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Abstract: High precision Global Navigation Satellite System (GNSS) measurements are
becoming more and more popular in alpine skiing due to the relatively undemanding setup
and excellent performance. However, GNSS provides only single-point measurements that
are defined with the antenna placed typically behind the skier’s neck. A key issue is how to
estimate other more relevant parameters of the skier’s body, like the center of mass (COM)
and ski trajectories. Previously, these parameters were estimated by modeling the skier’s
body with an inverted-pendulum model that oversimplified the skier’s body. In this study, we
propose two machine learning methods that overcome this shortcoming and estimate COM
and skis trajectories based on a more faithful approximation of the skier’s body with nine
degrees-of-freedom. The first method utilizes a well-established approach of artificial neural
networks, while the second method is based on a state-of-the-art statistical generalization
method. Both methods were evaluated using the reference measurements obtained on a
typical giant slalom course and compared with the inverted-pendulum method. Our results
outperform the results of commonly used inverted-pendulum methods and demonstrate
the applicability of machine learning techniques in biomechanical measurements of
alpine skiing.
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1. Introduction

High precision Global Navigation Satellite System technology (GNSS) has been effectively used
to support many outdoor measurements in sports [1–3], including alpine skiing [4–6]. One of the
main reasons is the practically unlimited measurement area and real-time availability of the results.
By contrast, optical measurement systems consisting of several calibrated cameras require precise
calibration, post-processing and can capture motion only in a limited area. This is problematic, especially
in sports like alpine skiing. On the other hand, GNSS measurements are usually restricted to capturing a
motion of a single point, defined with the location of the GNSS antenna on the skier’s body. Moreover,
the antenna of the GNSS receiver cannot be attached to an arbitrary joint, due to satellite visibility.
In order to overcome this problem, GNSS measurement setup has often been combined with Inertial
Measurement Unit (IMU) based system in order to retrieve full body motion [4,7]. Although this
could be a satisfactory solution, it has several limitations. The IMU system requires precise calibration
and synchronization with the GNSS measurement system. Probably the most demanding aspect is the
preparation and placement of IMU sensors on the subject’s body, which is tedious and time-consuming to
perform on the ski slope. This is a severe limiting factor in biomechanical measurements of alpine skiing,
especially when many subjects are involved. Therefore, a question arises as to whether we could simplify
on-site measurements by avoiding the use of IMU sensors and still obtain valuable biomechanical results
of alpine skiing.

Many important parameters (qualifiers) of alpine-skiing can be estimated by tracking only a few
points of the skier’s body. In many cases, it is sufficient to know the location of the skier’s center of mass
(COM) [8–11]. Unfortunately, we cannot directly measure COM using GNSS, because this is not a fixed
point, and it might not lie within the skier’s body. Usually, the antenna of the GNSS system is placed
behind the skier’s neck or on the top of the skier’s helmet [4,6]. One solution to the above problem
was proposed by [12], where the skier’s body was approximated with a statically balanced inverted
pendulum. Kalman filtering was used to estimate accelerations necessary to compute the inverted
pendulum equilibrium pose. This approach was enhanced by also taking into account the inverted
pendulum dynamics and used for COM estimation in a study of air drag influence on giant slalom [13].
A similar approach based on a statically balanced inverted pendulum was proposed also in [6]. However,
approximation of the skier’s pose using a rigid inverted pendulum with two degrees-of-freedom is very
rough and neglects important parameters of the skiing, such as the frontal and lateral flexion of the
skier’s body.

The aim of this study is to go beyond the current state-of-the-art and establish a novel methodological
approach based on machine learning techniques that approximate the skier’s body with nine
degrees-of-freedom. We implemented two machine learning techniques, one well-established method
based on back propagation neural networks (NN) and one modern statistical generalization method based
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on locally weighted projection regression (LWPR). We applied both methods on 18 runs of a typical giant
slalom course and compared the results with the inverted pendulum approach proposed by [13] and with
the reference data that were obtained with a combination of GNSS and IMU measurement systems [4].

2. Methods

2.1. Subjects

Five highly skilled skiers, two females and three males, participated in this study. Their average age
was 22.4 years (SD = 3.4 years), height 171 cm (SD = 4.3 cm), body mass 65.3 kg (SD = 6.3 kg) and
total body mass with equipment 80.0 kg (SD = 6.8 kg). Prior to their participation, the subjects were
informed about the course of the study and were required to sign an informed consent approved by the
ethics committee of the Faculty of Sport in Ljubljana.

2.2. Measurement Protocol

We measured the global position and skier pose on a typical giant slalom course consisting of 12 gates.
The length of the course was 350 m with an altitude difference of 99 m. Altogether, 18 ski runs were
captured (3 to 4 runs for each skier).

