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Abstract: Electroencephalogram (EEG) recordings are often contaminated with muscular
artifacts that strongly obscure the EEG signals and complicates their analysis. For the
conventional case, where the EEG recordings are obtained simultaneously over many EEG
channels, there exists a considerable range of methods for removing muscular artifacts.
In recent years, there has been an increasing trend to use EEG information in ambulatory
healthcare and related physiological signal monitoring systems. For practical reasons,
a single EEG channel system must be used in these situations. Unfortunately, there exist
few studies for muscular artifact cancellation in single-channel EEG recordings. To address
this issue, in this preliminary study, we propose a simple, yet effective, method to achieve
the muscular artifact cancellation for the single-channel EEG case. This method is a
combination of the ensemble empirical mode decomposition (EEMD) and the joint blind
source separation (JBSS) techniques. We also conduct a study that compares and investigates
all possible single-channel solutions and demonstrate the performance of these methods
using numerical simulations and real-life applications. The proposed method is shown to
significantly outperform all other methods. It can successfully remove muscular artifacts
without altering the underlying EEG activity. It is thus a promising tool for use in ambulatory
healthcare systems.
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1. Introduction

The electroencephalogram (EEG) signals are often contaminated by various physiological activities
of non-interest, such as the electrocardiogram (ECG), electrooculogram (EOG) and electromyogram
(EMG). While ECG and EOG artifacts can be effectively removed by using adaptive filters and blind
source separation (BSS) techniques [1], the artifacts induced by muscular activity (e.g., biting, chewing
and frowning) are particularly difficult to correct [2]. The main reason lies in the fact that EMG artifacts
have a higher amplitude than the EEG signals, a wide spectral distribution and a variable topographical
distribution [2]. These muscular artifacts obscure the EEG signals and make EEG interpretation
extremely complicated or almost impossible [3].

Low-pass filters are commonly employed to remove muscular artifacts. However, since the frequency
spectrum of muscular artifacts significantly overlaps with that of brain signals, these filters unfortunately
suppress the brain signals of interest during the suppression of the muscular artifacts [4]. Recently,
using the popular BSS technique, independent component analysis (ICA) has been extensively explored
for this purpose [5–7]. ICA utilizes higher-order statistics to separate the EEG recordings into
statistically independent components (ICs). Clean EEG data can then be reconstructed by removing
the artifact-related ICs from the raw EEG data. In some studies, however, muscular artifacts seriously
contaminate most ICs. This results in a clearly observable crosstalk between brain and muscle
activities [8,9]. One possible reason is that ICA only exploits the spatial structure of source signals.
Thus, it is suitable when source signals are temporally statistically independent [10]. However, artifacts
typically have certain temporal structures, which can be exploited for better source separation. To this
end, a canonical correlation analysis (CCA) method has been proposed as a more suitable BSS approach
for separating EMG artifacts from EEG signals [11]. Due to their broad frequency spectrum, EMG
artifacts resemble temporal white noise and, thus, have lower autocorrelation compared to EEG signals.
The CCA method exploits this characteristic for EMG cancellation and has been shown to outperform
ICA on simulated data. Later, these results were also been documented by Gao et al. [12].

In recent years, biomedical signal measurement and processing techniques have been
increasingly deployed in ambulatory situations, particularly in healthcare applications, where minimal
instrumentation and low computational complexity are required [13–15]. To reduce the complexity,
many ambulatory systems use only one single EEG channel [14,15]. However, almost all current
methods for muscular artifact cancellation have been designed to handle multichannel EEG datasets
and will fail to isolate the muscle activity in situations where only single-channel EEG recordings
are available.

To address this issue, we propose a simple, yet effective, method to achieve muscular artifact
cancellation in single-channel EEG cases. This method has a two-step strategy. The first step
decomposes the single-channel EEG into multichannel datasets. To implement this step, empirical
mode decomposition (EMD) is a suitable option. EMD is a single-channel technique that decomposes
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nonstationary and nonlinear time series into a finite number of intrinsic mode functions (IMFs) [16].
Compared with other decomposition methods (e.g., wavelet transform), EMD is completely data-driven,
i.e., it decomposes a signal without requiring prior knowledge. It has been shown to be efficient in many
biomedical applications, e.g., denoising electrohysterogram (EHG) signals [17] and removing eye blink
artifacts from EEG recordings [18]. It should be noted that a noise-assisted version of EMD, called
ensemble EMD (EEMD), was recently proposed and shown to have better performance than the original
EMD [19]. EEMD extracts IMFs in a manner such that the mode mixing disadvantage of the EMD
method is corrected. Sweeney et al. has utilized this new decomposition method with CCA to remove
the motion artifacts from functional near-infrared spectroscopy (fNIRS) and EEG data [20].

