenched within seconds due to the high-affinity 

metallophilic Hg2+-Au+ interactions. It was discovered that there is a linear relationship between the 

fluorescence quenching and Hg2+ concentration over a concentration range of 1–20 nM with a LOD of 

0.5 nM, which is approximately 20 times lower than the maximum allowable concentration of mercury 

in drinking water permitted by the Environmental Protection Agency (EPA). A similar method of sensing 

Hg2+ using trypsin-stabilized AuNCs was developed in 2011 by Kawasaki et al. [157], although the LOD 

of this method was relatively high (50 ± 10 nM), the detectable concentration range was much higher 

(50–600 nM). An extension of this method was employed by Dai et al. [156] to detect melamine 

concentrations. It was found that the fluorescence quenching behavior of Hg2+ on BSA-AuNCs could be 

reversed by the introduction of melamine. When a known Hg2+ concentration is mixed with a melamine 

concentration before being added to the BSA-AuNC solution, the “anti-quenching” ability of the melamine 

can be detected and shows linear behavior in the concentration range of 0.5–10 μM, with a LOD of 0.15 µM. 

In 2008, Dong et al. [159] developed a method to detect copper ions (Cu2+) using PMAA-templated 

Ag NCs (PMAA AgNC). It was found that Cu2+ quenched the fluorescence of the PMAA AgNC by 

binding with the free carboxylic groups of the PMAA polymers. A linear relationship was found between 

the quenching of the emission peak of the PMAA AgNCs at 615 nm (excitation at 510 nm) and the 

concentration of Cu2+ in the concentration range of 10 nM to 6 µM, with a detection limit of 8 nM. 

In 2013, Zhang et al. [158] developed a sensor to detect Cu2+ in water and biological samples using 

glutathione-protected gold nanoclusters (GS-Au NCs). It was found that the fluorescence emission  

peak of the GS-Au nanoclusters at 720 nm (with an excitation wavelength of 420 nm) was quenched in 

the presence of Cu2+ ions. This behavior was found to be caused by the complexation between the copper 

ions and GS-ligands of the GS-Au nanoclusters. A linear relationship was found between fluorescence 

quenching and Cu2+ concentration in the range of 1.00 × 10−7 to 6.25 × 10−6 mol/L, with a detection limit 

of 86 nM. After performing this test on 17 different metal ions, it was found that fluorescence quenching 

of the GS-Au NCs was caused by Cu2+, Hg2+, and Pb2+. With the addition of an EDTA solution, it was 

found that the fluorescence could be restored if the quenching was caused by Cu2+ or Pb2+, but would 

stay constant if the quenching was caused by Hg2+, and that quenching caused by Pb2+ created a turbid 

solution, which would become clear with increasing concentrations of EDTA, increasing the selectivity 

of this sensing method. 

In 2011, Chang et al. [160] developed a method of sensing sulfide ions (S2−) using DNA-templated 

gold/silver nanoclusters (DNA-Au/Ag NCs). Sensing was based on the fluorescence quenching by 

changing of the template DNA from hairpin to random coil structures as a result of the interaction 

between S2− and the gold/silver ions. A linear relation between the quenching of the emission peak at 

630 nm and the concentration of S2− ions in the concentration range of 10 nM and 9 µM, with a detection 

limit of around 0.83 nM. In 2013, Cui et al. [161] developed a sensor for the detection of S2− using 

Bovine Serum Albumin protected gold nanoclusters (BSA-AuNC). It was found that in the presence of 



Sensors 2014, 14 19752 

 

 

S2−, the fluorescence emission peak at 635 nm (with an excitation wavelength of 489 nm) of the BSA-Au 

NCs was quenched due to degradation of the structure caused by the S2− ions. A linear relationship 

between the fluorescence quenching and S2− concentration was found in the range of 0.1–30 μM with a 

LOD of 0.029 µM. It was also found that the presence of a multitude of other metallic ions and anions 

exhibited a negligible amount of fluorescence quenching on the BSA-Au NCs. 

In 2013, Zhang et al. [162] developed a method of selectively detecting chromium (III) and chromium 

(VI) in water samples using glutathione-stabilized gold nanoclusters (GSH-Au NCs). It was found that 

the presence of Cr (III) and Cr (VI) caused quenching of the emission peak of the GSH-Au NCs at 710 nm 

(with an excitation wavelength of 410 nm), it was also found that the detection of Cr (III) and Cr (VI) 

could be separated based on the pH of the solution. It was found that at a pH of 6.5, the fluorescence 

quenching of GSH-Au NCs increased linearly with increasing Cr(III) concentration in the range of 2  

5–3800 µg/L, with complete quenching occurring at 13 mg/L and a limit of detection of  

2.5 µg/L (Figure 7). Further, at a pH of 6.5, Cr(VI) exhibited negligible fluorescence quenching. When 

the pH of the solution was lowered to 3.5–5, the fluorescence quenching of the GSH-Au NCs was completely 

dependent on the concentration of Cr(VI), with Cr(III) having a negligible impact. The quenching 

behavior had a linear relationship with the concentration of Cr(6) in the range of 5–500 µg/L with a limit of 

detection of 0.5 μg/L (Figure 8).  

