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Abstract: A high-precision image-aided inertial navigation system (INS) is proposed as an 

alternative to the carrier-phase-based differential Global Navigation Satellite Systems 

(CDGNSSs) when satellite-based navigation systems are unavailable. In this paper, the 

image/INS integrated algorithm is modeled by a tightly-coupled iterative extended Kalman 

filter (IEKF). Tightly-coupled integration ensures that the integrated system is reliable, 

even if few known feature points (i.e., less than three) are observed in the images. A new 

global observability analysis of this tightly-coupled integration is presented to guarantee 

that the system is observable under the necessary conditions. The analysis conclusions 

were verified by simulations and field tests. The field tests also indicate that high-precision 

position (centimeter-level) and attitude (half-degree-level)-integrated solutions can be 

achieved in a global reference. 

Keywords: image-aided inertial navigation; tightly coupled; observability analysis;  

high precision 
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1. Introduction 

High-precision dynamic positioning is in great demand in the applications of automatic driving and 

intelligent transportation system (ITS). The most popular technology is currently the carrier-phase-based 

differential GNSS (CDGNSS), which is also known as the real-time kinetic (RTK). It can provide 

centimeter-level accuracy for real-time applications [1]. However, the stability of CDGNSS relies on 

the availability of GNSS signals and the correction information sent from the GNSS base station. The 

CDGNSS cannot operate in urban environments where satellite signals are blocked or in indoor 

locations where the signals are unavailable. 

Image-aided inertial navigation can be an alternative for this satellite-based positioning technology. 

Imaging sensors (i.e., cameras) do not suffer from satellite signal blocking, are typically low cost and 

yield effective measurements (i.e., feature points), especially in urban environments. The image 

measurements captured by the camera can calibrate and confine the time-varying inertial errors. 

Meanwhile, the positioning of the images can also yield high precision when applied in a close-range  

area [2,3]. In this paper, a high-precision image-aided inertial navigation technology with close-range 

features deployed in the surrounding environment is proposed. 

Image-based navigation, which is also called vision-based navigation, can be divided into relative 

and absolute image-based navigation systems [4,5]. In a relative way, features between consecutive 

image frames are detected and matched to reconstruct the relative changes in position and attitude of 

the camera. The typical systems of this type include SLAM (simultaneous location and mapping) and 

visual odometry. After fusing with inertial sensors, the image-aided inertial navigation system is able 

to cover the limitations and deficiencies of a standalone system [6–9]. Features in the images are 

matched with absolute features in the real world whose coordinates are known in the navigation 

environment [2,3,10]. Absolute image-based navigation was used to aid the inertial navigation system 

(INS) in this study. 

In general, there are two architectures for vision and INS integration, which is similar to the 

architectures of GNSS/INS integration [11], including loosely-coupled and tightly-coupled models [12]. 

As for the loosely-coupled method, the position and attitude obtained by the camera are used to 

calibrate the INS errors. Lemay (2011) proposed a loosely-coupled INS/GPS/camera-integrated 

navigation system using the direct linear transformation (DLT) method to calculate the camera position 

and attitude [13]. Then, the covariance of the camera position and attitude as a function of pixel  

noise was analyzed. Similarly, Chu (2012) used the rotation and translation of a camera between 

adjacent images to aid INS and the rotation, and translation were retrieved from feature matching of the 

images [14]. 

In the tightly-coupled strategy, the raw pixel coordinates of feature locations in an image instead of 

the position and attitude solved from them are fused with the inertial measurements. Specifically, 

residuals between the detected and the predicted feature locations are utilized to form the measurement 

update equations in the Kalman filter. Chu (2011) compared the performance of tight and loose 

camera/IMU integration by simulation, which demonstrated that tight integration yielded a more 

accurate solution than loose integration. However, tight integration tended to diverge easily [15]. 

Using a tight method, Vu (2012) proposed a real-time computer vision/GPS/IMU-integrated 

navigation system. A color camera was utilized to detect traffic lights that had been surveyed in 
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advance. Aided by a camera, the integrated system can maintain the position accuracy at the lane-level 

in poor GPS environments [10]. Additionally, some relative image-aided inertial navigation systems 

also use the tightly-coupled architecture [6,8,9,16]. 

In this study, a monocular camera is integrated with the inertial sensors in a tightly-coupled way. 

The feature points with known positions are deployed around the navigation area. To obtain  

high-precision location solutions, the camera is set close to the features. Limited by the field view of 

the camera, the camera can only observe one or two features in an image most of the time. In this case, 

tight integration is superior to loose integration, because loose integration cannot solve the position and 

attitude of the camera when less than three features appear in an image [12]. Then, loose integration 

fails to aid the inertial sensors and leads to the growing error of the INS. 

The Earth-centered Earth-fixed (ECEF) frame is chosen as the global reference coordinate system to 

derive both the inertial navigation model and the image-based positioning model. The image 

measurements actually can only provide the bearing information, which is the line-of-sight (LOS) 

observation for a typical feature. Because the LOS observations are expressed in the Cartesian 

coordinate system, it is straightforward and effective to fuse it with the inertial states that are also 

expressed in a Cartesian coordinate system, such as the ECEF frame. 

To estimate the optimal states of the image-aided inertial navigation, the iterated EKF (IEKF) 

method is employed in this paper. Generally, EKF is preferred as the standard method to solve such 

problems [12]. It was found that the linearized nonlinear model of the camera suffered from 

divergence when using EKF [15]. However, IEKF reduces linearizing error [17] and has been shown 

to perform better than EKF in tight integration [15,18]. To combine the inertial data and image data 

effectively, IEKF is implemented in this study. 

The global observability of the image-aided inertial navigation system is analyzed to ensure  

the effectiveness in fusing these two sensors in a tightly-coupled way. Compared with the local 

observability, which analyzes the ability to distinguish the states from their neighbors in a small time 

interval or instantaneously, the global concept describes the ability to estimate the states in the entire 

time span. Sufficient conditions for the global observability of some integrated systems were  

presented [19–22]. A brief overview of the related literature is given in Section 3. The global 

observability analysis approach is not only straightforward and comprehensive, but also provides us 

with new insights that were unattainable by conventional methods of observability analysis. 

Covariance simulations and a field test are performed to confirm the theoretical analysis results. 

This paper is organized as follows: Section 2 gives the INS and camera models. Section 3 performs 

the observability analysis of the tightly-coupled camera/IMU integration from a global perspective 

with a brief review of the related literature. Section 4 describes the mathematical models of the 

Kalman filter, including the INS model and camera measurement model. Section 5 presents the results 

of the simulation and field tests using the proposed tightly-coupled algorithm, and Section 6 presents 

the conclusions. 
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2. Sensor Modeling 

2.1. INS Modeling 

The ECEF frame is taken as the reference frame for the inertial navigation. It is denoted by the  

e-frame. The body frame is defined at the IMU’s center, denoted by the b-frame with the axes  

pointing forward, right and down, respectively; the inertial frame is denoted by the i -frame; and the 

local level navigation frame is denoted by the n -frame with the axes pointing to north, east and down 

(NED), respectively. 