In the second step, the emerging joint BSS (JBSS) techniques are formulated to separate the muscle
artifacts from the multidimensional datasets obtained in the first step. JBSS algorithms attempt to
achieve blind source separation on multiple datasets simultaneously by balancing two criteria: (1)
maximizing the independence of the estimated sources within each dataset; and (2) maximizing the
source dependence across datasets. To utilize JBSS for the blind source separation purpose, the original
dataset and its time-delayed version are used as the input to the JBSS methods. The advantage of using
the JBSS techniques instead of the BSS methods is that besides extracting statistically independent
or uncorrelated sources, JBSS also exploits the temporal structure of the sources by examining their
dependence with their time-delayed version. When explored by second order statistics (SOS), the
stronger dependence indicates higher autocorrelation. Thus, the separation of muscle and brain activity
components can be achieved due to the relative low autocorrelation of muscular artifacts in comparison
with brain activity [11]. In this work, the two most popular JBSS methods, CCA and independent
vector analysis (IVA) [21,22], will be explored with EEMD. While both CCA and IVA exploit SOS
for the dependence, CCA and IVA separately employ SOS and higher order statistics (HOS) for
source estimation. We denote the two EEMD-JBSS combinations as EEMD-CCA and EEMD-IVA,
respectively.

In this paper, we also conduct a comparison study by examining other possible single-channel
techniques, which have been devised for other purposes. Single-channel ICA (SCICA) is an adaptation
of ICA to single-channel signals [23]. This method assumes that the signal is stationary and is
composed of spectrally disjoint sources. The combination of EEMD and ICA, denoted as EEMD-ICA,
is another popular method developed for source separation of single-channel recordings [24]. The main
contribution of this work are the proposed practical solutions for the muscular artifact cancellation
problem in single-channel EEG. This is of special importance at present, as ambulatory healthcare
continues to draw increasing attention.

We examine the performance of the proposed EEMD-JBSS methods on both synthetic data and real
data. We first validate the methods on simulated data. We then apply them to a real ictal EEG dataset
and a real EEG dataset collected from subjects, while riding a stationary bicycle. The EEG signals are
contaminated with muscular artifacts. We note that while the EEMD-JBSS method has been proposed
to remove muscle activity from the single-channel EEG case, it is generally applicable to cases when
one dataset contains relatively few channels (e.g., two or three). This is done by first applying EEMD to
each channel and then utilizing JBSS on the integrated signals after decomposition.
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2. Materials and Methods

2.1. Methods

In this section, we first briefly introduce the existing techniques. Then, we describe the proposed two
EEMD-JBSS methods.

Notations: Scalars are denoted by lowercase italic letters (a, b, etc.), vectors by lowercase boldface
letters (a, b, etc.), matrices by boldface capitals (A, B, etc.) and the number of rows and columns by
italic capitals (T, N, etc.). A matrix or vector transposition is denoted by an uppercase superscript T
(e.g., XT , vT ). The vector x (with size 1× T) is used to represent the original single-channel signal with
x(t) (t = 1, 2, ..., T ) denoting the signal value at the time point t.

2.1.1. Independent Component Analysis

As ICA is a well-known BSS technique in the literature, we only briefly describe its basic concept.
Suppose the mixed signals are stored in one matrix, X, with size P × T , where P indicates the number
of channels and T indicates the number of observations per channel. The goal of ICA is to separate
the mixed signals X into their independent sources S without any other prior knowledge using the
linear model:

X = AS (1)

where A is the mixing matrix and S is of dimension P × T . It is possible to estimate the underlying
sources from the mixture signals provided they are statistically independent. Several algorithms have
been developed to solve this problem. In this study, we employed the popular FastICA algorithm [25].
It is based on a fixed-point iteration scheme for maximizing the non-Gaussianity of the sources. Using
this algorithm, the mixing matrix A and the underlying sources Ŝ can be estimated. Those sources that
are deemed to be artifacts can be removed by setting the corresponding row of the matrix Ŝ to zero. The
artifact-free signals can then be reconstructed.