In order to obtain training data for both the NN- and LWPR-based methods and for evaluation of the
results obtained with all of the proposed methods, reference measurements that are comprised of both
GNSS antenna trajectories and skier’s pose were required. For a reference system, we used a differential
GNSS measurement setup (Leica 1200 Series, Leica Geosystems AG, Heerbrugg, Switzerland). The
measurement errors, as specified by the manufacturer for the real-time kinematics (RTK) mode, are
below 10 mm for horizontal and 20 mm for vertical position accuracy with 99.99% reliability. Alpine
skiing environment experiments demonstrated a 95% confidence interval at errors below 7 mm for
horizontal coordinates and below 16 mm for vertical coordinates. The maximal norm of the position
error encountered was 2.9 cm [4]. The sampling frequency was 20 Hz. More details about the GNSS
system can be found in [14]. The GNSS measurement setup was combined with an IMU motion capture
suit (Xsens MVN , Xsens Technologies, Enschede, The Netherlands) for capturing the full-body skier’s
posture as in previous studies [4,15]. The IMU motion capture suit (MVN) had 17 motion-tracking
sensors. Each sensor measures 3D acceleration, 3D rate of turn and 3D Earth-magnetic field data. MVN
was capable of tracking 22 body segments with a sampling frequency of 120 Hz. The 3D orientation
accuracy of the MVN system is below 0.5 degree; measurement resolution is 0.05 degree; accelerator
resolution is 0.002 g; and gyroscope resolution is 0.6 degree/s. The isolated inertial sensor’s drift in
the 10-s forced pendulum showed only 0.8 degree, while in the 35-s test, the drift was higher, between
2.1 degree and 4.2 degree for frequencies of 0.5–2 Hz; the position drift of the complete MVN suit
without using and external GNSS was shown to be 0.2% [4]. In another study, the MVN system was
compared to the optical measurement system [15]. It was shown that the mean difference between the
optical system and the MVN inertial measurement system was between 0.7 degree end 4.9 degree for
different analyzed body angles.
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To combine the data from both systems, a cubic-spline interpolation was used to upscale the GNSS
trajectory data from 20 to 120 Hz. The MVN data were expressed relative to the GNSS antenna
coordinates; therefore, simple addition of the data from both systems gives the global position of
each body segment. The data of both systems were time synchronized by an isolated explosive squat
movement prior to each run. Therefore, the data recorded from the motion capture suit and from the
GNSS were imported to the data analysis system, where the isolated explosive squat movement was
found automatically from the motion capture suit and the GNSS. The lowest position of the squat was
used as the synchronization point. An optimization process was used to calculate where the vertical
velocity of the GNSS and the MVN suit’s neck joint crossed the zero point [4]. The overall setup forms
a reliable system for 3D measurements that is highly applicable in alpine skiing [4] due to the practically
unlimited measurement volume. A skier wearing the entire setup for measuring skiing data is presented
in Figure 1.

In this study, the errors were calculated as the Euclidean norm of the distances between the measured
values from the reference setup and the estimated values from the model quoted for all 3 dimensions in
the Cartesian space. For this, all ski runs were normalized to equal duration and expressed as a function
of the ski path s = {0,1}, 0 denoting the start and 1 the end of the ski run, respectively. This technique
assured that the errors from the individual ski runs were summed along the ski path in order to calculate
mean values and the corresponding standard deviations.

Figure 1. A skier equipped with the entire measurement setup consisting of GNSS and
IMU units.

2.3. Estimation by the Inverted Pendulum Model

The aim of the inverted pendulum model (IP) is to estimate the center of mass (COM) and the skis’
trajectories from the GNSS trajectory of the skier. In our setup, the antenna that captures the position
is located behind the skier’s neck at shoulder height. Retrieval of even a simplified multi-segment body
model, as shown in the Figure 2, from a single point is an underdetermined problem, with an infinite
number of possible solutions for a given measured (captured) GNSS point. The problem becomes
tractable by simplifying the body model as a single bar mechanism and by implementing a constraint
that this bar is constantly dynamically balanced, as shown in Figure 3. This problem corresponds to
finding the bottom motion trajectory of an unactuated inverted pendulum on a cart with a given motion
trajectory of the pendulum top. The dynamics of an inverted pendulum is given by:
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Jθ̈+ lg×Fg− lg×Fr = τ, (1)

where J denotes the moment of inertia of the inverted pendulum, θ is the angle between the pendulum
and the global Z coordinate, lg is the center of the mass of the pendulum and Fr and Fg are the radial
and gravitational forces, respectively. τ is torque acting on the inverted pendulum and is supposed to
be much lower compared to the radial and gravitational forces. Therefore, τ was set to zero in further
analyses. The trajectory of the center of mass in the X −Y plane can be at any point parameterized
with the curvature radius r and the angular velocity ω around the global Z-axis. Thus, the radial force
is Fr = mar, and the gravity force is Fg = mg, where g denotes gravity acceleration and ar is the radial
acceleration, ar = ωr. Inserting radial and gravitational force into Equation (1) and assuming point mass
at the COM for the pendulum inertia yields:

lgθ̈+ar cos(θ)− (az +g)sin(θ) = 0. (2)

