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Abstract: This paper proposes a parallel fixed point radial basis function (RBF) artificial
neural network (ANN), implemented in a field programmable gate array (FPGA) trained
online with a least mean square (LMS) algorithm. The processing time and occupied area
were analyzed for various fixed point formats. The problems of precision of the ANN
response for nonlinear classification using the XOR gate and interpolation using the sine
function were also analyzed in a hardware implementation. The entire project was developed
using the System Generator platform (Xilinx), with a Virtex-6 xc6vcx240t-1ff1156 as the
target FPGA.
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1. Introduction

Artificial neural networks (ANNs) are computational techniques that employ mathematical models
inspired by the neural structures of intelligent organisms, which acquire knowledge based on past and
present experience. These intelligent organisms possess extremely complex sets of cells, called neurons;
the structure of an ANN is composed of processing units called artificial neurons, whose functioning
involves parallel and distributed interconnections [1]. One of the popular ANN architectures is the radial
basis function (RBF) networks that employ least mean square (LMS) algorithms in their training.
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From the implementation perspective, one of the main problems of RBFs relates to the lack of a
methodology for the definition of their topology in terms of the number of centers, which, on the
one hand, has a positive influence on their computational cost. There are several heuristic techniques
available to assist the designer with network topology [1]. However, there is a consensus that the
topology depends on the problem under investigation [2]. A commonly used procedure is to test various
topologies for different sets of information. Nonetheless, this practice is time-consuming and can only be
applied in cases of off-line training or when statistical information concerning the data space is known.

Various solutions for the implementation of application-specific integrated circuits (ASICs) have been
proposed in order to accelerate the functioning and training of ANNs [3–5]. However, implementations
in ASICs fix the architecture and the algorithm implemented, resulting in poor flexibility and/or high
cost. Nevertheless, with advances in reconfigurable hardware structures, there has been renewed focus
on the implementation of ANNs, and dedicated hardware structures are available that are flexible in terms
of their topology and training algorithm. Currently, the most widely used architectures for reconfigurable
hardware are the FPGAs, which can provide performance similar to an ASIC, with the advantage
of rapid prototyping. There have been several studies concerning the implementation of multilayer
perceptrons (MLPs) in FPGAs [2,3,6–11], the implementation of RBFs in FPGAs [12–21], as well as
the implementation of SOMin FPGA [22].

This work presents a parallel hardware implementation of an RBF-type ANN. The implementation is
made at a fixed point and is aimed at reconfigurable hardware architectures of the type FPGA. Different
from earlier studies [2,3,6–8,12–20], here, a detailed analysis of the implementation of the RBF is
provided, considering aspects, including processing time, delay time and the precision of the response.
The proposed method was tested using two scenarios that have been widely reported in the literature.
The first concerns the problem of nonlinear classification associated with the XOR gate, and the second
considers the problem of interpolation using the sine function. All of the results were obtained using the
System Generator (Xilinx) development platform [23], with a Virtex-6 xc6vcx240t-1ff1156 FPGA. The
System Generator is a design tool over Simulink of MATLAB [24].

2. Radial Basis Function Networks

RBF networks have become increasingly popular in the domain of artificial networks [1]. The
structure of an RBF network consists of multiple layers; the processing is the feedforward type, and
the training can be either supervised (as used in the present work), or hybrid, where a supervised method
is combined with an unsupervised method.

2.1. Architecture

The basic structure of an RBF network (Figure 1) consists of only three layers. The first layer is the
connection of the model with the medium and is composed of p inputs. The second (or hidden) layer is
composed of H radial basis functions (also known as neurons) and performs a nonlinear transformation
of the input vector space into an internal vector space, whose dimensions are usually larger (H > p). The
final (output) layer transforms the internal vector space into an output using a set of M linear neurons.
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Figure 1. Architecture of the radial basis function (RBF).
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Radial basis functions only produce responses that are significantly different from zero when the input
pattern is located within a small region of the domain, and each function requires a center and a scaling
parameter, β. The most widely used radial basis function is the Gaussian function [1]. The h-th function,
ϕh (·), can be expressed by:

sh(k) = ϕh (x(k)) = e(−βvh(k)) (1)

where β = 1
2σ2 and vh(k), which represents the input distance, x(k), in relation to the h-th center,

ch, expressed as:
vh(k) = ‖x(k)− ch‖2 (2)