The dynamic equations for a strapdown INS are given by [11]: 
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where e
ebr  and e

ebv  are the position and velocity of the body frame (i.e., located at the IMU center) with 

respect to the e -frame and expressed in the e -frame, respectively; e
bC  is the body attitude matrix with 

respect to the e -frame; bf  is the specific force measured by accelerometers expressed in the b -frame; 
e
ieω  is the Earth’s rotation rate expressed in the e -frame; eg  is the gravity vector in the e -frame; b

ibω  is 

the body angular rate measured by gyroscopes expressed in the b -frame; b
ebω  is the body angular rate 

with respect to the e -frame and expressed in the b -frame; ( )b
ebω ×  is the skew symmetric matrix of 

b
ebω ; and ab  and gb  are the accelerometer bias and the gyroscope drift, respectively. 

Figure 1. Camera projective model. 

 



Sensors 2014, 14 19375 

 

 

2.2. Camera Modeling 

An ideal projective (pinhole) camera model was used in this study [23]. The camera frame is 

defined at the camera’s perspective center, denoted by the c -frame with the Zc  axis along the 
principal axis and orthogonal to the image plane. The line-of-sight vector 

k

c
cpr  from the camera to a 

feature point kp  can be expressed in terms of the position and orientation of the camera and the known 

position of the feature point (Figure 1). 

Mathematically, this can be expressed as follows: 

( )
k k

c c e e
cp e ep ecr C r r= −  (2) 

Obviously, the line-of-sight vector 
k

c
cpr  and the vector that measures from the image are collinear. 

Expressing them as scalars yields: 
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The measurement equations for a pinhole camera model can be given by: 
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 (4) 

where c
eC  is the rotation matrix from the e -frame to the c -frame. 

k

c
cpr  denotes the position of the k-th 

feature point expressed in the c -frame; e
ecr  represents the position of the camera center expressed in  

the e -frame; λ  is the unknown scale factor between the collinear vectors; ( , )k kk u v  represents the 

pixel coordinates of the k-th feature point projected onto the image plane; ( 0 0,u v ) and f  are the 

principal point and the focal length, respectively; and ,
k k

T

u vη η    is the measurement noise vector with 

covariance 2
2k kR Iσ= . 

Camera intrinsic and distortion parameters can be calibrated using the method given in [24]. This 

method utilizes a planar checkerboard pattern of known dimensions to calibrate the focal length 

measured in pixels and the four distortion coefficients. After the camera calibration, the images 

captured by the camera could be rectified to remove lens distortions. 

2.3. Camera-IMU Calibration 

To fuse camera observations and inertial measurements effectively, the six-degrees-of-freedom  

(6-DOF) transformation between the camera and the IMU must be precisely determined. Biased 

transformation parameters will reduce the accuracy of the estimation process or even lead to 
divergence in the estimator [18]. As shown in Figure 2, the relative pose (i.e., position and attitude) b

bcr , 
c
bC  between the c -frame and the b -frame are the transformation parameters requiring calibration. 
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Mirzaei and Roumeliotis (2008) proposed an EKF-based method to compute the relative pose between 

the camera and the IMU [18]. This approach requires known corner points that are co-planar to be 

viewable by the camera. Kelly (2010) presented an improved calibration method that can operate 

without any additional equipment or prior knowledge about the environment [25]. The former method 

was selected for this study, because sufficient known feature points exist in the environment studied. 

Figure 2. Transformations between the camera and IMU. 

 

3. Global Observability Analysis 

To integrate the camera and the IMU measurements, the relevant system states must be observable. 

Observability describes the ability of estimating the states of a system [26]. A system is observable if 

its state at a certain time can be uniquely determined given a finite sequence of its outputs [19]. 

Intuitively, this means that the measurements of an observable system provide sufficient information 

for estimating its state; the observability analysis is necessary, because observability determines the 

existence of solutions. It is important to understand how the existence of the camera-IMU localization 

problem depends on the number of observed feature points, their layout and the number of images. 

The observability of a camera-IMU-integrated system has recently been studied. The observability 

properties of a camera-IMU extrinsic calibration (i.e., the estimation of the relative pose of  

these sensors) have been studied using Lie derivatives [18,25]. However, these approaches are  

loosely-coupled (i.e., methods that process the IMU and image measurements separately). For 

instance, these methods first process the poses of the camera and subsequently fuse these with the 

inertial measurements. This loose method cannot analyze the observability of a tightly-coupled 

camera-IMU integration, especially when only one or two features are observed in an image. 

In a tightly-coupled way, Martinllie (2011) fused the raw data of image measurements with inertial 

measurements using the concept of continuous symmetries to show that the IMU biases, velocity in the 

initial body frame and roll and pitch angles are observable for vision-aided INS [27]. In this case, the 

position of a single feature point located at the origin of the local reference system was known. Similar 

system observability was investigated in a tightly-coupled way [8,9]. They both focused on how to 

improve the consistency of the linearized estimator. Hesch (2014) also provided a new method based 
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on factorizing the observability matrix to analytically determine the observability properties of the 

nonlinear vision-aided INS model [9]. 

Moreover, the observability rank condition based on Lie derivatives was first proposed to study the 

observability properties of nonlinear systems [28], and the local observability of the system of interest 

was investigated. This approach involves complex and cumbersome matrix rank computation. To 

analyze the observability of nonlinear systems in a global perspective, global observability analysis 

had been used to examine the observability of nonlinear INS and odometer self-calibration [20,21], the 

INS/GPS-integrated system [19] and strapdown INS alignment [22], yielding new, comprehensive 

insights. A global observability analysis can provide extensive instructions regarding the feasibility of 

estimation under a given condition. In particular, these conditions consider the trajectory, the number 

of feature points and their layout, as well as the number of monocular images when the same feature 

points or different feature points are observed. Martinllie (2014) investigated the resolvability of a 

structure from a motion problem using inertial and visual observations in a closed-form solution [29]. 

This resolvability analysis basically shows the global observability of a system when only one known 

feature point is observed. Motivated by this research, the authors extend the global observability 

analysis to conditions in which more known feature points can be observed and with a different feature 

point layout. 

We study the global observability of the nonlinear system described in Equations (1)–(4) from the 

observability definition directly [19]. 

Definition 1: A system is observable if, given the input and output over the finite-time interval, 
[ ]0 ,t t , it is possible to uniquely determine the initial state 0( )x t . Otherwise, the system is unobservable. 

For the image-aided inertial navigation system under investigation, the states to be estimated 

include the position, velocity, attitude, gyro drift and accelerometer bias. Considering the INS alone, 

the time length is relatively short in the image-aided INS system (less than 1 s or a maximum of a 

couple of seconds), and the impact of gyro drift is minor in the INS solution [30]. On the other hand, 

gyro drift produces nonlinear coefficients that make the observability analysis cumbersome and 

complex. To facilitate the analysis, gyro drift is not considered in the following derivation. The input 

and output information of the system available includes the specific force measured by accelerometers, 

the body angular rate measured by gyros and the pixel position of the feature points measured from the 

images. According to the definition, if the initial states can be uniquely solved given the measurements 

in a finite-time interval, then the system is proven to be observable. 

