
Sensors 2014, 14, 18223-18243; doi:10.3390/s141018223
OPEN ACCESS

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

Parallel Fixed Point Implementation of a Radial Basis Function
Network in an FPGA
Alisson C. D. de Souza and Marcelo A. C. Fernandes *

Department of Computer Engineering and Automation, Center of Technology, Federal University of
Rio Grande do Norte—UFRN, Natal 59078-970, Brazil; E-Mail: alisson.camara@gmail.com

* Author to whom correspondence should be addressed; E-Mail: mfernandes@dca.ufrn.br;
Tel.: +55-84-3215-3771; Fax:+55-84-3215-3738.

External Editor: Vittorio M.N. Passaro

Received: 6 July 2014; in revised form: 16 September 2014 / Accepted: 16 September 2014 /
Published: 29 September 2014

Abstract: This paper proposes a parallel fixed point radial basis function (RBF) artificial
neural network (ANN), implemented in a field programmable gate array (FPGA) trained
online with a least mean square (LMS) algorithm. The processing time and occupied area
were analyzed for various fixed point formats. The problems of precision of the ANN
response for nonlinear classification using the XOR gate and interpolation using the sine
function were also analyzed in a hardware implementation. The entire project was developed
using the System Generator platform (Xilinx), with a Virtex-6 xc6vcx240t-1ff1156 as the
target FPGA.

Keywords: artificial neural network; ANN; radial basis function; RBF; FPGA; fixed point;
Simulink; system generator

1. Introduction

Artificial neural networks (ANNs) are computational techniques that employ mathematical models
inspired by the neural structures of intelligent organisms, which acquire knowledge based on past and
present experience. These intelligent organisms possess extremely complex sets of cells, called neurons;
the structure of an ANN is composed of processing units called artificial neurons, whose functioning
involves parallel and distributed interconnections [1]. One of the popular ANN architectures is the radial
basis function (RBF) networks that employ least mean square (LMS) algorithms in their training.



Sensors 2014, 14 18224

From the implementation perspective, one of the main problems of RBFs relates to the lack of a
methodology for the definition of their topology in terms of the number of centers, which, on the
one hand, has a positive influence on their computational cost. There are several heuristic techniques
available to assist the designer with network topology [1]. However, there is a consensus that the
topology depends on the problem under investigation [2]. A commonly used procedure is to test various
topologies for different sets of information. Nonetheless, this practice is time-consuming and can only be
applied in cases of off-line training or when statistical information concerning the data space is known.

Various solutions for the implementation of application-specific integrated circuits (ASICs) have been
proposed in order to accelerate the functioning and training of ANNs [3–5]. However, implementations
in ASICs fix the architecture and the algorithm implemented, resulting in poor flexibility and/or high
cost. Nevertheless, with advances in reconfigurable hardware structures, there has been renewed focus
on the implementation of ANNs, and dedicated hardware structures are available that are flexible in terms
of their topology and training algorithm. Currently, the most widely used architectures for reconfigurable
hardware are the FPGAs, which can provide performance similar to an ASIC, with the advantage
of rapid prototyping. There have been several studies concerning the implementation of multilayer
perceptrons (MLPs) in FPGAs [2,3,6–11], the implementation of RBFs in FPGAs [12–21], as well as
the implementation of SOMin FPGA [22].

This work presents a parallel hardware implementation of an RBF-type ANN. The implementation is
made at a fixed point and is aimed at reconfigurable hardware architectures of the type FPGA. Different
from earlier studies [2,3,6–8,12–20], here, a detailed analysis of the implementation of the RBF is
provided, considering aspects, including processing time, delay time and the precision of the response.
The proposed method was tested using two scenarios that have been widely reported in the literature.
The first concerns the problem of nonlinear classification associated with the XOR gate, and the second
considers the problem of interpolation using the sine function. All of the results were obtained using the
System Generator (Xilinx) development platform [23], with a Virtex-6 xc6vcx240t-1ff1156 FPGA. The
System Generator is a design tool over Simulink of MATLAB [24].

2. Radial Basis Function Networks

RBF networks have become increasingly popular in the domain of artificial networks [1]. The
structure of an RBF network consists of multiple layers; the processing is the feedforward type, and
the training can be either supervised (as used in the present work), or hybrid, where a supervised method
is combined with an unsupervised method.

2.1. Architecture

The basic structure of an RBF network (Figure 1) consists of only three layers. The first layer is the
connection of the model with the medium and is composed of p inputs. The second (or hidden) layer is
composed of H radial basis functions (also known as neurons) and performs a nonlinear transformation
of the input vector space into an internal vector space, whose dimensions are usually larger (H > p). The
final (output) layer transforms the internal vector space into an output using a set of M linear neurons.