The vector of centers associated with the h-th radial function is characterized as:

ch =



ch,1
...
ch,i

...
ch,p


(3)

and the vector of inputs as:

x(k) =



x1(k)
...

xi(k)
...

xp(k)


(4)

Equation (2) can therefore be rewritten and expressed by:

vh(k) =
p∑
i=1

(xi(k)− ch,i)2 (5)
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The output of the m-th neuron of the output layer, Nm, can be characterized as:

ym(k) =
H∑
h=0

wmhsh(k), for m = 1, . . . ,M (6)

Substituting Equation (1) in Equation (6) gives:

ym(k) =
H∑
h=0

wmh(k)e

(
− 1

2σ2
h

‖x(k)−ch‖2
)

(7)

where wmh is the synaptic weight between neuron h of the hidden layer and neuronm of the output layer.
At each instant k, the RBF network receives a vector of inputs, x(k), and generates an output vector,
y(k), expressed by:

y(k) =



y1(k)
...

ym(k)
...

yM(k)


(8)

2.2. Training Algorithm

Due to the difference between the hidden layer and the output layer, the training of RBF networks
is usually divided into two parts. The first part concerns the nonlinear optimization performed by
the hidden layer. In this, the input vector, x(k), is processed by means of functions present in the
hidden layer, characterized by Equation (1). Several different strategies can be used to determine the
centers, ch [1]. Different from conventional methods, where fixed centers are selected randomly [1],
the strategy employed here was to select fixed centers deterministically. The second part of the training
involved calculation of the weights, wmh, between the hidden layer and the output layer. The weights
can be obtained using the pseudo-inverse method [1] or the LMS algorithm [25]. The online LMS
procedure used here is an iterative technique that optimizes the mean squared error (MSE) function
using the gradient descent method with classical stochastic estimation (exchanging the mathematical
approach in favor of an instantaneous estimate) [25]. The parameters are adjusted every instant, k, using
the expression:

wmh (k) = wmh (k − 1) + µem (k) sh (k) (9)

where µ is the learning rate and em (k) is the training error associated with the m-th output neuron in the
k-th instant. The error can be expressed by:

ek (k) = dm(k)− ym(k) (10)

where dm(k) is the desired value for the m-th output neuron. The online LMS is less computationally
complex, compared to the pseudo-inverse method that requires a nonquadratic matrix inversion
calculation in order to obtain the weights, wmh (k) [25].
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3. Architecture and Implementation

3.1. General Structure

Figure 2 presents the general architecture of the proposed implementation. All of the variables and
constants are implemented in a fixed point, utilizing a resolution of n bits, of which b bits represent
the fractional part and (n− b) bits represent the integer part. The representation [n.b] is used for the
fixed point variables with a sign, and [Un.b] is used for the variables without a sign. The architecture
is composed of three large modules, characterized as the intermediate layer, output layer and updating
algorithm, as illustrated in Figure 3.

(1) Intermediate layer module (ILM): This consists of the calculation of the radial basis functions,
according to Equation (1), to generate the signal, sh(k), from the input, x(k). Processing of the
H radial functions, ϕh (·), is performed in parallel, from the centers stored in the local registers
possessing n bits. Each center, ch,i, (see Equation (3)) is stored in the register RChi, as illustrated
in Figure 2.

(2) Output layer module (OLM): This represents the processing performed by the M output neurons,
as described in Equation (6). In this module, the M neurons also function in parallel, generating
the signal y(k) (see Equation (8)) from the input, x(k).