Figure 2. Simplified skeleton model of a skier. The red line denotes the antenna path
measured with a GNSS setup.

Figure 3. Skier modeled as the inverted pendulum. The red circle on the skier and the
black circle on the model denote the center of mass (COM) of the skier and COM of the
model, respectively.
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Our pendulum model has thus 2 degrees of freedom, angle θ and length to the center of mass lg.
Length to the center of the mass is related to the total length l by the lg = kl, where k is a constant
that denotes the average ratio of the center of the mass to the standing height for humans. This factor
varies from 0.57 to 0.55 for females and males, respectively [16]. Equation (2) can be solved for θ using
tangent half-angle substitution [17] and assuming that the acceleration θ̈ is a known parameter.

θ = 2arctan(az +g+

√
a2

r +(az +g)2− l2
g θ̈2

lgθ̈−ar
). (3)
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However, Equation (3) cannot be solved directly, because neither θ̈ nor lg are known in advance.
However, if the trajectory of the antenna is known, it is possible to estimate radial accelerations a∗r and
vertical accelerations a∗z , which corresponds to the position of the antenna. Note that the position of
the antenna also corresponds to the top of the pendulum in our model. The relation between the COM
accelerations and antenna accelerations is given with:

ar = a∗r + k sin(θ)(l̇− lθ̈2 +ω)+ k cos(θ)(lθ̇+2l̇θ̇)

az = a∗z + k cos(θ)(l̇− lθ̈2)− k sin(θ)(lθ̇+2l̇θ̇) (4)

which, again, requires known pendulum angle θ, pendulum length l and their derivatives. Therefore, the
optimal solution can be found by applying an optimization method. In the optimization procedure,
the initial angular accelerations θ̈ are set to zero in order to calculate antenna accelerations a∗r ,a

∗
z

and angular velocities ω for the entire trajectory. Calculation of angular velocities is accomplished
through the estimation of the curvature radii of the circles spanned through three adjacent trajectory
points. From the first approximation of COM accelerations with the accelerations of the antenna,
the pendulum angle θ and the pendulum length are calculated along the entire trajectory. Pendulum
length is calculated from the intersection of a vector, defined with the antenna position and
angle θ, and measured ski slope mesh. From measured θ, the calculation of θ̈ is performed using
Kalman filtering, which optimally estimates accelerations from the noisy measurements [12]. The
whole procedure repeats until it converges. Typically, it requires from 5 to 10 iterations until it
converges to the final solution. The entire optimization procedure shown in the block diagram in
Figure 4 was implemented in MATLAB (Mathworks Inc., Natick, MA, USA).

Figure 4. Block diagram of optimization procedure for estimating skier’s posture using the
inverted pendulum model.
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2.4. Estimation by Back Propagation Neural Networks

Estimation of the skier’s pose using the inverted pendulum model is a very rough approximation. On
the other hand, an average skiing coach can predict the pose of the skier based on relevant parameters,
such as velocity, ski turn phase, ski slope inclination, and others. The hypothesis is that it is possible
to build a model of the skier capable of predicting the skier’s pose based on some easy measurable
parameters, for example the trajectory of the GNSS antenna and local ski slope inclination, which can
be both directly measured with GNSS technology.

One possibility for building a model of a skier are artificial neural networks (NN), which are
computational models inspired by animal and human central nervous systems [18,19]. They consist of
interconnected computational models of neurons and compute output values as a function of inputs and
interconnection weights. Neural networks have been successfully applied to solve a wide variety of tasks
that are hard to accomplish using ordinary rule-based programming, including computer vision, speech
recognition, motor control, etc [20]. During the learning, the set of adaptive weights were optimized in a
way that a set of input queries generate the set of data describing the skier’s pose. Once the NN model is
adequately learned (trained), it returns the most probable configuration of the skier’s pose regarding the
input data, referred to as the query. The query was chosen to be a three-dimensional vector consisting of
the radial acceleration of the antenna ar, absolute velocity v and the angle α, which was calculated as the
angle between the local skiing direction and the X-axis of the ski slope surface normal (see Figure 5).
The output set of data was a 9-dimensional vector consisting of the COM position, the left ski position
and the right ski position, all expressed relative to the GNSS antenna position, respectively. Each position
data was a 3D vector of x,y and z coordinates. The entire procedure is schematically outlined in Figure 6.