It is assumed that the platform runs near the Earth’s surface at a low speed, so that the Coriolis term, 
which is 2 e e

ie ebvω ×  in Equation (1), can be neglected. Integrating the velocity differential equation 

over time, the position of the platform at any time [ ]0 ,t t tÎ  satisfies the equation: 

0 0
0 0( )= ( )+ ( ) t+ ( )

te e e e
eb eb eb t t

r t r t v t a d d
τ

ξ ξ τΔ    (5)

This can be simplified into a single integral by integrating the double integral by parts: 

0
0 0( ) ( )+ ( ) t+ ( ) ( )

te e e e
eb eb eb t

r t r t v t t a dτ τ τ= Δ −  (6)
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where 0t t tΔ = − , ( )ea t  is the platform acceleration expressed in the e -frame with the following 

relationship: 

( ) ( )( ( ) )e e b e
ba t C t f t B g= − +  (7)

where ( )bf t  is the accelerometer measurement corrupted by the sensor bias B . During a short time 

interval, the bias B  is a constant term. In a small local area, the gravity vector eg  can also be 

considered as a constant term. 
The attitude changes of ( )e

bC t  caused by Earth’s rotation rate are negligible. As will be shown in the 

next section, a few observed images allow us to determine the observable modes. Additionally, the 

time scale is only a few seconds. Therefore, during this time, the effects of the Earth’s rotation  

are negligible.  
The attitude transform matrix ( )e

bC t  can be rewritten as follows: 

0

0
( ) ( )be e

b b bC t C C t=  (8) 

where 
0

e
bC  is the initial attitude matrix at time 0t , and 0 ( )b

bC t  denotes the rotation matrix that rotates 

the b -frame from time t  to 0t , which can be computed from the outputs of the gyroscopes. 

Combining the Equations (6)–(8) yields: 

0 0

2
0 0

1
( )= ( )+ ( ) t+ t ( ) ( )

2
e e e e e e

eb eb eb b br t r t v t g C S t C t BΔ Δ + − Γ  (9) 

where: 

0

0

0

0

( ) ( ) ( ) ( )

( ) ( ) ( )

t b b
bt

t b
bt

S t t C t f t d

t t C t d

τ τ

τ τ

= −

Γ = −



 (10) 

The terms ( )S t  and ( )tΓ  depend only on the measurement of the gyroscopes and accelerometers, 

both of which can be obtained by integrating the data provided by the gyroscopes and accelerometers 
delivered during the interval [ ]0,t t . 

Because the camera-IMU extrinsic calibration parameters had already been calibrated, it is assumed 

that the c -frame coincided with the b -frame. The image measurement of the k-th feature point at time t  
actually provided a unitary vector ( )

k

b
bp tμ , which can be derived from the left vector in Equation (3). The 

line-of-sight vector ( )
k

b
bpr t  expressed in the b -frame at time t  can be written as follows: 

( ) ( )
k k

b t b
bp k bpr t tλ μ=  (11) 

where t
kλ  is the unknown scale factor for the k-th feature point observed at time t . 

Combining ( )
k k

b b e e
bp e ep ebr C r r= -  and (9) yields: 

0 0 0 21
t t ( ) ( )

2
b b bt t

k k kp r v g t B S tλ μ − + − Δ − Δ + Γ =  (12) 

For the sake of simplicity, the following notation is adopted: 
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where kp  denotes the position of the k-th feature point relative to the e -frame expressed in the initial 

b -frame at time 0t ; and 0br , 0bv  and 0bg  denote the initial position, velocity and gravity of the 

platform relative to the e -frame expressed in the initial b -frame at time 0t , respectively. 

The observability of the image-aided inertial navigation system will be analyzed in two situations. 

The first situation considers that the same feature points are observed continuously (i.e., the camera 

constantly tracked some feature points in a particular time period). The second situation considers that 

different feature points appeared in each image. In both situations, the minimum number of known 

feature points that appears in an image will be determined, as well as the minimum number of images 

that should be recorded to make the navigation states observable. 

3.1. Same Feature Points 

3.1.1. One Feature Point 

Theorem 1: If only one feature point can be observed continuously, the position, velocity, attitude 

and accelerometer biases of the camera-IMU-integrated system will be unobservable. Conversely, if 

the line-of-sight vector changes in the b -frame (i.e., the location of the feature point changes on the 

image plane), the parameters expressed in the initial b -frame (i.e., b -frame at time 0t ), including the 

position of the feature point and the velocity of the system, are observable. At the same time, the 

gravity expressed in the initial b -frame and the accelerometer bias are observable when the system 

rotates about at least two axes of the b -frame. 

Proof: When one feature point is observed continuously, the integrated system provides the 

Equation (cf. (12)): 

0 0 0 2
1 1 1

1
t t ( ) ( )

2
b b bt t p r v g t B S tλ μ − + − Δ − Δ + Γ =  (14) 

With time [ ]1 2, , nt t t tÎ   increasing, the equations can be stacked and written in matrix NX L= : 
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(15) 
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where n  is the number of images observed, X  is the vector of unknowns, L  is the vector integrated 

from the sensor output and matrix N  is the coefficient matrix. 

The above linear system contains the complete sensor information. If this linear system has a unique 

solution, the unique solution will be the observable modes; if the matrix N  has column full rank, the 

unknowns will be the observable modes.  

To analyze the structure of matrix N , the column is found to be rank-defective when the unitary 

vectors 1 2
1 1 1, , , ntt tμ μ μ  are collinear. Linearly combining the column vectors [ ]3 3 3 3 3 3, , ,

T
I I I× × ×  

can produce a new vector, such as 1 1 1
1 3 1 1 3 1 1 3 1( ) , ( ) , , ( )

Tt t tT T Tμ μ μ× × ×   . If the vectors 1 2
1 1 1, , , ntt tμ μ μ  

are collinear, linearly combining the first n  columns of matrix N  with this new vector will produce 

the zero vector. The matrix N  is thus column rank-defective (i.e., a linear combination of column 
vectors does not change the rank of the matrix). In addition, 1 2

1 1 1, , , ntt tμ μ μ  are the line-of-sight 

vectors projected in the initial b -frame; however, these unitary vectors will be collinear only if the 

location of the feature point is unchanged on the image plane. 

Additionally, the matrix N  is also column rank-defective when the camera-IMU integrated system 

rotates about fewer than two axes of the b -frame. First of all, if the integrated system does not rotate 
about any axes of the b -frame (i.e., it moves in a straight line), 0 ( )b

bC t  will become the identity matrix 

3 3I ×  and the last columns of 1 2( ) , ( ) , , ( )
TT T T

nt t t Γ Γ Γ   will become (cf. (10)): 

2 2 2
1 3 3 2 3 3 3 3

1 1 1
( t ) , ( t ) , , ( t )
2 2 2

T
T T T

nI I I× × ×
 Δ Δ Δ  

  

The coefficient matrix of 0bg  and B  will become linearly correlated, which leads to the matrix N  

being column rank-defective. It is actually that the quantities 0bg  and B  are not separable. Secondly, 

if the integrated system rotates about one axes of the b -frame, it can be assumed that the system 

rotates about the vertical axe, which is expected for horizontal movements. This case leads to the 
matrix 0 ( )b

bC t  with a structure like: 

( ) ( ) 0

( ) ( ) 0

0 0 1

a t b t

c t d t

é ù
ê ú
ê ú
ê ú
ê ú
ë û

 

Then, the third column of 1 2( ) , ( ) , , ( )
TT T T

nt t t Γ Γ Γ   will become (cf. (10)): 

2 2 2
1 2

1 1 1
(0, 0, t ) , (0, 0, t ) , , (0, 0, t )

2 2 2

T
T T T

n

     Δ     Δ     Δ  
  

This vector is linearly correlated with the third column of: 

2 2 2
1 3 3 2 3 3 3 3

1 1 1
( t ) , ( t ) , , ( t )

2 2 2

T
T T T

nI I I× × ×
 − Δ − Δ − Δ  

  

Thus, matrix N  is column rank-defective. Actually, the third component of 0bg  is not separable 

from the third component of B  (i.e., vertical accelerometer bias), and they are unobservable.  
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Similarly, when the integrated system rotates about one of the other axes of the b -frame, the 

accelerometer bias of the rotational axis will be unobservable. It can also be concluded that rotating 
about at least two axes of the b -frame will ensure the quantities 0bg  and B  are separable, as the 

structure of matrix 0 ( )b
bC t  is different with increasing time. 