(3) Updating algorithm module (UAM): This module is responsible for implementing the updating
algorithm, which, in the present case, is the online LMS. The updating of each synaptic weight,
wmh(k), at the k-th instant, is performed in parallel, according to Equation (9). As shown in
Figure 2, the weights, wmh, are stored in local registers of n bits, here termed RWmh.

Figure 2. General structure of the RBF network implemented in an FPGA.
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The ILM, OLM and UAM modules function sequentially. For each instant k, the vector of inputs,
x(k), is processed to generate the output vector, y(k), and all of the synaptic weights are calculated in
order to update the registers, RWmh. It is important to note that it would be possible to further improve
the performance of the RBF by using the modules in the form of a pipeline (this was not employed in
the present work).

3.2. Radial Basis Functions

Figures 3 and 4 present details of the processing associated with the h-th radial basis function of
the ILM.

Figure 3 illustrates the implementation corresponding to Equation (5). In this case, the overall
implementation is performed in a partially parallel manner, as described previously [2,7,26]. The delays
associated with the additions and multiplications are also shown in Figure 3. Each addition can be
implemented with a delay z−a and each multiplication with a delay z−r. The insertion of delays in
the operations relaxes the conditions of routing between the cells in the FPGA, principally in complex
operations, such as those involving multipliers. On the other hand, the introduction of delays slows the
response of the system, which can often be disadvantageous [23]. The calculation of the total delay, D,
with respect to Equation (5), can be expressed as:

D = r + a+ a log2(p) (11)

Figure 3. The implementation as described in Equations (2) and (5).
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Figure 4. The implementation with respect to Equation (1).
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A variety of techniques are available for the calculation of nonlinear functions in hardware, and in the
case of FPGAs, one of the most common is the use of lookup tables (LUTs) in ROM memory [2,7,26].
Figure 4 shows the proposed implementation for the h-th radial function (see Equation (1)), in which
read-only memory (ROM) was used to develop the LUT. For each h-th radial function, there is an LUTh
and a multiplication operation to adjust the scaling parameter, β (stored in the BETAh register). In order
to obtain greater resolution associated with each h-th LUTh, the vh(k) variable can be rescaled to a new
format expressed by

[
Un.bLUTh

]
, in which bLUTh is a new value for the number of bits of the fractional

part, calculated using:
bLUTh = n− dlog2 (dδmaxh e)e (12)

where:
δmaxh = max {vh [n.b] · β} (13)

Equation (13) determines the greatest distance of all of the input sets to the h-th center, and this
information enables the number of bits of the integer part to be reduced to (n− bLUTh ), while increasing
the number of bits of the fractional part in bLUTh . Figure 4 illustrates the re-scaling step performed after
the multiplication operation and before the LUT step.

As vh(k) ·β > 0, for any k, the value of the response of the radial function is limited to 0 ≤ sh(k) ≤ 1

and can therefore be represented at a fixed point as
[
UbLUTh .bLUTh

]
, in which the number of bits of

the integer part is zero. The values stored in the h-th LUT can be characterized by the vector LUTh,
expressed as:

LUTh =



s0h
[
UbLUTh .bLUTh

]
...

sjh
[
UbLUTh .bLUTh

]
...

s(P−1)h

[
UbLUTh .bLUTh

]


(14)

where P is the depth of the LUT, characterized as:

P =
⌈
dδmaxh e · 2bLUTh

⌉
(15)

and:
sjh
[
UbLUTh .bLUTh

]
= et

j
h (16)

where:
tjh =

j · dδmaxh e
P − 1

for j = 0, . . . , P − 1 (17)

The delay associated with Equation (1), D1, can be expressed as the sum of the delay corresponding
to the calculation of distance (see Equation (11)) and the delay corresponding to processing of the LUT:

D1 = r + q +D (18)

where q is the LUT delay (z−q)
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3.3. Output Layer Neurons

The implementation of each m-th neuron, Nm, of the output layer is illustrated in Figure 5. Similar
to the processing presented in Figure 3, the sums of the products amongst the inputs and the synaptic
weights were also implemented in a partially parallel manner [2,7,26].