2.1.2. Single-Channel ICA

SCICA is an adaptation of ICA to single-channel signals [23]. The algorithm is described as follows.
First, the observed signal x is broken up into a sequence of contiguous blocks b(k) of length N:

b(k) = [x(kτ), ..., x(kτ +N − 1)]T (2)

where k is the block index, τ is a time delay and (Kτ +N − 1) is the length of the original signal. Then,
the matrix X is formed as a set of observations b(k) (k = 1, 2, ..., K) as below:

X = [b(1), ...,b(K)]T (3)

It should be noted that the performance of SCICA significantly depends on the parameters chosen.
The authors in [23] suggest that the users select those parameters empirically. Finally, the FastICA
algorithm can be applied to the matrix X to obtain the mixing matrix A and the underlying sources Ŝ.
From the above procedure, it can be seen that SCICA assumes the signal x to be stationary and composed
of spectrally disjoint sources. These assumptions, however, do not always hold in practical applications.
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2.1.3. Canonical Correlation Analysis

Suppose two zero-mean datasets are stored in two matrices, X1 with size P1 × T and X2 with size
P2×T , where P1 and P2 indicate the numbers of channels in X1 and X2, respectively, and T denotes the
number of observations per channel. The aim of CCA is to find linear combinations of both X1 and X2

channels that have the maximum correlation coefficient with each other [26]. This leads to the following
objective function with constraints:

max
v1,v2

(
vT
1 X1XT

2 v2

)2
s.t. vT

1 X1XT
1 v1 = 1, vT

2 X2XT
2 v2 = 1

(4)

where vi’s (i = 1, 2) are the weight vectors.
The solutions to this problem are the eigenvectors of the matrices (X1XT

1 )
−1X1XT

2 (X2XT
2 )

−1X2XT
1

and (X2XT
2 )

−1X2XT
1 (X1XT

1 )
−1X1XT

2 , respectively. The canonical variates (CV) Ui’s (i = 1, 2) can be
calculated directly from the original matrices Xi’s as Ui = VT

i Xi. The corresponding rows of U1 and
U2 are highly correlated, while the rows within each individual Ui are uncorrelated with each other. The
detailed derivation can be referred to [27].

CCA has been further extended to solve the BSS problem in a functional magnetic resonance
imaging (fMRI) study by assuming the source components to be maximally autocorrelated and mutually
uncorrelated [28]. In this setting, let X1 be the observed data matrix X with P mixtures and T samples,
and let X2 be a temporally delayed version of the original data matrix X2(t) = X(t − 1). Thus,
CCA can separate the recorded data into the self-correlated and mutually uncorrelated sources. As
a potential alternative for the most widely used ICA method, CCA has been previously tested with
a number of ICA algorithms. The CCA-based methods were shown to outperform the ICA-based
techniques for EEG/fNIRS artifact removal [11,12,20]. Due to the usage of second-order statistics
(SOS), they were more computationally efficient when having similar qualitative results for EEG/fMRI
source separation [28,29].

2.1.4. Independent Vector Analysis

IVA is an extension of ICA from one to multiple datasets. In [21], IVA was formulated as a general
JBSS framework to ensure that the extracted sources are independent within each dataset and well
correlated across multiple datasets. In IVA, the concept of source component vector (SCV) is defined
across multiple datasets [30]. The p-th SCV, sp = [s

[1]
p , s

[2]
p , ..., s

[M ]
p ]T (p = 1, 2, ..., P ), is a random vector

independent of all other SCVs and the components within each SCV are dependent. The symbol s[m]
p

(m = 1, 2, ...,M ) represents the p-th underlying source component in the m-th dataset. The goal of IVA
is to identify the independent SCVs from multiple multidimensional datasets. This can be achieved by
minimizing the mutual information among the estimated SCVs ŝp’s [21]:

IIV A
M
= I[ŝ1; ŝ2; ...; ŝP ]

=
P∑

p=1

H[ŝp]−H[ŝ1, ŝ2, ..., ŝP ]
(5)
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where H denotes the entropy. The detailed derivation can be found in [21]. By solving the
above optimization problem, each estimated SCV ŝp is independent of all other estimated SCVs, and
meanwhile, the components within each SCV are dependent, e.g., s[1]p and s[2]p are highly correlated.