Figure 5. Input (query) of skiing pose prediction model: radial acceleration of the antenna
ar, absolute velocity v and the angle α between the local skiing direction and X-axis of the
ski slope surface normal.
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Figure 6. Framework for the estimation of skier’s pose using artificial neural networks.
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Neural networks were implemented in MATLAB using the Neural Networks Toolbox. The main
tuning parameter in this setup was the number of hidden layers [18]. Too many hidden layers can cause
the overfitting problem, slow down the learning and could even degrade the performance of the NN [21].
Similarly, too few hidden layers cannot cope with the nonlinearity of the approximated function. In our
case, the best results were obtained with 30 hidden layers resulting in a NN with 399 neurons.

2.5. Estimation by Statistical Generalization

In NN, as well as in most learning methods, a single global model is used to fit all of the training
data. Recently, new approaches were proposed based on multiple local models that attempt to fit the
training data only in a region around the location of the query [22,23]. Among the benefits of the
these methods are inexpensive computation, on-line learning capability and generally more accurate
modeling of highly non-linear systems [24]. As such, they are suitable for building a skier model. In our
research, we applied a statistical generalization method called locally weighted projected regression
(LWPR) [24,25], where the aim was to find a set of output data that correspond to the input data, which
was given as a query [26]. It is a non-parametric regression method that combines multiple local methods
for averaging, interpolating between and extrapolating from, the data associated with a particular query.
The key concept of the method was to approximate nonlinear functions by means of piecewise linear
models (see Figure 7), where the main problem was to determine the region of validity of the local models
and how to fit the local model in this region. The detailed description of the applied algorithm is beyond
the scope of this paper and can be found in [25]. In our experiments, we used the Open-Code MATLAB
implementation of the LWPR algorithm [27]. The main tuning parameter in this implementation turned
out to be the positive semi-definite distance metric matrix D that determined the size and shape of region
of validity of the linear models and influenced the number of applied local models [25]. Higher diagonal
values of this distance metrics matrix increased the number of local models. Too many local models
caused overfitting, which can drastically degrade the performance of the LWPR model in our case. The
best results were obtained with D = 0.1I, where I denotes the 3×3 identity matrix. This choice resulted
in 50 linear models, which were enough to predict the skier’s pose given the input set of the data. As
in the case of NN, the input query was chosen to be a three-dimensional vector consisting of the radial
acceleration of the antenna ar, the absolute velocity v and the angle α, and the output set of data was a
9-dimensional vector consisting of the COM position, the left ski position and the right ski position, all
expressed relative to the GNSS position of the antenna, respectively.

Figure 7. An example of function approximated with local linear models.
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3. Results

First, we evaluated the inverted pendulum method by estimating the position of the COM and the
bottom of the pendulum for all 18 ski runs using only GNSS data. The results were compared to the
reference data obtained with the GNSS-IMU setup. A direct comparison was possible only for the COM
estimation, since the estimated position of the bottom of the pendulum cannot be directly compared to
the positions of the skis. Therefore, we compared the mid-point between the skis and the bottom of the
pendulum by assuming that the weight is equally distributed between both skis. A snapshot of a typical
ski turn (ski run Number 4) is shown in Figure 8, where we can see both measured skier’s poses and
the inverted pendulum approximations indicated with the black bar. Mean values and the corresponding
standard deviations of the estimated position errors of the COM and the positions of the mid-skis for
all 18 runs are shown in Figure 9. As expected, estimation of the skis position is less accurate then
estimation of COM. It can be noticed also that the inverted pendulum model exhibits larger error in the
initial phase of the turn, which is evident also from Figure 8.

Figure 8. A comparison of inverted pendulum model (black line) and measured pose based
on a 22 segment model. Yellow, green, red and blue color denote the antenna, COM, right
ski and left ski trajectories, respectively.

Figure 9. Mean error between estimated and true values of COM position and the position
of skis using the inverted pendulum model for all 18 ski runs. The shadowed region denotes
the standard deviation of the mean error.
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Next, we evaluated the NN model. The NN model was trained using three ski runs, one performed
by the female subject and two performed by male subjects. Using the trained neural network and GNSS
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data as the query, we estimated the position of the COM and the position of the both skis for all 18 ski
runs. Query data composed of radial acceleration ar, skiing angle α and skiing velocity v are shown in
Figure 10. To obtain these plots, we normalized all ski runs from the start point to the finish point to
equal duration and calculated mean values and the corresponding standard deviations for all 18 runs.