The matrix N  is full rank if the vectors 1 2
1 1 1, , , ntt tμ μ μ  are non-collinear, and the camera-IMU 

system rotates about at least two axes of the b -frame. Under these conditions, the linear system has a 

unique solution X  and all unknowns are observable. The observable modes are the parameters 
projected in the initial b -frame, including 0

0 1
( )b e e

e eb epC r r− , 0bv , 0bg  and B . When the system rotates 

about less than two axes of the b -frame, the latter condition is not met. In this case, 0bg  and B  are 

inseparable. However, these two quantities can be combined into one quantity to ensure that the new 
coefficient matrix is full rank. Hence, the observable modes are 0

0 1
( )b e e

e eb epC r r−  and 0bv . The 

unobservable modes are 0bg  and B . Furthermore, this conclusion is similar to the observability 

conclusion given by [27], which used the concept of continuous symmetries. 

If the trajectory of the perspective center of the camera and the location of the feature point are 
coplanar, all of the vectors 1 2

1 1 1, , , ntt tμ μ μ  will belong in the same plane. This means that these vectors 

can be projected to a frame in which all of them have the last component equal to zero. In the new 

frame, the linear system NX L=  can be divided into two parts: one part corresponds to the first two 
lines of (14) for [ ]1 2, , nt t t tÎ  ; the other part corresponds to the third line of (14) for [ ]1 2, , nt t t tÎ  , 

which only involves the third component of 0bv , 0bg  and B  expressed in the new frame. Matrices 1N  

and 2N  represent the two parts of the linear system; the size of 1N  is 2 (n +8)n´ , and the size of 2N  is 

4n´ . For the case without accelerometer bias, the size of 1N  becomes 2 (n +6)n´  and the size of 2N  

becomes 3n´ . To ensure the system has a unique solution, n  should be at least nine for the biased 

case and at least seven for the unbiased case.  

Conversely, if the trajectory of the perspective center of the camera and the location of the feature 
point spans the 3D space, the size of matrix N  is 3 ( 12)n n´ +  for the biased case and 3 ( 9)n n´ +  for 

the unbiased case, because the last three columns disappear when there is no accelerometer bias. To 

ensure the matrix N  has column full rank, n  should be at least six for the biased case and at least five 

for the unbiased case. 

The results of this subsection are summarized with the following properties: 

Property 1: In the planar case, to estimate the observable modes given in Theorem 1, the minimum 

number of camera images is eight, with the assumption of accelerometer bias (i.e., the observability 

requires at least eight images from eight distinct camera poses). For the case without accelerometer 

bias, the minimum number of camera images becomes six. 

Property 2: For the 3D case, to estimate the observable modes given in Theorem 1, the minimum 

number of camera images is six, with the assumption of accelerometer bias. For the case without 

accelerometer bias, the minimum number of camera images becomes five. 

It can be observed that under the observable conditions given in Theorem 1, the coplanar case has 

the same observable properties as the 3D case, but more images are required than in the 3D case to 

solve the observable modes. Therefore, in the following analysis, only the position of the perspective 

center of the camera and the feature points spanning the 3D space are considered. 
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3.1.2. Two Feature Points 

Theorem 2: If two feature points can be observed continuously and the following conditions  

are met:  

(1) The feature points are not in a vertical line. 

(2) Both line-of-sight vectors for the two features change in the b -frame (i.e., the locations of the 

feature points change on the image plane).  

(3) The system rotates about at least two axes of the b -frame. 

then the position, velocity, attitude and the accelerometer biases of the camera-IMU integrated system 

are observable. 

Proof: When two known feature points are observed continuously, the integrated system provides 

the equations: 

0 0 0

0 0 0

2
1 1 1

2
2 2 2

1
t t ( ) ( )

2
1

t t ( ) ( )
2

b b bt t

b b bt t

p r v g t B S t

p r v g t B S t

λ μ

λ μ

− + − Δ − Δ + Γ =

− + − Δ − Δ + Γ =
 (16) 

With the time [ ]1 2, , nt t t tÎ   increasing, the equations can be stacked and written in matrix 

NX L= : 

0 0 0 01 1

1

1 2 1 2

1 1 2 2 1 2

2
1 3 3 3 3 3 3 1 3 3 1 3 3 1

3 1 3 3 3 3 3

( ) , ( ) , , ( ) , ( ) , ( ) , , ( )

[ , , , , , , ( ) , ( ) , ( ) , ( ) , ]

1
0 0 0 0 t t ( )

2

0 0 0 0 t

n n

n

TT T T T T T
n n

t t b b b bt t T T T T T T

t

t
n

L S t S t S t S t S t S t

X r p r p v g B

I I I t

I I
N

   

l l l l

m

m

´ ´ ´

´

é ù= ê úë û
= - -

-D - D G

-D
=

 

 

 

          

 

1

2
3 3 3 3

2
3 3 2 3 3 3 3 1 3 3 1 3 3 1

2
3 3 3 2 3 3 3 3 3 3 3

1
t ( )

2
1

0 0 0 0 t t ( )
2

1
0 0 0 0 t t ( )

2
n

n n

t

t
n n n

I t

I I I t

I I I t

m

m

´ ´

´ ´ ´

´ ´ ´

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú

- D Gê ú
ê ú
ê ú
ê ú-D - D Gê ú
ê ú
ê ú
ê ú
ê ú
ê ú-D - D Gê úë û

 

          

 

 

(17) 

According to Theorem 1, if the second and third conditions are met, the observable modes for the 
above system are 1

tλ , 2
tλ , 0

1
br p− , 0

2
br p− , 0bv , 0bg  and B . Then, the parameter 2 1p p−  is also 

observable and can be rewritten as: 

0

2 12 1 ( )b e e
e ep epp p C r r− = −  (18) 

Furthermore: 

0 0b b e
eg C g=  (19) 
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The vector 
2 1

e e
ep epr r−  and the local gravity eg  are all known parameters. Under the assumption of the 

first condition, they are also linearly independent. The attitude matrix 0b
eC  thus has a unique solution. 

This is because for any two linearly-independent vectors, if their coordinates in two arbitrary frames 

are given, then the attitude matrix between the two frames can be uniquely determined [31]. Therefore, 
the initial attitude matrix 0b

eC  is observable. At the same time, the position and velocity are also 

observable for the relation ( )0 0
Tb be

eb er C r= , ( )0 0
Tb be

eb ev C v= . 

Because the size of matrix N  is 6 (2 15)n n´ +  for the biased case and 6 (2 12)n n´ +  for the 

unbiased case, the last three columns disappear when there is no accelerometer bias. To ensure the 

matrix N  has column full rank, n  should be at least four for the biased case and at least three for the 

unbiased case. This result is summarized with the following property: 

Property 3: To estimate the observable states given in Theorem 2, the minimum number of camera 

images is four for the case with accelerometer bias. For the case without accelerometer bias, the 

minimum number of camera images reduces to three. 