The implementation algorithms involve the selection of specific probability distributions for the
SCVs. The most popular methods include IVA-L [30] and IVA-G [21]. IVA-L assumes that each SCV
follows a multivariate Laplace distribution that is isotropic and possesses no second-order correlation,
while IVA-G exploits second-order statistical information across datasets by assuming that each SCV
is multivariate Gaussian distributed. In some applications, the second-order information across datasets
may be minimal, such as in the frequency domain BSS for speech recognition. However, in some other
applications, it is expected to have a much larger correlation, for instance in group fMRI studies. In this
work, we will utilize IVA-G by taking into account the importance of the second-order information,
which can exploit the temporal structure of muscular artifacts. Therefore, with a similar setting in
CCA, IVA can separate the recorded data into the self-correlated and mutually-independent sources.
The possible advantage of IVA over CCA is that IVA is able to extract independent sources rather than
uncorrelated ones by using HOS. However, this requires more computational time. Moreover, IVA
assumes the underlying sources to follow specific distributions, which may not be true in practice.

2.1.5. Ensemble Empirical Mode Decomposition

EMD is a single-channel decomposition method for nonstationary and nonlinear signals [16]. EMD
decomposes a signal into a finite number of IMFs that represent fast to slow oscillations. An IMF is a
function that satisfies two conditions [16]: (1) the number of extrema and the number of zero crossings
must either be equal or differ by at most one; and (2) at any point, the mean value of the envelope defined
by the local maxima and the envelope defined by the local minima is zero. To obtain an IMF from the
original signal x, a sifting process is performed [16]. First, all extrema of the original signal x need to be
identified. All local maximum points are connected by a cubic spline line to form the upper envelope eu.
Additionally, all local minimum points are connected similarly to form the lower envelope el. The mean
of eu and el, a1, is calculated as:

a1 =
eu + el

2
(6)

The difference between the signal and the mean is defined as the first component h1 as:

h1 = x − a1 (7)

In the second sifting process, h1 is treated as the signal, and the mean a11 of its local maxima and
local minima is found. We then have:

h11 = h1 − a11 (8)

Subsequently, we can repeat this sifting procedure k times until h1k is an IMF, with:

h1k = h1(k−1) − a1k (9)

Therefore, the first IMF component derived from the original signal is designated as:

c1 = h1k (10)
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A criterion for stopping the sifting process when obtaining an IMF has been established by limiting
the size of the standard deviation (SD), calculated from the two consecutive sifting sequences as below:

SD =
T∑
t=1

{
[h1(k−1)(t)− h1k(t)]

2

h2
1(k−1)(t)

}
(11)

A typical value for SD can be set between 0.2 and 0.3 [16].
To extract the 2nd IMF component, we remove c1 from the original signal x:

r1 = x − c1 (12)

The residual r1 is treated as a new signal, and the same sifting process is applied to obtain the 2nd
IMF component c2 and the residual:

r2 = r1 − c2 (13)

This procedure is repeated on the subsequent residuals rj’s, until the final residual rJ no longer
contains any oscillation information,

rj = rj−1 − cj (14)

By summing up Equations (12)–(14), we can obtain:

x =
J∑

j=1

cj + rJ (15)

Thus, we decompose the original signal x into J empirical modes cj’s and a residue rJ .
However, the original EMD algorithm is highly sensitive to noise. Recently, Huang et al. introduced

a new noise-assisted data analysis method, called EEMD [19]. The method defines the true IMF
components as the mean of an ensemble of trials. Each trial consists of the signal plus an additive
independent identically distributed white noise of the same standard deviation. In this case, although
each individual trial may produce noisy results, the noise is canceled out in the ensemble mean of
sufficient trials, since the noise in each trial is assumed independent. Regarding the ensemble number
I , it is found that the performance of the technique becomes fairly consistent when using ten or more
ensembles in our application. This is a acceptable number in practice considering the computational
cost. The noise standard deviation has been suggested empirically to be 0.2-times the standard deviation
of the original signal [19].

2.1.6. EEMD-ICA

The idea of combining EEMD with ICA for source separation from single-channel recordings was
first proposed in [24] and was employed for the removal of ECG from EMG and also EMG/EOG artifacts
from EEG. This is the only work we have found related to muscular artifact cancellation in single-channel
EEG. However, the relevant results were limited. In this method, the EEMD technique can be used to
create a multichannel signal matrix X, comprised of IMFs from a single-channel recording x. This
matrix X can then be employed as the input to the FastICA algorithm with the aim of estimating the
underlying sources Ŝ. The sources deemed as artifacts can be removed by setting the corresponding row
of the matrix Ŝ to be zero. The source matrix is then passed through the mixing matrix A to return the
cleaned multichannel signals X̂, which are now, ideally, free of artifacts. The artifact-free single-channel
recording x̂ can be determined by summing the recovered IMFs in the matrix X̂.
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2.1.7. The Proposed EEMD-JBSS