Figure 5. The implementation of the m-th neuron, Nm, of the output layer (see
Equation (6)).
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In the case of the implementations associated with the output neurons, the addition operations can
have delays of z−u samples, and the multiplication operations can have delays of z−c samples. The total
accumulated delay, from the input to the output of the RBF, can be expressed by:

D2 = D1 + u+ c log2(H) + c (19)

3.4. Online LMS Algorithm

The implementation of the online LMS associated with each synaptic weight, according to
Equation (9), is presented in the diagram shown in Figure 6. All M ×H weights are updated in parallel
and stored in the registers, RWmh. The RMU register stores the value of the learning rate, µ, and to
avoid problems in realigning the algorithm, the operations of addition, subtraction and multiplication are
implemented with zero delay.

3.5. Delays of Operations

Due to the reduction in the size of transistors and increases in clock frequency, delays caused by
interconnection paths (also known as routing delays) are one of the dominant factors affecting time
restrictions. In FPGAs, routing delays are caused by programmable routing switches, which significantly
increases the wire delay [27]. Techniques, such as wire pipelining (or delay padding), in which flip-flops
or latches are inserted between critical stages, can reduce the paths in order to achieve the necessary time
restrictions [27,28].
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Figure 6. Updating of the synaptic weights, wmh (k), according to Equation (9).
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Hence, based on the technique of wire pipelining, it can be seen from Equations (11), (18) and (19)
that there are delays associated with the operations of addition, subtraction, multiplication and ROM
reading in the structures presented in Figures 3–5. The delays are implemented by the addition of
flip-flops or latches after the operations, represented here by the variables a, r, u, c and q. It is
important to highlight that the operations (addition and multiplication) in the updating circuit of the
synaptic weights, wmh (k) (see Figure 6), do not use delays (wire pipelining technique). This restriction
ensures synchronization of updating of the weights with their corresponding inputs.

It can be seen from the case studies presented in [29–33] using Virtex-6 that the value of the delay
influences the maximum clock frequency associated with the arithmetic operation in question. For
example, in [29], it was observed that the operation of addition in Virtex-6 for variables of 32 bits with a
signal could achieve a maximum clock frequency of 410 MHz, using a delay of z−3, while a maximum
clock frequency of 388 MHz was obtained in the absence of any delay.

3.6. Analysis of the Area Occupied

The occupied area (in FPGA) of the RBF network can be expressed as:

ARBF (n, a, r, c, u, p,H,M, α, γ, η, κ, P,D1, D2) =
{
AILM(n, a, r, p,H, P, γ, α)

}
+
{
AOLM(n, c, u,M,H,D1, D2, η)

}
+
{
AUAM(n,M,H, κ,D1, D2)

}
(20)

where:

AILM(n, a, r, p,H, α, γ, P ) =
{
N ILM
FF (n, a, r, p,H, P, γ, α)

N ILM
LUT (n, a, r, p,H, P, γ, α)

N ILM
EmbMult(p,H, γ), N

ILM
BRAM(n,H, α, P )

}
(21)

AOLM(n, c, u,M,H, η,D1, D2) =
{
NOLM
FF (n, c, u,M,H,D1, D2, η),

NOLM
LUT (n, c, u,M,H,D1, D2, η)

NOLM
EmbMult(M,H, η)

}
(22)



Sensors 2014, 14 18232

and

AUAM(n,M,H, κ,D1, D2) =
{
NUAM
FF (n,M,H, κ,D1, D2), N

UAM
LUT (n,M,H, κ,D1, D2)

NUAM
EmbMult(M,H, κ)

}
(23)

where AILM , AOLM and AUAM are collections formed by the number of flip-flops, NFF , number of
LUTs, NLUT and number of embedded multipliers, NMult, used by modules ILM, OLM and UAM,
respectively. NBRAM is the number of embedded blocks RAMs, for which ILM can be used to implement
the H ROMs that represent the radial function [34]. It is important to observe that the ROMs can be also
implemented for logic cells.