In 2013, Mu et al. [163] developed a method of detecting Ferric Iron (Fe3+) using L-proline stabilized 

gold nanoclusters. It was found that the presence of Fe3+ caused a fluorescence quenching at the emission 

peak of 440 nm (with an excitation frequency of 365 nm) due to aggregation of the Au NCs in the 

presence of ferric iron, decreasing the size dependent fluorescence intensity of the nanoclusters. 

Figure 7. (A) Effect of Cr(III) concentration on fluorescence of GSH-AuNCs (pH = 6.5)  

(B) Relative fluorescence with increasing Cr(III) concentration [162]. Reprinted from [162], 

with permission from Elsevier. 
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Figure 8. (A) Effect of Cr(VI) concentration on fluorescence of GSH-AuNCs (pH = 3.5) 

and (B) pH = 5.0 (C) Relative fluorescence of GSH-AuNCs with increasing Cr(VI) 

concentration (D) Difference in relative fluorescence between pH = 3.5 and pH = 5.0 

solutions with increasing Cr(VI) concentration [162]. Reprinted from [162], with permission 

from Elsevier. 

 

A linear relationship between the fluorescence quenching and Fe3+ concentration was observed in the 

range of 5–2000 μM with an LOD of 2 µM. This sensing method can be completed in under 3 min, 

making it much quicker and economical than other methods of ferric iron detection. 

4.2.2. Molecule and Protein Sensing 

In-vitro sensing of molecules and proteins has been a very popular research topic in the past decades. 

The properties of noble metal NCs have made them a popular candidate for the sensitive and selective 

detection of molecules and proteins [164–174]. 

Liu et al. [164] developed a method of detecting cyanide (CN−) concentration in aqueous solution 

using BSA protected gold nanoclusters (BSA-AuNCs). It was found that at a pH value of 12.0, the 

presence of cyanide causes a fluorescence quenching at the emission peak of 460 nm (excitation wavelength 

of 365 nm) of the BSA-AuNCs due to etching of the gold atoms from the CN−. It was found that there 

was a linear relationship between the fluorescence quenching and CN− concentration over a range of  

200 nM–9.5 µM, with a LOD of 200 nM, which is 14 times lower than the maximum allowed concentration 

of CN− in drinking water permitted by the World Health Organization. It was also found that at the pH 
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level used in this analysis, the detection of cyanide concentration was not affected by the presence of 

other common ions and anions, demonstrating great selectivity over other metals found in water. 

In 2011, Martinez et al. [165] developed a method of using DNA aptamer-templated AgNCs to detect 

specific proteins. This group theorized that by synthesizing AgNCs directly to a recognition ligand, a 

multitude of different proteins could be detected. In order to test this hypothesis, the group synthesized 

AgNCs on a cytosine rich thrombine APT29 DNA sequence in order to detect human α-thrombin. It was 

found that upon addition of thrombin protein, the fluorescence of the aptamer-AgNCs was significantly 

quenched. The detection limit was found to be 1 nM, and saturation of the quenching effect occurred at 

approximately 1000 nM. It was also found that addition of denatured thrombin, thrombin prebound to 

an aptamer, and a number of different proteins (i.e., BSA, streptavidin, and platelet derived growth factor 

(PDGF)) had no effect of the fluorescence of the aptamer-AgNCs, showing a high selectivity of the 

AgNC sensor to the target protein. This aptamer method of detection was also used in 2011 by  

Zhou et al. [173] to detect cocaine. The method employed by this group was a “turn on” method utilizing 

AgNCs templated with G-rich CocaS1 and CocaS2 aptamers. It was found that with no cocaine present, 

the AgNCs created by these two aptamer exhibited a weak fluorescence. However, when cocaine is 

present, it is bound by the two g-rich aptamers, whose proximity results in the creation of AgNCs with 

a greatly enhanced fluorescence. The detection limit of this method was found to be 0.1 µM and a 

logarithmic relationship was found between fluorescence enhancement and cocaine concentration in the 

range of 0.5 µM–1 mM. 