To deal with the muscular artifact cancellation problem in single-channel EEG, we propose taking
advantage of both EEMD and JBSS by exploring their combination. In fact, we propose a two-step
strategy, operating in a similar manner to the EEMD-ICA technique. In the first step, EEMD is employed
to decompose the single-channel EEG signal x and to derive a set of averaged IMFs. All of the IMF
components and the final residual are placed into a matrix X. The size of X is P × T , where P = J +1.
In the second step, the matrix X and its temporally delayed version matrix X(t − 1) are employed as
the input to CCA or IVA. Then, the underlying sources Ŝ in X can be extracted and ordered in terms of
their autocorrelations from high to low. The sources with low autocorrelation correspond to muscular
artifacts and can be removed by setting the corresponding row of the matrix Ŝ to be zero. The artifact-free
multichannel signals X̂ can be reconstructed by using the updated source matrix and the mixing matrix A.
The recovered single-channel signal without muscular artifacts x̂ can be determined by simply summing
the new IMFs components in the matrix X̂. After these two steps, the muscle activity is removed from
the single-channel EEG.

2.2. Data Description

2.2.1. Synthetic Data

To demonstrate the performance of the proposed EEMD-JBSS methods, we generated synthetic
single-channel EEG signals with two types of muscular artifacts. We employed some measures to test
the performance, since the ground truth is known.

Traditionally, the “ground truth” EEG signals without muscular artifacts are selected by visual
inspection of experienced neurophysiologists. However, not only is it difficult to obtain clean EEG
signals, but there is also no guarantee that the signals are completely free of muscle activity when relying
solely on visual inspection. Thus, in this study, we tend to use synthetic EEG data. A single-channel
EEG data series can be generated according to the phase-resetting theory [31,32]. Similar to
Makinen et al. [31], we generated our simulated data by summing 4 such sinusoids, whose frequencies
were chosen randomly in the range 4–20 Hz. The sampling frequency was 250 Hz. Ten trial EEG
data were generated, and each trial dataset was 1 s long. Thus, a 10-s series xEEG could be formed by
concatenating the 10 trial datasets, containing mainly theta, alpha and beta activities. It should be noted
that while each trial dataset included 4 distinct frequencies, the frequencies chosen for different trial data
were also independent, which means that there was rich frequency information in the 10-s series.

To simulate real-life situations, obtaining pure muscle activity is necessary. It is insufficient to
distinguish muscular artifacts directly from the EEG signal, as it contains both muscle and brain activity.
To remove the brain activity and acquire the muscle activity, ICA was utilized to decompose a real EEG
dataset with 21 channels. A neurophysiologist labeled the eye blink artifacts, eye movement artifacts
and muscular artifacts from all of the decomposed ICs by inspecting some features, such as the power
spectral density and topography. It is important to note that a large number of ICs contained both
EMG and ongoing EEG activities. Nevertheless, there existed one component containing pure EMG
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activity, denoted by xEMG. Since we focus on single-channel issues, it is not necessary to reconstruct
the component with the corresponding field distribution.

Simulated muscle activity: To extensively investigate the performance of the methods, a mount of
synthetic muscle artifacts have also been generated according to the work of Delorme et al. [33]. The
muscle activity was modeled using random noise, band-pass filtered between 20 and 60 Hz. In this study,
we generated 100 independent transient muscle artifact segments with a sampling rate of 250 Hz and a
length of 10 s. Each individual segment is denoted by xEMG.

The EMG activity was superimposed on the EEG signal as follows:

x = xEEG + εxEMG (16)

where ε represents the contribution of muscle activity. Figure 1 shows the original EEG signal xEEG and
the EEG containing muscular artifacts x (ε = 1.5). The signal-to-noise ratio (SNR) can then be adjusted
by changing the parameter ε:

SNR =
RMS(xEEG)

RMS(εxEMG)
(17)

where the root mean squared (RMS) value is defined as:

RMS(x) =
√

1

T
xxT (18)

To be consistent with previous EEG denoising studies [11,12], the SNR values spread from 0.25 to 3,
and each SNR value corresponds to one ε value. The relative root-mean-squared error (RRMSE) is used
as an evaluation measure of the effects of muscular artifact cancellation, which is defined as follows:

RRMSE =
RMS(xEEG − x̂)

RMS(xEEG)
(19)

where x̂ is the estimated EEG signal after muscular artifact cancellation. To further measure the
capability of the proposed method for preserving the original EEG signal, the correlation coefficient
between the two waveforms xEEG and x̂ is also calculated. Hence, in this work, RRMSE and
correlation coefficient (CC) serve as the main criteria for measuring the performance of muscular
artifact cancellation.