The ILM module can be expressed by:

N ILM
FF (n, a, r, p,H, P, γ, α) ≤ HpNSub

FF (n, a) +H

dlog2(p)e−1∑
i=0

2i

NAdd
FF (n, a)

+γ(1 +H)NMult
FF (n, r) +HpNRC

FF (n) +HNBETA
FF (n)

+αNROM
FF (n, q, P ) + (H − α)NROMBRAM

FF (n, q, P ) (24)

where NSub
FF (n, a) and NAdd

FF (n, a) are the number of flip-flops required to implement a subtraction and
addition of n bits with a delay of a, respectively. NMult

FF (n, r) is the number of flip-flops required
to implement a multiplication of n bits with a delay of r. NRC

FF (n) and NBETA
FF (n) represent the

number of flip-flops required to implement each register RChp and BETAh, respectively. The variable
NROM
FF (n, q, P ) is the number of flip-flops used to implement with logic cells, the h-th ROM with depth

P and n bits (see Equation (15)). NROMBRAM
FF (n, q, P ) represents the situation where the ROM is

implemented by block RAMs. The parameter γ is the portion of the Hp multipliers (ILM) that are
implemented by logic cells, and α is part of the H ROMs, which are also implemented in logic cells.
The number of LUTs can be expressed by:

N ILM
LUT (n, a, r, p,H, P, γ, α) ≤ HpNSub

LUT (n, a) +H

dlog2(p)e−1∑
i=0

2i

NAdd
LUT (n, a)

+γ(1 +H)NMult
LUT (n, r) +HpNRC

LUT (n) +HNBETA
LUT (n)

+αNROM
LUT (n, q, P ) + (H − α)NROMBRAM

LUT (n, q, P )

+NRout
LUT (n) (25)

where NSub
LUT (n, a) and NAdd

LUT (n, a) are the number of LUTs required to implement a subtraction and
addition of n bits with a delay of a, respectively. NMult

LUT (n, r) is the number of LUTs required to
implement a multiplication of n bits with a delay of r. NRC

LUT (n) and NBETA
LUT (n) represent the number of

LUTs required to implement each register RChp and BETAh, respectively. The variable NROM
LUT (n, q, P )

is the number of LUTs used to implement, with logic cells, the h-th ROM with depth P and n bits
(see Equation (15)). NROMBRAM

LUT (n, q, P ) represents the situation where the ROM is implemented by
block RAMs. Finally, NRout

LUT (n) is the number of LUTs used for routing [34]. The number of embedded
multipliers used can be expressed as:

N ILM
EmbMult(p,H, γ) = (Hp− γ) (26)
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and the number of blocks RAMs as

N ILM
BRAM(n,H, α, P ) = (H − α)NROM

BRAM(n, P ) (27)

where NROM
BRAM(n, P ) is the number of blocks RAMs needed to implement each h-th ROM with depth P

and n bits (see Equation (15)).
For the OLM module:

NOLM
FF (n, c, u,M,H,D1, D2, η) ≤ M

dlog2(H)e−1∑
i=0

2i

NAdd
FF (n, c) + ηNMult

FF (n, u)

+HMNDelay
FF (n,D2 −D1) (28)

NOLM
LUT (n, c, u,M,H,D1, D2, η) ≤ M

dlog2(H)e−1∑
i=0

2i

NAdd
LUT (n, c) + ηNMult

LUT (n, u)

+HMNDelay
LUT (n,D2 −D1) +NRout

LUT (n) (29)

where η represents the portion of HM multipliers (in OLM) that are implemented by logic cells. The
variables NDelay

FF (n,D2 − D1) and NDelay
LUT (n,D2 − D1) represent the number of flip-flops and LUTs

required to implement a delay of size D2 − D1. The number of embedded multipliers in OLM can be
expressed by:

NOLM
EmbMult(M,H, η) = (HM − η) (30)