Figure 10. Mean values of query data composed of radial acceleration ar, skiing angle α

and skiing velocity v for all 18 ski runs. The shaded region denotes the standard deviation.
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The results were compared to the data obtained with the reference system, as described in Section 2.2.
Mean errors of estimation of COM and both skis for all ski runs using the NN prediction model are shown
in Figure 11. It can be clearly seen that the errors obtained with the NN model are significantly lower
compared to the errors using the IP model.

Figure 11. Mean error between the estimated and true value of COM positions and both
skis positions by using NN for all 18 ski runs. Yellow, green blue and red lines denote the
antenna trajectory, COM trajectory and left and right skis trajectories, respectively. Measured
trajectories are solid lines, and estimated ones are denoted with dotted lines.
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Afterwards, we trained the LWPR with the same three ski runs as for the NN based model. The
same query data set as in previous case was used also for the evaluation (see Figure 10). The obtained
data were compared with the measured data obtained with the reference setup. A typical ski run
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(Number 4) is given in Figure 12, where we can see the measured skier’s pose with GNSS-IMU in
black and the LWPR prediction in red. Note that the upper body of the skier, including the arms, the
neck and the head, was not estimated within this study. In Figure 13, we show the estimation errors
and the standard deviations of the COM position and the position of the both skies in all 18 runs.
Shaded areas denote the standard deviations.

Figure 12. A comparison between the LWPR model (red) and measured pose (black). Note
that the upper body pose was not estimated with the LWPR model.

Figure 13. Mean errors of COM positions and skis positions, estimated by using LWPR for
all 18 ski runs. The shadowed region denotes the standard deviation.
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Here, the main issue arises of how general the approximation of the skier’s pose was, with respect
to the different subjects and different ski runs. To investigate this issue, we performed an additional
cross-check validation to estimate the accuracy of the trained modes. Both the NN and LWPR models
were trained individually using three runs of each subject (skier). The obtained individual models were
used to predict the pose of all skiers. The prediction errors for the COM and for the ski position are
shown in Tables 1–4 for NN- and LWPR-based models, respectively. In this table, columns correspond
to the model, which was trained using three runs of the same skier. Rows correspond to all ski runs of
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each skier. As can be observed from the tables, the lowest prediction error was on the table diagonal,
which denotes the case when the model was trained with the same subject that was later used for the
prediction. These areas are denoted with green background color in the tables.

Table 1. Cross-validation of NN models. Models were learned using all runs of the same
skier (columns). Mean errors and standard deviations of the COM position of these models
were calculated for all 18 runs. All values in the table are given in m.

SKIER RUN 1 2 3 4 5

1 0.034 (0.017) 0.062 (0.025) 0.081 (0.040) 0.075 (0.061) 0.097 (0.051)

2 0.030 (0.014) 0.049 (0.025) 0.056 (0.025) 0.040 (0.019) 0.060 (0.026)

3 0.033 (0.018) 0.055 (0.031) 0.064 (0.027) 0.046 (0.021) 0.079 (0.038)

1 0.067 (0.033) 0.037 (0.017) 0.055 (0.026) 0.060 (0.033) 0.053 (0.027)

2 0.056 (0.031) 0.033 (0.017) 0.062 (0.025) 0.059 (0.025) 0.075 (0.026)

3 0.054 (0.031) 0.029 (0.015) 0.056 (0.023) 0.054 (0.025) 0.072 (0.028)

4 0.063 (0.035) 0.042 (0.020) 0.057 (0.021) 0.069 (0.031) 0.070 (0.027)

1 0.063 (0.029) 0.049 (0.024) 0.036 (0.016) 0.068 (0.030) 0.048 (0.027)

2 0.055 (0.024) 0.049 (0.024) 0.031 (0.014) 0.059 (0.026) 0.054 (0.025)

3 0.074 (0.027) 0.074 (0.021) 0.045 (0.018) 0.086 (0.028) 0.069 (0.024)

4 0.064 (0.027) 0.055 (0.022) 0.037 (0.017) 0.073 (0.030) 0.047 (0.022)

1 0.056 (0.025) 0.046 (0.020) 0.054 (0.024) 0.037 (0.017) 0.068 (0.028)

2 0.045 (0.019) 0.050 (0.022) 0.065 (0.021) 0.031 (0.014) 0.061 (0.024)

3 0.048 (0.027) 0.054 (0.024) 0.070 (0.025) 0.035 (0.014) 0.064 (0.024)

1 0.081 (0.045) 0.067 (0.034) 0.057 (0.037) 0.095 (0.044) 0.028 (0.014)