Figure 1. (a) The original EEG data; (b) The contaminated EEG data by muscle activity.

(a) (b)
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2.2.2. Real Data

For the real data case study, we used two EEG datasets. The first one was the public
ictal (epilepsy) EEG data from the BioSource database established by Sabine Van Huffel
(http://www.esat.kuleuven.be/stadius/members/biomed/biosource.htm). Ictal EEG signals are often
severely contaminated with muscular artifacts, which make the determination and localization of the
ictal onset complicated. Figure 2a shows the 10-s scalp EEG recordings with 21 channels obtained using
a long-term epilepsy monitoring unit. This recording contains the ictal activity from a patient with mesial
temporal lobe epilepsy. The sampling frequency was 250 Hz. The seizure activity was contaminated with
muscular artifacts and eye blinks. Muscular artifacts can be observed between 0–3.9 s on channels F7,
T3, T5, C3, T1 and between 5–10 s on channels F8, T4, F4, C4, P4.

The second dataset was collected from eight health subjects while stably cycling on an exercise
bicycle. The EEG data were collected using an EEG cap (Quick-Cap, Compumedics, El Paso, TX, USA)
with nine electrodes F3, Fz, F4, C3, Cz, C4, P3, Pz, P4 based on the International 10–20 system and using
SynAmps2 amplifiers (NeuroScan, Compumedics, El Paso, TX, USA). The sampling rate was 1000 Hz.
Data were later digitally band-pass filtered between 1∼70 Hz. The University of British Columbia
Ethics Board approved the study. EEG recordings during cycling were easily contaminated with muscle
activity, and subsequent EEG signal processing, such as brain network study, may be complicated by the
resulting EMG signals. As shown in Figure 2b, all channels of the 10-s scalp EEG were contaminated
with muscle activity.

Although in both cases the single-channel technique is unnecessary, we can still apply the proposed
EEMD-JBSS method to each channel individually and demonstrate its effectiveness for removing
muscular artifacts from different places in the brain.

Figure 2. The original 10-s scalp EEG recordings for (a) ictal; (b) cycling.

(a) (b)
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3. Results and Discussion

3.1. The Synthetic Data Study

3.1.1. The Real Muscle Activity Case

We applied SCICA, EEMD-ICA and the two proposed methods to the synthetic single-channel data
x. For a complete comparison, we should compare the performance of these methods at different SNR
values in terms of RRMSE and CC. However, we found that SCICA and EEMD-ICA were unable to
effectively separate muscular artifacts from brain activity, e.g., at SNR = 0.76 and SNR = 0.30, as shown
in Figure 3a–d. These figures present the decomposition results of SCICA and EEMD-ICA at the two
different SNR values. It can be clearly seen that most components contain both muscle activity and brain
activity, e.g., IC7 in Figure 3a, IC10 in Figure 3b, IC4 in Figure 3c and IC3 in Figure 3d. One possible
reason is due to the fact that muscular artifacts involve the movement of a group of muscles, which do not
have a stereotyped topography [12]. Thus, the two ICA-based methods do not function correctly here,
as too much brain activity has to be sacrificed to be able to sufficiently remove the muscular artifacts.
Moreover, it is well-known that ICA has the permutation problem and cannot return a unique result,
which will increase the difficulty in the selection of artifact components during data reconstruction.
Therefore, SCICA and EEMD-ICA are unsuitable for muscular artifact cancellation in the single-channel
EEG case. This will be further demonstrated by real data in Section 3.2.