3.1.3. Three Feature Points and More 

Theorem 3: For three or more feature points that can be observed continuously, if all of the feature 

points are in a straight line, which is not a vertical line, the position, velocity, attitude and 

accelerometer biases of the camera-IMU integrated system are observable when the following 

conditions are met: 

(1) All of the line-of-sight vectors for the features change in the b -frame (i.e., the locations of the 

feature points change on the image plane).  

(2) The system rotates about at least two axes of the b -frame. 

If the feature points are not in a straight line, then the position, velocity and attitude of the  

camera-IMU-integrated system are observable. At the same time, the accelerometer bias is observable 

when the system rotates about at least two axes of the b -frame. 

Proof: Since observing more than three feature points provides the same observable information as 

observing only three feature points; observing more feature points only improves the estimated 

accuracy [32]. Thus, only the case of three observed feature points needs to be considered. 

Firstly, if the three feature points are in a straight line that is not vertical, any two of the three 

feature points will not be in a vertical line. This meets the first condition of Theorem 2. Meanwhile, the 

first condition and second condition are the same as the second condition and third condition of 

Theorem 2. Therefore, the system modes are observable. 

Secondly, when the three feature points are not in a straight line and their positions are known, the 
scale factors, such as 1

tλ , 2
tλ  and 3

tλ , can be directly determined by space resection [32]. X  will not 

contain any unknown scale factors and becomes: 

0 0 0 0 0
1 2 3[( ) , ( ) , ( ) , ( ) , ( ) , ]b b b b bT T T T T T TX r p r p r p v g B= − − − . 

According to Theorem 1, if the system rotates about at least two axes of the b -frame, all the states 

of X are observable. However, if the system rotates about less than two axes of the b -frame, the states 
of X are observable, except for 0bg  and B , which are inseparable. Due to the three feature points not 
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being in a straight line, the vectors 
2 1

e e
ep epr r−  and 

3 1

e e
ep epr r−  must be linearly independent. These two 

vectors can form equations, such as (18). Additionally, the attitude matrix 0b
eC  in Equation (18) can be 

uniquely determined [31]. Then, using this attitude matrix 0b
eC  to project the observable modes of X  

in the e -frame, the observable modes are obtained. 
Additionally, the size of matrix N  is 9 (3 18)n n´ +  for the biased case and 9 (3 15)n n´ +  for the 

unbiased case. To ensure the matrix N  has column full rank, n  should be at least three for the biased 

case and at least three for the unbiased case. This result is summarized with the following property: 

Property 4: To estimate the observable states given in Theorem 3 for the three feature points 

observed, the minimum number of camera images is three for the case with accelerometer bias. For the 

case without accelerometer bias, the minimum number of camera images is three. 

3.2. Different Feature Points 

Theorem 4: When different feature points can be observed in each image, if the line-of-sight  

vectors change in the body frame (i.e., the locations of the feature points on the image plane  

change), the position, velocity and attitude of the camera-IMU integrated system are observable. At the 

same time, the accelerometer bias is observable when the system rotates about at least two axes of  

the b -frame. 

Proof: Because observing two or more feature points at a time provides more information than the 

situation with one feature point [32], the case that observing one feature point at a time is observable 

must be proven. Assuming that each image observes a different known feature point, the model can be 

described as follows: 

0 0 0 21
t t ( ) ( )

2
n nt t b b b

n n n n n n np r v g t B S tλ μ − + − Δ − Δ + Γ =  (20) 

The difference between nt  and 1t  in the above equation yields an equation that contains 1np p−  and 

can be rewritten using the initial attitude and locations of feature points: 

0

11 ( )
n

b e e
n e ep epp p C r r− = −  (21) 

Because the attitude matrix 0b
eC  can be linearized with small attitude errors ε  and the approximate 

attitude matrix 0b
eC  [11], which is known and can be provided by the alignment step of inertial 

navigation, the following can be derived: 

[ ]0 0( )b b
e eC I Cε= − ×   (22) 

0 0

1 11 ( ) ( )
n n

b be e e e
n e ep ep e ep epp p C r r C r r ε − = − + − × 

   (23) 

where [ ]ε ×  and 0

1
( )

n

b e e
e ep epC r r − × 
  denote the skew symmetric matrix of the small attitude errors ε  

and the vector 0

1
( )

n

b e e
e ep epC r r− , respectively. 

During the time [ ]1 2, , nt t t tÎ  , the equations’ difference between nt  and 1t  can be stacked and 

written in matrix NX L=  as: 
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0 01

01 2

2 1

3 01

3 1

1

2 1 3 1 1

2 2
1 2 3 3 2 1 3 3 2 1 3 3 2 1

1 3 3 3

[ , , , ,( ) ,( ) , ]

( ) ( ) , ( ) ( ) , , ( ) ( )

1
0 0 ( ) ( t t ) ( t t ) ( ) ( )

2

0 0 ( )

nt b bt T T T T T
n

TT T T T T T
n

bt t e e
e ep ep

t bt e e
e ep ep

X v g B

L S t S t S t S t S t S t

C r r I I t t

C r r
N

λ λ ε

μ μ

μ μ

× ×

=

 = − − − 

 − − × − Δ −Δ − Δ −Δ Γ −Γ 

− −
=









01

1

2 2
3 1 3 3 3 1 3 3 3 1

2 2
1 3 3 1 3 3 1 3 3 1

1
( t t ) ( t t ) ( ) ( )

2

1
0 0 ( ) ( t t ) ( t t ) ( ) ( )

2
n

n

t bt e e
n e ep ep n n n

I I t t

C r r I I t tμ μ

× ×

× ×

 
 
 
  × − Δ −Δ − Δ −Δ Γ −Γ  
 
 
 

 − − × − Δ −Δ − Δ −Δ Γ −Γ   

        



(24) 

Analyzing the structure of matrix N , it is found that 1 2
1 2, , , ntt t

nμ μ μ  must be linearly independent. 

Otherwise, the matrix is rank defective. Similarly, only the line-of-sight vectors change in the body 

frame, which means that the locations of the feature points on the image plane change. According to 

Theorem 1, if the system rotates about at least two axes of the b -frame, all of the states of X are 

observable. However, if the system rotates about less than two axes of the b -frame, the states of X are 
observable, except for 0bg  and B , which are inseparable. Once the attitude error ε  is determined,  

the initial attitude matrix 0b
eC  can also be solved. Then, the estimated parameters are substituted into 

Equation (20) to obtain 0br . Finally, the states e
ebr  and e

ebv  in the e -frame can also be solved and are 

found to be observable. 
Additionally, the size of matrix N  is 3( 1) ( 12)n n- ´ +  for the biased case and is 3( 1) ( 9)n n- ´ +  

for the unbiased case. To ensure the matrix N  has column full rank, n  should be at least eight  

for the biased case and at least six for the unbiased case. This result is summarized with the  

following property: 

Property 5: To estimate the observable states given in Theorem 4, the minimum number of camera 

images is eight for the case with the accelerometer bias. For the case without accelerometer bias, the 

minimum number of camera images becomes six. 

In summary, to keep the camera-IMU integrated system observable, at least two feature points 

should be tracked for the situation that the same feature points are observed in the images, as long as 

the locations of both feature points on the image plane change. When only one feature point is 

observed at a time in the images, the system will be observable if the observed feature points are 

different points from image to image and the locations of the feature points on the image plane change. 

Additionally, if the accelerometer bias needs to be estimated, the system should rotate about at least 

two axes of the b -frame. 