2 0.085 (0.055) 0.066 (0.027) 0.055 (0.028) 0.102 (0.043) 0.027 (0.014)

3 0.065 (0.029) 0.058 (0.022) 0.046 (0.019) 0.061 (0.028) 0.031 (0.016)

4 0.066 (0.028) 0.057 (0.021) 0.044 (0.019) 0.067 (0.029) 0.033 (0.019)

method : NN

MODEL TRAINING / SKIER

COM MEAN ERRORS (STANDARD DEVIATIONS)

1

2

3

4

5

Table 2. Cross-validation of NN models. Models were learned using all runs of the same
skier (columns). Mean errors and standard deviations of the positions of the skis for these
models were calculated for all 18 runs. All values in the table are given in m.

SKIER RUN 1 2 3 4 5

1 0.058 (0.031) 0.128 (0.056) 0.150 (0.094) 0.182 (0.205) 0.206 (0.151)

2 0.049 (0.027) 0.103 (0.046) 0.096 (0.052) 0.090 (0.036) 0.113 (0.059)

3 0.058 (0.032) 0.128 (0.061) 0.116 (0.059) 0.108 (0.044) 0.150 (0.082)

1 0.150 (0.072) 0.061 (0.032) 0.114 (0.055) 0.105 (0.058) 0.112 (0.065)

2 0.120 (0.063) 0.057 (0.030) 0.104 (0.061) 0.102 (0.046) 0.123 (0.059)

3 0.120 (0.063) 0.047 (0.023) 0.096 (0.059) 0.093 (0.044) 0.126 (0.062)

4 0.118 (0.066) 0.067 (0.036) 0.096 (0.051) 0.098 (0.050) 0.113 (0.055)

1 0.118 (0.058) 0.098 (0.053) 0.056 (0.026) 0.118 (0.048) 0.093 (0.053)

2 0.101 (0.043) 0.097 (0.057) 0.043 (0.020) 0.108 (0.043) 0.094 (0.042)

3 0.112 (0.046) 0.109 (0.046) 0.052 (0.022) 0.130 (0.036) 0.109 (0.029)

4 0.118 (0.049) 0.106 (0.053) 0.056 (0.027) 0.118 (0.049) 0.090 (0.037)

1 0.111 (0.041) 0.091 (0.037) 0.114 (0.042) 0.052 (0.024) 0.116 (0.054)

2 0.100 (0.040) 0.083 (0.038) 0.101 (0.036) 0.045 (0.017) 0.088 (0.042)

3 0.110 (0.045) 0.091 (0.041) 0.113 (0.046) 0.053 (0.024) 0.102 (0.049)

1 0.156 (0.096) 0.138 (0.070) 0.105 (0.058) 0.148 (0.070) 0.052 (0.029)

2 0.170 (0.116) 0.141 (0.068) 0.101 (0.049) 0.160 (0.061) 0.043 (0.021)

3 0.126 (0.054) 0.117 (0.053) 0.095 (0.031) 0.091 (0.044) 0.051 (0.027)

4 0.128 (0.052) 0.121 (0.058) 0.094 (0.030) 0.100 (0.051) 0.062 (0.032)

method : NN SKI MEAN ERRORS (STANDARD DEVIATIONS)

MODEL TRAINING / SKIER

1

2

3

4

5
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Table 3. Cross-validation of LWPR models. Models were learned using all runs of the same
skier (columns). Mean errors and standard deviations of the COM positions of these models
were calculated for all 18 runs. All values in the table are given in m.

SKIER RUN 1 2 3 4 5

1 0.042 (0.019) 0.058 (0.018) 0.076 (0.030) 0.052 (0.021) 0.090 (0.041)

2 0.032 (0.012) 0.046 (0.022) 0.057 (0.021) 0.030 (0.012) 0.066 (0.029)

3 0.034 (0.012) 0.047 (0.022) 0.067 (0.031) 0.041 (0.018) 0.076 (0.035)

1 0.074 (0.031) 0.048 (0.020) 0.073 (0.027) 0.056 (0.027) 0.065 (0.035)

2 0.059 (0.026) 0.040 (0.014) 0.066 (0.018) 0.053 (0.020) 0.076 (0.020)

3 0.052 (0.021) 0.031 (0.013) 0.058 (0.026) 0.041 (0.020) 0.063 (0.027)

4 0.054 (0.020) 0.041 (0.013) 0.051 (0.013) 0.054 (0.020) 0.064 (0.019)

1 0.063 (0.025) 0.050 (0.026) 0.042 (0.021) 0.061 (0.023) 0.046 (0.014)

2 0.050 (0.022) 0.049 (0.021) 0.042 (0.018) 0.053 (0.025) 0.050 (0.028)