Wen et al. [166] developed a highly sensitive and selective sensor based on polyethylene-capped 

silver nanoclusters (PEI-Ag) to simultaneously detect hydrogen-peroxide (H2O2) and glucose. H2O2 is 

sensed by its ability to quench the fluorescence of the PEI-Ag nanoclusters, which was found to be 

caused by the oxidation of the Ag nanoclusters in the presence of H2O2. In the presence of H2O2, The 

emission peak of PEI-Ag NCs at 455 nm (excitation peak = 375 nm) was found to exhibit quenching 

within 30 min with a linear response over a concentration range of 500 nM–100 μM with a detection 

limit of 400 nM. It was also found that when exposed to a glucose oxidase (GOx), glucose can be 

oxidized in the presence of O2 and H2O to create H2O2 and gluconic acid. By utilizing the quenching 

effect of H2O2, the PEI-Ag nanoclusters can be used to detect glucose concentration. It was found that 

the fluorescence quenching of PEI-Ag NCs exhibited a linear relationship with glucose concentration 

over the range of 1–1000 µM, with a detection limit of 800 nM. It was also found that when using the 

glucose oxidase, the fluorescence quenching of the PEI-Ag NCs was not affected by the presence of 

other carbohydrates or metal ions, leading to a very selective sensor. Further, since a multitude of  

O2-dependent oxidase enzymes can produce H2O2, this sensing method has the potential to be employed 

to sense a multitude of materials. 

In 2012, Wang et al. [167] developed a method of detecting a multitude of amino acids using BSA 

AuNCs that were modulated with different metal ions. This detection method utilized the ratiometric 

fluorescent responses of the two peaks of the BSA AuNCs (blue at 425 nm from the BSA and red at  

635 nm from the Au NCs) to the interaction of amino acids with the bound metal NCs. It was found that 

the ratio of the blue and red peaks were influenced by the addition of metal ions (e.g., Ni2+, Pb2+, Cd2+, 

Zn2+) as well as the interaction between amino acids and the added metal ions. By using multiple BSA 

AuNC probes modulated by different metal ions, a variety of amino acids can be detected. 
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In 2013, Dou et al. [170] developed a method of detecting deoxyribonuclease I (DNase I) using  

DNA-templated gold/silver nanoclusters (DNA-Au/Ag NCs). The method of detection is based on  

the fluorescence quenching of the DNA templated NCs due to the digestion of the DNA  

(5'-CCCTTAATCCCC-3') template by DNase I. It was found that in the presence of DNase I, the 

fluorescence peak of the NCs at 560 nm (with excitation wavelength 370 nm). It was found that there is a 

linear relationship between fluorescence quenching and DNase I concentration between 0.013 and 60 μg/mL 

with a LOD of 3 ng/mL. It was also found that the detection of DNase I was not affected by the presence 

of other enzymes. 

Noble metal nanoclusters are quickly becoming a very promising new class of fluorophores due  

to their extremely small size, biocompatibility, and tunable fluorescent properties. Recent advances on 

the synthesis of NCs have also made them increasingly effective and economical. The unique properties 

of NCs have also spurred research into the application of NCs for a wide variety of sensing and 

biolabeling applications. 

In addition to the applications mentioned, other novel properties of noble metal NCs are constantly 

being discovered. In 2007, Brown et al. [175] developed a method of sensing hydrogen using the 

tunneling between Pd clusters deposited in a thin film on a pair of contacts. In 2012, Zhang et al. [176] 

discovered that the fluorescent intensity of BSA AuNCs was sensitive to pressure due to conformational 

changes of the ligand. They also found that there was a linear relationship between applied pressure and 

fluorescent intensity, indicating that noble metal NCs may have the potential to sense mechanical 

phenomena. In 2005, Qiang et al. [177] synthesized Fe NCs in a thin film which exhibited exceptional 

magnetic properties. The high magnetic moments exhibited by these NCs could be used to greatly 

enhance the contrast of MRI, as well as improve the effectiveness of cell separation and drug delivery. 

The rapidly improving synthesis techniques and impressive array of potential applications of noble 

metal NCs make them a very popular research topic. However, although a great deal of progress has 

been made, a fundamental understanding of noble metal NCs is still lacking and a number of challenges 

in the application of nanoclusters will need to be overcome. Overall, noble metal NCs have the potential 

to find very interesting and potentially lucrative applications in a wide variety of fields. 

5. Conclusions/Outlook 

This article provided a brief review of recent advances in molecular sensors and electronics. 

optoelectric bateriorhodopsin, semiconductor quantum dots and noble metal nanoclusters are very active 

and exciting areas in the field of bionanotechnology, with new progress constantly being made in 

adapting these technologies in the creation of new biosensors and bioelectronics. It should be noted that 

this review is in no way a comprehensive review of the state of molecular sensors and electronics, 

however, the brief summary of the three technologies discussed in this article will hopefully be sufficient 

to introduce the reader to the relatively new and fruitful field of bionanotechnology and inspire them to 

engage in their own research. 
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