Finally, the expressions that estimate the occupied area of the UAM module are expressed as:

NUAM
FF (n,M,H,D1, D2, κ) = MHNSub

FF (n, 0) +MHNAdd
FF (n, 0) + κNMult

FF (n, 0)

+HMNDelay
FF (n,D2 −D1) +HMNDelay

FF (n,D2)

+HMNRW
FF (n) (31)

NUAM
LUT (n,M,H,D1, D2, κ) = MHNSub

LUT (n, 0) +MHNAdd
LUT (n, 0) + κNMult

LUT (n, 0)

+HMNDelay
LUT (n,D2 −D1) +HMNDelay

LUT (n,D2)

+HMNRW
LUT (n) +NRout

LUT (n) (32)

where κ represents the portion of the 2HM multipliers that are implemented in logic cells. NRW
FF (n)

and NRW
LUT (n) represent the number of flip-flops and LUTs required to implement each register RWmh,

respectively. The number of embedded multipliers in UAM can be expressed by:

NUAM
EmbMult(M,H, κ) = (2HM − κ) (33)
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4. Results and Experimental Tests

Two operational scenarios were analyzed in order to validate the implementation of the RBF in
an FPGA. The first scenario was a widely known problem of nonlinear classification, in which the
RBF attempted to copy the functioning of the XOR gate. In the second scenario, the RBF performed
interpolation of the sine function. Tables 1–3 present the parameters used in the experimental tests
involving the two scenarios. The results were obtained using the System Generator development platform
(Xilinx) [23] and a Virtex-6 xc6vcx240t 1ff1156 FPGA. The Virtex-6 FPGA possesses 37, 680 slices
grouping 301, 440 flip-flops, 150, 720 LUTs that can be used to implement logic functions or memories
and 768 DSPcells (Virtex-6 FPGA DSP48E1) with multipliers and accumulators [23,29,33]. In both
scenarios, the signal sampling rate was Rs =

1
Ts

, where Ts is the time between the k-th samples.

Table 1. Parameters used for the XOR gate scenario.

Number of inputs (p) 1

Number of centers (H) 2

Number of neurons of the output layer (M ) 1

Scaling parameter associated radial function (β) 2

Learning rate (µ) 0.3125

Table 2. Parameters used for the sine function interpolation scenario.

Number of inputs (p) 1

Number of centers (H) 4

Number of neurons of the output layer (M ) 1

Scaling parameter associated radial function (β) 0.125

Learning rate (µ) 0.5

Table 3. Delays associated with the arithmetical operations used in the two scenarios.

z−r 3
z−a 0
z−q 1
z−u 0
z−c 0

In the results described in this section, the operations of addition and subtraction were implemented
with logic cells utilizing LogiCORE IP Adder/Subtracter v11.0 (Xilinx) [30]. All of the multiplication
operations were implemented using embedded multipliers (γ = η = κ = 0) of the type Virtex-6 FPGA
DSP48E1 Slice with LogiCORE IP Multiplier v11.2 [29,33], and all of the ROMs associated with the
radial functions were implemented using logic cells (α = H) with LogiCORE IP Distributed Memory
Generator v6.3 [32].
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In the Virtex-6 FPGA, the arithmetic operations (addition, subtraction and multiplication) do not
possess restrictions related to the delays (a ≥ 0, r ≥ 0, u ≥ 0 and c ≥ 0). Meanwhile, as described in
Subsection 3.5, the technique of wire pipelining can assist in the routing process, reducing the distance
between the operations in order to achieve the time restrictions. In the case of the ROM, implementation
in the Virtex-6 FPGA requires the use of internal memory blocks (Virtex-6 block RAMs) with q > 0.
In the absence of this condition, q ≥ 0 (in this case, the ROM is implemented by logic cells) [31,32].
Table 3 presents all of the delay values used in the simulations, where the values selected were based on
test cases presented in [29–31], where various delay values and the maximum frequencies obtained are
illustrated. For example, in [29], it was found that the multiplication operation for variables of 18 bits
with a signal could achieve a maximum clock frequency of 450 MHz, using a delay of r = 3.