3 0.077 (0.015) 0.077 (0.020) 0.049 (0.016) 0.076 (0.025) 0.069 (0.016)

4 0.056 (0.024) 0.057 (0.019) 0.040 (0.021) 0.057 (0.022) 0.051 (0.025)

1 0.055 (0.022) 0.048 (0.021) 0.056 (0.021) 0.054 (0.013) 0.062 (0.026)

2 0.047 (0.017) 0.049 (0.029) 0.063 (0.019) 0.026 (0.015) 0.058 (0.021)

3 0.061 (0.023) 0.059 (0.023) 0.076 (0.025) 0.034 (0.013) 0.069 (0.025)

1 0.071 (0.028) 0.055 (0.025) 0.063 (0.026) 0.062 (0.029) 0.049 (0.021)

2 0.083 (0.032) 0.063 (0.026) 0.066 (0.033) 0.066 (0.031) 0.045 (0.022)

3 0.063 (0.025) 0.064 (0.020) 0.049 (0.018) 0.058 (0.028) 0.043 (0.017)

4 0.060 (0.025) 0.056 (0.015) 0.047 (0.018) 0.055 (0.022) 0.039 (0.017)

method : LWPR COM MEAN ERRORS (STANDARD DEVIATIONS)

MODEL TRAINING / SKIER

1

2

3

4

5

Table 4. Cross-validation of LWPR models. Models were learned using all runs of the same
skier (columns). Mean errors and standard deviations of the positions of the skis for these
models were calculated for all 18 runs. All values in the table are given in m.

SKIER RUN 1 2 3 4 5

1 0.066 (0.039) 0.118 (0.047) 0.126 (0.063) 0.106 (0.051) 0.132 (0.093)

2 0.044 (0.020) 0.098 (0.030) 0.095 (0.039) 0.070 (0.029) 0.098 (0.068)

3 0.061 (0.040) 0.110 (0.049) 0.125 (0.083) 0.089 (0.048) 0.132 (0.097)

1 0.139 (0.066) 0.082 (0.032) 0.126 (0.077) 0.100 (0.052) 0.124 (0.097)

2 0.097 (0.056) 0.057 (0.027) 0.085 (0.054) 0.078 (0.041) 0.099 (0.064)

3 0.094 (0.045) 0.038 (0.021) 0.079 (0.068) 0.062 (0.032) 0.086 (0.075)

4 0.081 (0.039) 0.056 (0.028) 0.063 (0.034) 0.057 (0.036) 0.081 (0.046)

1 0.099 (0.057) 0.089 (0.055) 0.063 (0.032) 0.088 (0.057) 0.071 (0.031)

2 0.072 (0.030) 0.089 (0.052) 0.056 (0.036) 0.081 (0.051) 0.084 (0.066)

3 0.082 (0.038) 0.092 (0.051) 0.041 (0.021) 0.083 (0.043) 0.064 (0.035)

4 0.085 (0.040) 0.102 (0.054) 0.054 (0.030) 0.079 (0.054) 0.085 (0.044)

1 0.080 (0.042) 0.080 (0.039) 0.096 (0.035) 0.067 (0.031) 0.106 (0.052)

2 0.071 (0.031) 0.076 (0.051) 0.076 (0.034) 0.041 (0.024) 0.076 (0.039)

3 0.090 (0.043) 0.078 (0.040) 0.090 (0.057) 0.044 (0.026) 0.084 (0.059)

1 0.084 (0.033) 0.090 (0.046) 0.085 (0.047) 0.087 (0.048) 0.084 (0.055)

2 0.089 (0.052) 0.077 (0.043) 0.079 (0.049) 0.078 (0.033) 0.065 (0.044)

3 0.091 (0.045) 0.109 (0.060) 0.078 (0.038) 0.082 (0.054) 0.078 (0.046)

4 0.073 (0.037) 0.094 (0.054) 0.069 (0.030) 0.074 (0.046) 0.070 (0.044)

method : LWPR SKI MEAN ERRORS (STANDARD DEVIATIONS)

MODEL TRAINING / SKIER

1

2

3

4

5

A paired-samples t-test was conducted to compare prediction errors when using NN and LWPR
methods. Here, we compared only results obtained using models trained with different subjects that
were later used for the prediction. On average, the COM prediction error was statistically significantly
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lower when using LWPR (M = 0.059 m, SD = 0.011 m) than with NN (M = 0.062 m, SD = 0.013 m),
t(71) = 2.61, p = 0.01. Similarly, the prediction error of ski position was also statistically
significantly lower when using LWPR (M = 0.089 m, SD = 0.018 m) than with NN (M = 0.115 m,
SD = 0.023 m), t(71) = 10.67, p < 0.00.