In contrast, EEMD-CCA and EEMD-IVA were able to effectively isolate muscle activity into the
bottom components due to their low autocorrelations, as shown in Figure 3e–h. This shows the advantage
of JBSS over ICA for solving the permutation problem and facilitates automatic artifact cancellation,
such as setting a threshold for autocorrelation. To compare the two EEMD-JBSS methods, we examined
their performance at different SNR values in terms of RRMSE and CC, as shown in Figure 4. It can
be seen that EEMD-CCA and EEMD-IVA had similar performance irrespective of the used measures.
Yet, EEMD-CCA slightly outperformed EEMD-IVA when the SNR values were very low. The possible
reason is that IVA assumes the underlying sources follow a Gaussian distribution, which may not be
satisfied in practice. Moreover, EEMD-CCA only employs SOS and, thus, has higher computational
efficiency than EEMD-IVA, which utilizes HOS. Therefore, for practical reasons, we conclude that
EEMD-CCA outperformed all other methods.

To see more details about the EEMD-CCA method, we also present the step-wise results in Figure 5.
The IMF components extracted by EEMD are shown in Figure 5a, where those with small indexes
correspond to components of high frequencies and vice versa. After applying CCA, the uncorrelated
sources were ordered in terms of their autocorrelations, as displayed in Figure 5b. Muscle activity
was present in the bottom two components with lowest autocorrelations in the CCA decomposition.
Excluding the muscular artifact components in the reconstruction led to the cleaned EEG shown in
Figure 5c. To further illustrate the performance, an amplified version, including both recovered and
original EEG signals, is presented in Figure 5d. From this figure, we can see that the proposed method
highly preserved the original brain activity.
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Figure 3. The decomposition components of the synthetic data x obtained using
single-channel ICA (SCICA), EEMD-ICA, EEMD-canonical correlation analysis (CCA)
and EEMD-independent vector analysis (IVA) at two different SNR values: (a) SCICA
at ε = 2 (SNR = 0.7611); (b) SCICA at ε = 5 (SNR = 0.3044); (c) EEMD-ICA at
ε = 2; (d) EEMD-ICA at ε = 5; (e) EEMD-CCA at ε = 2; (f) EEMD-CCA at ε = 5;
(g) EEMD-IVA at ε = 2; (h) EEMD-IVA at ε = 5.

(a) (b)

(c) (d)

(e) (f)

(g) (h)
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Figure 4. The performance measures for the two EEMD-JBSS methods at different SNR
values for the real muscle activity case: (a) RRMSE; (b) CC.

(a) (b)

Figure 5. The step-wise results of the EEMD-CCA method: (a) the intrinsic mode function
(IMF) components after applying EEMD to the single-channel EEG x (ε = 1.5); (b) the
canonical variates after using CCA; (c) the reconstructed EEG signal x̂ after muscular artifact
cancellation; (d) the amplified version of x̂ compared with the original EEG xEEG.

(a) (b)

(c) (d)

3.1.2. The Simulated Muscle Activity Case

To avoid the possibly subjective comparison between EEMD-CCA and EEMD-IVA, we simulated
100 independent segments that only contained transient muscle artifacts. Each segment was 10 s long and
had a 2-s transient muscle artifact. Each individual segment xEMG was superimposed on the simulated
EEG xEEG at different SNR values. Then, we evaluated the performance of the two proposed methods
on the 100 segments. We obtained 100 RRMSE values and 100 CC values for each method at each SNR
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value. The means and standard deviations are shown in Figure 6. Through this extensive numerical
simulation, we can see that EEMD-CCA and EEMD-IVA still had almost the same performance at most
SNR values. However, EEMD-CCA slightly outperformed EEMD-IVA at the lowest SNR value. The
reasons are discussed in Section 3.1.1.

Figure 6. The performance measures for the two EEMD-JBSS methods at different SNR
values for the simulated muscle activity case: (a) relative root-mean-squared error (RRMSE);
(b) CC.

(a) (b)

3.2. The Real Data Study

For the real data case, we first examined the ictal EEG data. The effect of muscular artifact
cancellation highly depends on whether the methods can isolate muscle activity from brain activity.
Hence, in Figure 7, we first present the decomposition results by applying these methods to the two
channels, C4 and C3 (Figure 2a), which were severely contaminated with muscle activity.

From Figure 7c–f, we can see that SCICA and EEMD-ICA were unable to sufficiently extract
the components for muscle activity; thus, it was impossible for them to remove muscular artifacts
successfully. Moreover, if we attempt to remove them manually, we have to identify the components
corresponding to muscle activity, which is quite time consuming and unsuitable for practical usage.
However, by using EEMD-JBSS, we found that it was fairly easy to distinguish the muscular artifact
components from the ones related to brain activity. As shown in Figure 7g–j, muscle activity is easily
observed in the bottom two components with indexes 10–11 in the JBSS decomposition. By setting a
proper threshold value for the autocorrelation, we can remove muscle activity automatically. Analogous
to the simulation case, EEMD-CCA and EEMD-IVA obtained similar decomposition results.