4. Kalman Filter Implementation 

A Kalman filter is a minimum variance estimator and is comprised of a system model and a 

measurement model [17]. These two models are represented by time update equations and 

measurement update equations, respectively. In the tightly-coupled camera/IMU approach, the time 

update equations were derived from INS error models and the measurement update equations were 

derived from the camera error model. The measurement update restricts IMU error growth and keeps 

the error bounded. 
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4.1. INS Error Model: System Model 

To compute the inertial data collected by the IMU, the INS mechanization algorithm derived in the 
e -frame was implemented in this study. The state estimate is propagated forward in time using the INS 

equations, and the attitude is updated using a quaternion algorithm [33]. The INS error model can be 

expressed as follows [11]: 

( ) 2

e b
eb eb

b e b e b e e
eb b ie eb b a

e e
ie b g

r v

v C f v g C b

C b

δ δ
δ φ ω δ δ
φ ω φ

=

= × − × + +

= − ×



 −

 (25)

where e  represents the navigation frame (i.e., the e -frame); e
ebrδ  , e

ebvδ   and φ  are the rate of the 

position error, the velocity error and attitude error expressed in the e -frame, respectively; e
ieω  is the 

angular rate of the e -frame relative to the i -frame, expressed in the e -frame; egδ  is the gravity error 

in the e -frame; gb , ab  are the inertial sensor errors; and e
bC  is the rotation matrix from the body frame 

(i.e., the b -frame) to the navigation frame (i.e., the e -frame). 

Due to the errors in time-varying sensors, a first-order Gauss–Markov process is used to model 

sensor errors [34]: 

1
b b w

T
= − +  (26) 

where b  represent the errors of the inertial sensors, including the gyroscopes’ and accelerometer bias 
error ( ,g ab b ); T  is the correlation time of the first-order Gauss–Markov process; and w  is the driving 

white noise. 

A 15-state vector for the navigation filter was created, which is represented as follows. 
T T T T T T

g a[( ) ) ) ) ) ]e e
eb ebx r v b bδ δ φ= ( ( ( (  (27) 

4.2. Camera Error Model: Measurement Model 

Modeling the tightly-coupled camera measurement equation requires only raw image observations, 

such as pixel coordinates. To utilize the camera measurement model described in Section 2,  

Equation (2) must be linearized at the IMU center rather than the camera center. These two reference 

centers can be transformed in the navigation frame as follows (Figure 2): 
e e e b

ec eb b bcr r C r= +  (28) 

where e
ebr  and e

ecr  are the position of the IMU and camera in the e -frame, respectively; b
bcr  is the lever 

arm between the IMU and camera projective center in the body frame. 

Then, Equation (2) can be rewritten as: 

( )
k k

c c b e e
cp b e ep ecr C C r r= −  (29) 

where c
bC  is the rotation matrix from the body frame to the camera frame, which is known and must be 

calibrated in advance. 
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Substituting Equation (28) into Equation (29), new camera measurement equations with relations to 
the IMU position center e

ebr  and attitude matrix e
bC  are obtained as follows. 

( ( ) )
k k

c c b e e b
cp b e ep eb bcr C C r r r= − −  (30) 

Therefore, the linearization can be presented as a two-step process. Firstly, the perturbation of a 
pixel coordinate kzδ  is related to the perturbation of the line of sight vector c

kcpr . According to 

Equation (4), this relationship can be replaced as follows: 

1 k

c
k cpz H rδ δ=  (31) 

,

2
, ,

1

,

2
, ,

0
( )

0
( )

k

k k

k

k k

c
cp x

c c
cp z cp z

c
cp y

c c
cp z cp z

f rf

r r
H

f rf

r r

 ⋅
− 
 =  ⋅ −  

 (32) 

Secondly, the perturbation of line-of-sight vector 
k

c
cpr  is related to the position error and attitude 

error, which are e
ebrδ  and f , respectively: 

2k

e
c eb

cp

r
r H

δδ
φ

 
=  

 
 (33) 

2 ( )c b c b e
b n b e ebH C C C C ré ù= - ´ê úë û  (34) 

Combining Equations (31)–(34), the following is obtained: 

1 2

e
eb

k

r
z H H

δδ
φ

 
=  

 
 (35) 

This equation will be used as the measurement equation in the tightly-coupled Kalman filter. The 

size of the measurement vector varies depending on the number of feature points detected. 

After modeling the system and measurement models, they can be used in the standard extended 

Kalman filter equations. However, IEFK requires multiple iterative updates before the state error 

vector converges to a threshold value [17,18]. EKF only expands the measurement model in a Taylor 

series around the last optimal estimate state. If expanding the Taylor series around the new estimate at 

every update, IEKF thus has the benefit of reducing the linearizing error [17]. Furthermore, the camera 

measurement model is a highly nonlinear function, as described in Equations (2)–(4), which can 

explain why IEKF performs better than EFK in this tightly-coupled camera/IMU integration. 

5. Experimental Results 

To validate the proposed tightly-coupled algorithm and its observability properties when known 

feature points are available, simulation experiments and field tests were performed. 
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5.1. Simulation 

Three sets of trajectories are simulated to validate the observability properties given in Section 3. 

To verify the observability conclusion given in Theorem 1, the first simulation assumed that only 

one feature point can be tracked and observed continuously. The camera/IMU-integrated platform 

moved in a square trajectory with the camera looking at the center of the square (Figure 3). 

Additionally, the only feature point was located at the center of the square with a small offset to the 

northeast. Meanwhile, the platform rotated about the first and the third axes of the b -frame, in turn 

(Figure 4). Additionally, there is no doubt that the location of the feature point was changed constantly 

on the image plane. 

Figure 3. Simulated trajectory of the camera/IMU-integrated platform and the layout of the 

only feature point. 

 

Figure 4. Simulated motions of the camera/IMU-integrated platform. N, E, D, north, east 

and down, respectively. 

 

The IMU noise characteristics are the same as the MTi-G IMU used in the real experiments  

(Table 1). The IMU measurements are sampled at 100 Hz. The parameters of the simulated camera are 
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also the same as the Basler camera in the real-world experiment (Table 1). The image measurements 

are captured at 10 Hz. 

Table 1. Specifications of sensors. 

Sensor Parameter Value 

IMU 
(GI-1000) 

Angular Random Walk (ARW) 0.2 deg/√h  
Gyro Bias Instability 7 deg/h 

Velocity Random Walk (VRW) 0.18 m/s/√h 
Accelerometer Bias Instability 400 mGal 

IMU 
(MTi-G) 

Angular Random Walk (ARW) 3 deg/√h 
Gyro Bias Instability 200 deg/h 

Velocity Random Walk (VRW) 0.12 m/s/√h 
Accelerometer Bias Instability 2000 mGal 

Camera 
(Basler) 

Resolution horizontal/vertical 1,628 pixels × 1,236 pixels 
Pixel Size horizontal/vertical 4.4 µm × 4.4 µm 

Frame Rate 10 fps 
Focal length 8.5 mm 

Comparing the estimated value and the simulated true value, it was shown that the position of the 

feature point and the velocity, which are expressed in the initial b -frame, were observable (Figure 5). 

The curves of the estimated accelerometer biases also indicate that the accelerometer biases were 

observable (Figure 6). Additionally, the roll and pitch angles were observable (Figure 7). This is 

because the gravity vector known in the e -frame provided the observable information for the roll and 

pitch angles [27]. According to Equation (19), the gravity vector expressed in the initial b -frame was 

also observable. Therefore, when the conditions in Theorem 1 are met, the quantities given in the 

conclusion are observable. However, the yaw angle was drifting and unobservable (Figure 7). Here, 

the unobservability of the yaw angle leads to the velocity and position of the system being 

unobservable in the e -frame, which verified the first part of Theorem 1. 