4. Discussion

Until now, the inverted pendulum model was the only method used to predict the skier’s pose using
solely GNSS data. Although we derived a complete dynamic model of the IP, the results show that the
IP model cannot accurately estimate COM and skis positions, despite the fact that other studies showed
usable ground reaction forces and air drag estimation using a similar or equal methodology [6,13]. The
main drawback of the inverted pendulum model is the assumption that the COM position lies on the
line connecting the position of the antenna and the center of the pressure point of the ground, which is
somewhere between both skies. However, the actual skier’s COM almost never lies in this line during
the ski turns; therefore, the differences between estimated and actual COM positions may be substantial
(see Figure 3). Another issue with the inverted pendulum model is that it can only predict the one single
point on the ground (center of pressure) and not the actual skis’ positions. Moreover, the assumption that
the skier can be approximated with a non-actuated inverted pendulum is also very rough. In reality, the
skier can produce substantial torque in the frontal plane regarding the skiing direction, which violates
the assumption of zero pendulum driving torque τ [28,29]. However, this torque cannot be measured
with the GNSS setup.

On the contrary, modeling based on NN and LWPR account for all of these effects to some extent.
Mainly, they are limited by the fact that they will always return an average, i.e., the most probable pose
regarding the input queries. In other words, they cannot predict the correct pose if the skier has taken
an unusual pose, which was not included in the training data. Such a pose might happen, for example,
when the skier tries to prevent falling after a mistake or an imbalance during skiing. On the other hand,
this feature opens new possible applications of the proposed skiing models. Since they could detect the
unexpected movements, e.g., mistakes, it would be possible to develop an automatic coaching process
using the proposed technology. Such information would be of great interest when considering skiing
safety or when analyzing competitive skiers where a small deviation from “standard” skiing could be
crucial for the performance. Summarizing, the proposed skier’s pose prediction based on trained NN
and LWPR models is not meant to be a replacement for a complete measurement setup consisting of
GNSS and IMU sensors. Rather than that, they can generate a decent approximation of the skier’s pose
in absence of the complete GNSS-IMU setup. Their prediction errors are substantially lower compared
to those obtained with the inverted pendulum model. Additionally, they are also computationally less
demanding compared to the inverted pendulum model. If real-time data streaming from the GNSS
system is provided, they are able to predict the skier’s pose in real time. On the contrary, the dynamic
inverted pendulum method is based on the optimization and, thus, requires data of the entire ski run.

Appropriately chosen pairs of input (query) and output data are crucial for the success of the statistical
generalization. It is obvious that skier’s pose can not be predicted using only antenna position. Even the
simplest possible model as given by the Equation (2) uses also COM accelerations. This implies that
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the knowledge of accelerations is also required. On the other hand, a high dimensional query limits the
performance of the statistical generalization methods in general. In our case, we got the best results for
the query composed of the radial acceleration of the antenna ar, absolute velocity v and the local skiing
direction angle α, as explained in Figure 5.

NN- and LWPR-based models cannot predict completely new, previously unseen situations. For
example, the models cannot correctly predict giant slalom courses at high skiing velocities if the models
were trained only with special slalom courses performed at low skiing velocity. On the other hand,
they are effective at predicting giant slalom and special slalom courses, if both disciplines were used
in training. However, the best results are obtained if the models are trained and used for each skiing
discipline individually. As we can see from Tables 1 to 4, the best results were obtained also in the case
when the models were individually trained for the same subject. This is indeed an expected result, but
the prediction errors if we use individually trained models for other subjects are very small, as well. This
shows that the learned models are, to a great extent, subject independent. Additionally, we can see that
slightly lower errors were obtained using the LWPR model, also confirmed with the paired-samples t-test.
This indicates that the LWPR method is more efficient when predicting previously unseen situations.

5. Conclusions

By comparing both proposed learned model-based methods, we see that the LWPR-based model
performed slightly better and the training time is lower compared to the NN-based model. On the other
hand, both LWPR- and NN-based methods perform substantially better than the IP-based method. The
main drawback of the newly proposed methods is that they require training data based on a complete
setup consisting of IMU and GNSS sensors or any other full-body measurement system (e.g., a calibrated
camera-based setup). Since such measurements are difficult to obtain, we propose to establish a publicly
available database of measurements, where all laboratories capable of providing such measurements
could contribute. The models could then be classified according to the skiing discipline and skills of the
skier. The main purpose of such a database with models would go beyond research and athlete coaching;
it could have a great potential to be used also in conjunction with smart phones to visualize, monitor and
coach also amateur skiers.
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