4.1. Results Obtained for Synthesis of the RBF in the FPGA

Tables 4 and 5 present the results obtained after the process of synthesis of the RBF (with the
parameters presented in Tables 1–3) in the FPGA. For both scenarios, it can be clearly seen that the
sampling rate and the area of occupation were highly sensitive to the number of bits. On the other hand,
due to the parallelization, differences between the two scenarios were not large, using the same quantity
of bits (14, 15 and 16).

Table 4. Processing speed and area occupied for different fixed point formats, in the XOR
gate scenario. LUT, lookup table.

Fixed Point Sample Flip-Flops Logic Cells Multipliers
Format ([n.b]) Rate Rs (MHz) and Latches (LUTs)

[12.8] 100.9285 321 1, 170 10

[13.9] 84.7673 349 2, 038 10

[14.10] 75.5401 376 3, 610 10

[15.11] 74.9569 404 6, 284 10

[16.12] 66.8717 431 12, 184 10

Table 5. Processing speed and area occupied for different fixed point formats, in the sine
function scenario.

Fixed Point Sample Flip-Flops Logic Cells Multipliers
Format ([n.b]) Rate Rs (MHz) and Latches (LUTs)

[14.8] 103.4554 106 2, 370 16

[15.9] 80.5477 115 3, 944 16

[16.10] 75.5589 124 6, 519 16

[17.11] 68.4650 133 12, 801 16

[18.12] 65.4332 142 24, 176 16
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Occupation of the area used by the registers is due to the storage of fixed centers (RChi), constants
(Betah, RMU), synaptic weights (RWmh) and delays. This is affected to a greater extent by the
architecture of the ANN (number of inputs, p, number of centers, H , and number of outputs, M ) than
by the number of bits. Occupation of the logic cells is related to the addition operations performed using
the construction of logic functions, as well as the radial functions that were developed by means of the
construction of ROM memories, as described in Section 3.2. In the latter case, the degree of precision and
the architecture of the network exert a direct influence, as shown in Tables 4 and 5. The multiplication
operations were synthesized in internal DSP circuits, as a result of which, the area consumed by these
operations remained constant, in terms of the number of bits, and only altered in terms of structural
changes in the network.

4.2. Precision of the Response

Figures 7 and 8 present the results obtained for the MSE as a function of the number of samples in
the two scenarios tested. In the case of the first scenario (XOR gate) (Figure 7), the MSE was calculated
using frames of 16 samples, and 40 frames were tested. For the scenario involving interpolation of the
sine function (Figure 8), frames of 4096 sample were utilized to calculate the MSE, and 128 frames were
tested. In both cases, the RBF implemented showed satisfactory convergence, with the best results being
directly related to the number of bits, n.

Figure 7. Performance of the RBF in tests using the XOR gate scenario.
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Figure 8. Performance of the RBF in tests using the sine function scenario.
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4.3. Estimate of the Area Occupied

Using as a reference the parameters presented in Tables 1–3, Equations (20)–(27) and the
estimates provided by the Xilinx manufacturer (see Tables 6 and 7) [29–33], it was possible
to obtain estimated area occupation limits for the flip-flops and LUTs with n = 8 and
n = 32 bits, as shown in Figures 9–12. These figures also show the real results obtained
after the synthesis in the case of the XOR gate (n = {12, . . . , 16}) and the sine function
(n = {14, . . . , 18}). Since embedded (fixed) multipliers were used, the multiplications did not influence
the area occupied. However, it is important to point out that if the onboard multipliers are not sufficient,
multipliers could be constructed with logic cells. It is important to observe that the number of bits will
result in an exponential growth in the occupied area.