Figure 5. Error of position of the feature point and velocity of the camera/IMU-integrated 

platform expressed in the initial b-frame. 
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Figure 6. Estimated accelerometer bias of the camera/IMU-integrated system. 

 

Figure 7. Attitude error of the camera/IMU-integrated platform. 

 

The second simulated scenario considers a camera/IMU-integrated platform moving in a circle 

(Figure 8) with its camera looking at the center of the circle. Some feature points were distributed near 

the center of the circle, allowing the camera to track the feature points continuously. The trajectory of 

the circle was divided into four parts, which were indicated by different colors in Figure 8. Part 1 and 

Part 2 are shown to observe two feature points, while Part 3 and Part 4 are shown to observe three 

feature points. The difference between parts with the same number of features is that the feature points 

are located in a vertical line in the case of Parts 2 and 4, while this is not the case for Parts 1 and 3. The 

performances of the sensors are the same as the sensors simulated in the first simulation. 

Figure 8. Simulated circle trajectory of the camera/IMU-integrated platform and the layout 

of the feature points. 
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The processed image and the tightly-coupled INS results are shown in Figure 9. The figure shows 

the position and attitude error of the corresponding trajectory shown in Figure 8. The integrated 

solution of the position and attitude diverge in the second and fourth section of the trajectory  

(Figure 9). In these two sections, the feature points are in a vertical line; in the other two sections, the 

errors are bounded, and a sharp decrease of the error appears at the 90th second (i.e., the time in the 

middle of the second and third section), when the layout of the feature points changed from two feature 

points in a vertical line to three feature points that span the 3D space. When the observed feature points 

are not in a vertical line, the estimated states are thus observable, which confirms the conclusions of 

Theorem 2 and Theorem 3. Furthermore, it can be observed that the attitude error of the roll and pitch 

angles are bounded in the entire time span. This is because the gravity vector sensed by the IMU 

provided the observable information for these two states [27]. Additionally, the observable information 

for the yaw angle can only be provided by observing the feature points that are not in a vertical line. 

Figure 9. Position and attitude error of the tightly-coupled image/INS solution in the  

second simulation. 

 

According to the observability analysis given in Section 3.1.1, the vertical component of the 

accelerometer bias is observable when the platform rotates about at least two axes of the b -frame. 

However, as was shown in Figure 10, the estimated vertical component of the accelerometer bias (red 

line) was observable, which converged toward the true value from an intentionally biased initial value, 

although it only rotated about the vertical axes of the b -frame. This is because the sufficient condition 

“The system rotates about at least two axes of the b -frame” is given based on the assumption that the 

gravity vector expressed in the initial b -frame has three degrees of freedom. In reality, the gravity 

vector expressed in the e -frame is known. This leads to the magnitude of the gravity vector being 

known. Then, the degrees of freedom of the gravity vector expressed in the initial b -frame become 

two [29]. In this case, the observability conditions can be loosened. If considering that the magnitude 

of the gravity vector is known, the complete theoretical analysis will become very complicated and 

outside the scope of the paper. 
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It is uncommon that the camera can track the same feature points constantly in practice, because the 

field-of-view of the camera is limited. To test this, a third scenario was simulated with many known 

feature points deployed on the ground. As shown in Figure 11, the integrated camera/IMU platform 

was supposed to move in a square trajectory with the camera facing the ground where many known 

feature points are distributed. The platform was assumed to be 1 m above the ground. The 

performances of the sensors are the same as the sensors simulated in the first simulation. In the 

simulation, the feature points were projected onto the image plane and generated the image feature 

measurements. Then, the image measurements were superposed with randomly-generated white noise 

with a two-pixel standard deviation. The given coordinates of the feature points were added with 

randomly-generated white noise with a 1-cm standard deviation. It was assumed that only one feature 

point was observed in each image. This is shown in Figure 11, where the red feature points are the 

ones observed by the camera. 

Figure 10. Accelerometer bias. 

 

Figure 11. Simulated square trajectory of the camera/IMU-integrated platform and the 

layout of the feature points. 

 

For the situation that only one feature can be observed in each image, it is impossible for the 

loosely-coupled approach to manage the resulting data. However, the navigation system states are 

observable globally in the tight model, which can be referred to by the observability conclusion given 

in Section 3.2. This also yields the result that inertial errors are well bounded and calibrated  



Sensors 2014, 14 19393 

 

 

(Figure 12). Furthermore, the statistic errors are better than 1 cm and 0.1 degree (RMS) for the position 

and attitude, respectively (Table 2). 

Figure 12. Estimation errors of the tightly-coupled image/INS solution for the third 

simulation. The first and second columns show the errors of the estimated position and 

attitude, respectively. 3σ of the errors are marked by the dashed red line envelope. 

 

 

Table 2. Statistical summary of tightly-coupled image/INS solution error. 

Statistical Value 
Position Error (m) Attitude Error (degree) 

North East Down Roll Pitch Yaw 

Mean 0.0001 −0.0002 0.0001 −0.0043 −0.0612 −0.0105 
Rms 0.0020 0.0021 0.0023 0.0410 0.0773 0.0693 
Max 0.0102 0.0096 0.0114 0.1391 0.2644 0.2109 

5.2. Field Test 

A field test of the GNSS/image/INS-integrated system was conducted at Wuhan University, China, 

on 3 April 2014. As shown in Figure 13, a cart equipped with various sensors was installed. To 

evaluate the integrated solution of image/INS, the result of the carrier-phase differential GPS 

(CDGPS)-aided INS was used as the reference solution. The sensor suite on the platform consists of 

the following sensors: (1) two six-degrees-of-freedom (6-DoF) IMUs, including a quasi-tactical  

GI-1000 IMU and a low-end MEMS MTi-G IMU; (2) a NovAtel DL-V3 GPS receiver that can output 

a double frequency pseudo-range, Doppler and carrier-phase measurements; (3) a Basler camera, 

which was downward-pointing at a height of 0.7 m above the ground. The camera exposure was 

hardware triggered by external pulses. The measurements from these three types of sensors were 

strictly time-synchronized and were precisely mounted on an aluminum alloy beam that was fixed to 

the cart. The alignment was guaranteed, and the lever-arms between the sensors were measured and 

calibrated in advance. The specifications of these sensors are given in Table 1. In the test, the IGS 

reference station, WUHN (Wuhan), located on campus, was also used as the GPS base station, forming 

a double-differenced CDGPS solution with the rover GPS measurements. 
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Figure 13. Sensors installation on a cart. 

 

The field test was performed on a well-built square at the university. Feature points tracked by the 

camera came from the ground of the square directly. As shown in Figure 13, the ground is covered 

with regularly-shaped tiles that form many perpendicular lines on the ground. Because the cross points 

of the perpendicular lines are distributed evenly and easy to extract, the cross points were used as the 

known feature points that would be tracked in the images. During the data processing, the cross points 

were extracted by intersecting two perpendicular lines (Figure 14); the lines were detected using the 

method of “Hough transforms” [35]. 

Figure 14. Feature points extracted from the images by intersecting the lines. 