We also tested the computational time cost of EEMD-CCA and EEMD-IVA over each of the
21 channels separately. The mean time for EEMD-CCA over each channel was 2.606 s with a
standard deviation 0.0918, while the mean for EEMD-IVA was 2.756 s with a standard deviation
0.3253. The implementation was done in MATLAB (MathWorks Inc., Novi, MI, USA) and run under
Microsoft Windows 8 × 64 OS on a computer with Dual Intel(R) Core(TM) i-3427U 1.80 GHz CPU
and 8.00 GB RAM. The time cost is well acceptable for removing artifacts from 10-s EEG data,
especially for ambulatory systems for which obtaining clean information and direct feedback in a fast
fashion are essential. Considering such practical issues, EEMD-CCA becomes the best choice for this
single-channel problem.
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Figure 7. The decomposition components of EEG signals in (a) C4 and (b) C3 obtained
using the four methods: SCICA for (c) C4 and (d) C3; EEMD-ICA for (e) C4 and (f) C3;
EEMD-CCA for (g) C4 and (h) C3; EEMD-IVA for (i) C4 and (j) C3.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)
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Finally, we applied the proposed EEMD-CCA method to each individual channel of the EEG
recordings, as shown in Figure 2. When processing the EEG recordings of each single channel, muscle
activity was present in the last two components in the ictal EEG and in the last four in the cycling EEG
data. Excluding those components in the reconstruction of the EEG resulted in the cleaned EEG (red)
shown in Figure 8. It can be seen that muscular artifacts were sufficiently removed, in contrast to the
original EEG (black). In particular, for the ictal EEG, the ictal activity in each of the T2, F8, T4 and
T6 electrodes was perfectly preserved. The ictal activity in F8 and T4, which originally was blurred
by muscular artifacts, became visible by using the proposed EEMD-CCA method. It should also be
noted that there existed some obvious EOG artifacts (marked) in ictal EEG, while their cancellation was
beyond the scope of this paper. However, these EOG artifacts help demonstrate the superior performance
of our proposed method due to the fact that they were preserved with little distortion.

Figure 8. The reconstructed EEG signals after muscular artifact cancellation (red) compared
with the original EEG recordings (black): (a) ictal; (b) cycling. The purple arrows indicate
EOG events.

(a) (b)

Figure 9. The averaged autocorrelation of the eleven EEMD-CCA components over all
21 ictal EEG channels.

To provide some practical guidance for the selection of the autocorrelation threshold value, we
calculated the autocorrelation values for the eleven decomposition components of each individual ictal
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EEG channel. Figure 9 presents the mean and standard deviation values averaged across the 21 ictal
EEG channels. We suggest that the threshold should be set to no less than 0.9. The components with the
value below 0.9 are deemed to be muscle artifacts.

4. Conclusions

As the popularity of using ambulatory devices in healthcare systems increases, more applications
that rely on EEG signals are being developed. For practical reasons, these applications use only one
EEG channel. For such ambulatory applications, muscle artifact removal from the EEG recordings
becomes important. Although there exist two IC-based methods for performing source separation of a
single-channel signal, they are found unsuitable for removing the artifacts arising from muscle activity.
In this paper, we propose two effective methods for canceling muscular artifacts in single-channel EEG
recordings. Each method utilizes the known EEMD and JBSS techniques, and they are denoted as
EEMD-CCA and EEMD-IVA. Their implementation has two steps. In the first step, EEMD is used
to decompose the single-channel EEG into multichannel datasets. In the second step, CCA or IVA is
applied to separate the muscle artifacts from the multidimensional datasets obtained in the first step. The
main difference between CCA and IVA is that CCA utilizes second order statistics, while IVA employs
higher-order statistics and assumes a specific probability distribution. We examined the performance
of the two proposed methods using synthetic data, as well as real-life data. We observed that both
proposed methods were able to remove muscle activity while also preserving the brain activity very
well. The performance of EEMD-CCA was, however, slightly better than that of EEMD-IVA, and its
computational efficiency was significantly better. Therefore, EEMD-CCA is recommended in this work.
It is worth noting that besides being effective in removing muscle activity in the single-channel EEG
case, EEMD-CCA is also applicable in the multichannel case when few channels (e.g., two or three)
are used.
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