Table 6. Estimated number of flip-flops provided by the Xilinx manufacturer [29–33].

n NSub
FF (n, 0) NAdd

FF (n, 0) NMult
FF (n, 3) NRC

FF (n) NBETA
FF (n) NRW

FF (n)

8 0 0 110 8 8 8

32 91 91 – 32 32 32

n NDelay
FF (n,D2 − D1) NDelay

FF (n,D2) NROM
FF (n, 1, P ) NMult

FF (n, 0) NRout
LUT (n)

8 (D2 −D1)× 8 (D2)× 8 8 110 0
32 (D2 −D1)× 32 (D2)× 32 32 – 0
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Table 7. Estimated number of LUTs provided by the Xilinx manufacturer [29–33].

n NSub
LUT (n, 0) NAdd

LUT (n, 0) NMult
LUT (n, 3) NRC

LUT (n) NBETA
LUT (n) NRW

LUT (n)

8 8 8 116 0 0 0

32 93 93 – 0 0 0

n NDelay
LUT (n,D1 − D2) NDelay

LUT (n,D2) NROM
LUT (n, 1, P ) NMult

LUT (n, 0) NRout
LUT (n)

8 0 0 ≈ 2(8−4) 116 0
32 0 0 ≈ 2(32−4) – 0

Figure 9. Area occupied (flip-flops) for different fixed point formats, in the XOR
gate scenario.
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Figure 10. Area occupied (flip-flops) for different fixed point formats, in the sine
function scenario.
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Figure 11. Area occupied (LUTs) for different fixed point formats, in the XOR gate scenario.
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Figure 12. Area occupied (LUTs) for different fixed point formats, in the sine
function scenario.
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Figure 13. Area occupied (flip-flops) for different numbers of inputs, p, centers, H and
M = 1.
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Figure 14. Area occupied (LUTs) for different numbers of inputs, p, centers, H and M = 1.
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Figures 13 and 14 show occupation estimates for various numbers of inputs, p, and centers, H , for
M = 1 and n = 8. The curves demonstrate that the occupation capacity is more influenced by the
number of bits, n (exponential increase), than by the structure of the RBF that grows linearly with the
parameters p, H and M . The curves illustrated in Figures 13 and 14 show that, for example, with eight
bits, it is possible to work with a relatively large RBF (p = 64, H = 64 and M = 1) using around 50%

occupancy of a Virtex 6 (40, 000 LUTs and flip-flops more multipliers). This RBF configuration could
be used in adaptive equalizers [35,36] and in some applications in mobile robotics [37].

4.4. Real-World Cases

Artificial neural networks of the type RBF can be applied to different real-world problems that may
or may not require online training. Amongst these problems can be highlighted the use of RBF networks
in adaptive equalizers for wireless communication systems [35,36], for obstacle avoidance in mobile
robotics [37], in pattern recognition [38], as well as other applications. Nevertheless, for problems that
require online training, the speed of the training in terms of the number of iterations per second is a
fundamental determinant of viability in dedicated hardware. The development of the present work is
based on this perspective.

Analysis of the results obtained for time (or, in other words, the sampling rate,R, of the ANN) showed
that in both cases (XOR gate and sine function), the value was much more closely associated with the
number of bits, n, than with the structure of the network, which was due to the parallel implementation
proposed in this paper. From the results obtained, it could be seen that if space exists in the FPGA for the
implementation of the ANN, the sampling rate essentially depends on the number of bits. For example,
in the case of the FPGA used here, it was possible to achieve sampling rates of around 100 MHz (see
Tables 4 and 5); in other words, to work at 100 mega-iterations per second.

5. Conclusions

This work presents a parallel fixed point implementation, in an FPGA, of an RBF trained with an
online LMS algorithm. The implementation of the RBF was analyzed in terms of occupation area,
bit resolution and processing delay. The proposed structure was tested at different resolutions, using
two widely known scenarios, namely the problem of nonlinear classification with the XOR gate and
the problem of interpolation utilizing the sine function. The results obtained were highly satisfactory,
indicating the potential feasibility of the technique for use in practical situations of greater complexity.
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