 

The positions of the feature points are surveyed in advance using high-precision geodetic GPS 

receivers with a 4 h static observation. Because the feature points are in a plane and regularly 

distributed on the ground, only several feature points were surveyed. The positions of other feature 

points were obtained by interpolation. The baseline of the static GPS stations and IGS WUHN station 

are solved using GAMIT (GPS Analysis at MIT) [36]. Due to the 500-m length of the baselines 

between the base station and the rover stations, the accuracy of the baseline solution was at the 

millimeter level. The coordinates of the WUHN station are in the WGS84 coordinate system, which is 

an Earth-centered Earth-fixed coordinate system. After adjusting the baselines, the high-precision 

location of the feature points down to millimeter-level accuracy was obtained in the globally referenced 

WGS84 coordinate system (i.e., the e -frame). However, the interpolating process contributed to a loss of 

precision to some degree, because the grids are not perfectly even in the real-world. 

To match the extracted cross point from the image with the corresponding physical cross point, 

position information was used. First, the position of the camera center can be predicted using the 
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current solution of the INS. The distance between the camera center and the physical cross point is also 

known (i.e., the height of the camera above the ground). Thus, the position of the cross point in the  

e -frame can be predicted using Equation (29). Then, searching for the closest point in the position 

database will find the corresponding point. In addition, the update interval of the image measurements 

should be small enough to ensure that the errors of the INS solution are bounded. Otherwise, an 

incorrect feature point can be matched. The capture interval was set to 0.1 s, which is small enough to 

identify the correct cross point. As the smallest distance between two different cross points in the 

database is 0.2 m, during 0.1 s, INS errors cannot be larger than 0.2 m. 

The cart was moved on the square along the trajectory shown in Figure 15. Figure 16 shows the 

velocity profile of the platform. The number of feature points observed changed in each image, as 

shown in Figure 17. Limited by the field-of-view of the camera, the largest number of feature points 

observed in an image was four; the detected number of feature points was mostly less than three. In 

this case, the tightly-coupled image/INS integration algorithm will be superior to the loosely-coupled 

method, which cannot consider the image measurements that contain only two or one feature point. 

Figure 15. Trajectory of field test. 

 

Figure 16. Velocity profile of the image/INS system. 
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Figure 17. Number of feature points observed in the image sequence. 

 

To evaluate the performance of the tightly-coupled image-aided INS-integrated solution, a 

backward smoothing solution of CDGPS-aided INS was chosen as the reference solution. The position 

and attitude differences between the image/INS and the reference are shown in Figure 18 for GI-1000 

and in Figure 19 for MTi-G. 

Figure 18. Position and attitude difference between image/INS (GI-1000) and CDGPS/INS. 

 

Figure 19. Position and attitude difference between image/INS (MTi-G) and CDGPS/INS. 
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A few error spikes appear at the end of the solution difference curves (Figures 18 and 19). As 

shown, the down position difference increases to a maximum value of 0.03 m and falls to a normal 

value quickly. In this short period, the cart was almost static and only one feature point was observed, 
as shown in Figures 16 and 17. According to Theorem 1, the scale factors iλ  were unobservable when 

only one feature point was observed, and its location changed minutely in the images. Therefore, the 

solution could be considered to be drift with INS sensor bias. The cart then moved slightly; two feature 

points were observed, and their locations changed in the images. According to Theorem 2, the 

integrated system became observable again, and the difference of the solution reduced immediately. 

Therefore, this phenomenon also confirms the observability analysis conclusions given in Section 3. 

The feature residual is the difference between the measurement of a pixel feature location and the 

prediction of the pixel feature location using the image/INS state estimates (cf. (4)). This obeys a 

normal distribution (Figures 20 and 21) and provides insight into the precision that the solution can 

achieve. Due to the characteristics of the camera used, one pixel in the image would represent 

approximately 4 mm, approximately, in the real world on the ground. Because most of the feature 

residuals are smaller than five pixels (Figures 20 and 21), it can be inferred that the position precision 

of the image-aided INS should be better than 2 cm. 

Figure 20. Feature residual of the image/INS (GI-1000) solution and its percentage histograms. 

 

Figure 21. Feature residual of the image/INS (MTi-G) solution and its percentage histograms. 
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The differences between the solution and the reference attitude error are less than 0.5 degrees 

(Figures 18 and 19). It can be observed that the attitude solution using MTi-G is only slightly nosier 

than that using GI-1000 (Tables 3 and 4), although the sensor performance of MTi-G is much worse 

than that of GI-1000 (Table 1). This is because the integrated attitude accuracy strongly depends on the 

accuracy that the image observations can provide. 

Table 3. Statistical summary of solution differences between image/INS (GI-1000) and 

carrier-phase differential GPS (CDGPS)/INS. 

Statistical Value 
Position Difference (m) Attitude Difference (degree) 

North East Down Roll Pitch Yaw 

Mean −0.0004 0.0001 0.0002 −0.0043 −0.0612 −0.0105 
Rms 0.0024 0.0028 0.0027 0.0681 0.0630 0.0861 
Max 0.0180 0.0108 0.0294 0.2509 0.1976 0.3076 

Table 4. Statistical summary of solution difference between image/INS (MTi-G) and CDGPS/INS. 

Statistical Value 
Position Difference (m) Attitude Difference (degree) 

North East Down Roll Pitch Yaw 

Mean −0.0004 −0.0006 0.0004 −0.0515 −0.0106 −0.0006 
Rms 0.0065 0.0023 0.0043 0.1253 0.1112 0.1052 
Max 0.0298 0.0114 0.0208 0.4220 0.4963 0.3937 

Compared to the conventional GNSS/INS integration system, the observable conditions of the 

attitude are different for image-aided INS and CDGPS-aided INS systems. For both of the systems, the 

roll and pitch error could be directly determined by measuring the gravity vector. However, for  

GNSS-aided INS, the yaw angle will become observable when the vehicle is under accelerating [19]. 

For the tightly-coupled image-aided INS, one line-of-sight observation can only provide observable 

information along the directions perpendicular to the feature line-of-sight [10]. Additionally, the  

line-of-sight measurements in these tests spanned the 3D space, because the locations of the features 

always changed on the image plane, ensuring that the yaw angle was observable. From the observability 

point of view, the image aiding for INS is complementary to the GNSS aiding, to some extent. 

6. Conclusions 

A tightly-coupled image-aided inertial navigation system has been developed and analyzed for 

observability from a global perspective. 

The observability analysis reveals that tracking two known feature points that are not in a vertical 

line can ensure that the states of the integrated system remain observable as long as the locations of 

both feature points on the image plane change with time. In the case that different known feature 

points are tracked, observing only one feature point at a time can ensure that the navigation states of 

the system are observable, as long as the locations of the feature points on the image plane change. 

Additionally, if estimation of the accelerometer bias is required, then the system should rotate about at 

least two axes of the b -frame simultaneously. 
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Simulation and field test evaluations have shown that the position precision of the proposed  

tightly-coupled image-aided INS is better than two centimeters in a close-range distance, even with 

only one feature point available in the images. The attitude precision of the system is shown to be 

better than 0.5 degrees. Thus, this image-aided INS can be applied as a high-precision positioning 

technology in a GNSS-denied environment. 

Future work includes: tightening the given sufficient conditions of global observability of the 

camera/IMU-integrated system in this paper to become sufficient and necessary conditions, by 

considering that the magnitude of the local gravity is known; evaluating the proposed system in a more 

professional test field; and improving the precision of the proposed system by using a high-grade IMU. 

The authors would also like to explore the potential of using the proposed system as a reference to 

evaluate other high-precision navigation systems in dynamic situations. 
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