Sensors 2014, 14 18225

Figure 1. Architecture of the radial basis function (RBF).

. .
 .

. .
 .

Σ
w11

w1h

w1H

Σ
wM1

wMh

wMH

. .
 .

y1(k)

yM(k)

x1(k)

xp(k)

ϕ1

ϕh

ϕH

w10

ϕ0=s0(k)=1

wM0. .
 .

s1(k)

sh(k)

sH(k)

Radial basis functions only produce responses that are significantly different from zero when the input
pattern is located within a small region of the domain, and each function requires a center and a scaling
parameter, β. The most widely used radial basis function is the Gaussian function [1]. The h-th function,
ϕh (·), can be expressed by:

sh(k) = ϕh (x(k)) = e(−βvh(k)) (1)

where β = 1
2σ2 and vh(k), which represents the input distance, x(k), in relation to the h-th center,

ch, expressed as:
vh(k) = ‖x(k)− ch‖2 (2)

The vector of centers associated with the h-th radial function is characterized as:

ch =



ch,1
...
ch,i

...
ch,p


(3)

and the vector of inputs as:

x(k) =



x1(k)
...

xi(k)
...

xp(k)


(4)

Equation (2) can therefore be rewritten and expressed by:

vh(k) =
p∑
i=1

(xi(k)− ch,i)2 (5)



Sensors 2014, 14 18226

The output of the m-th neuron of the output layer, Nm, can be characterized as:

ym(k) =
H∑
h=0

wmhsh(k), for m = 1, . . . ,M (6)

Substituting Equation (1) in Equation (6) gives:

ym(k) =
H∑
h=0

wmh(k)e

(
− 1

2σ2
h

‖x(k)−ch‖2
)

(7)

where wmh is the synaptic weight between neuron h of the hidden layer and neuronm of the output layer.
At each instant k, the RBF network receives a vector of inputs, x(k), and generates an output vector,
y(k), expressed by:

y(k) =



y1(k)
...

ym(k)
...

yM(k)


(8)

2.2. Training Algorithm

Due to the difference between the hidden layer and the output layer, the training of RBF networks
is usually divided into two parts. The first part concerns the nonlinear optimization performed by
the hidden layer. In this, the input vector, x(k), is processed by means of functions present in the
hidden layer, characterized by Equation (1). Several different strategies can be used to determine the
centers, ch [1]. Different from conventional methods, where fixed centers are selected randomly [1],
the strategy employed here was to select fixed centers deterministically. The second part of the training
involved calculation of the weights, wmh, between the hidden layer and the output layer. The weights
can be obtained using the pseudo-inverse method [1] or the LMS algorithm [25]. The online LMS
procedure used here is an iterative technique that optimizes the mean squared error (MSE) function
using the gradient descent method with classical stochastic estimation (exchanging the mathematical
approach in favor of an instantaneous estimate) [25]. The parameters are adjusted every instant, k, using
the expression:

wmh (k) = wmh (k − 1) + µem (k) sh (k) (9)

where µ is the learning rate and em (k) is the training error associated with the m-th output neuron in the
k-th instant. The error can be expressed by:

ek (k) = dm(k)− ym(k) (10)

where dm(k) is the desired value for the m-th output neuron. The online LMS is less computationally
complex, compared to the pseudo-inverse method that requires a nonquadratic matrix inversion
calculation in order to obtain the weights, wmh (k) [25].



Sensors 2014, 14 18227

3. Architecture and Implementation

3.1. General Structure

Figure 2 presents the general architecture of the proposed implementation. All of the variables and
constants are implemented in a fixed point, utilizing a resolution of n bits, of which b bits represent
the fractional part and (n− b) bits represent the integer part. The representation [n.b] is used for the
fixed point variables with a sign, and [Un.b] is used for the variables without a sign. The architecture
is composed of three large modules, characterized as the intermediate layer, output layer and updating
algorithm, as illustrated in Figure 3.

(1) Intermediate layer module (ILM): This consists of the calculation of the radial basis functions,
according to Equation (1), to generate the signal, sh(k), from the input, x(k). Processing of the
H radial functions, ϕh (·), is performed in parallel, from the centers stored in the local registers
possessing n bits. Each center, ch,i, (see Equation (3)) is stored in the register RChi, as illustrated
in Figure 2.

(2) Output layer module (OLM): This represents the processing performed by the M output neurons,
as described in Equation (6). In this module, the M neurons also function in parallel, generating
the signal y(k) (see Equation (8)) from the input, x(k).

(3) Updating algorithm module (UAM): This module is responsible for implementing the updating
algorithm, which, in the present case, is the online LMS. The updating of each synaptic weight,
wmh(k), at the k-th instant, is performed in parallel, according to Equation (9). As shown in
Figure 2, the weights, wmh, are stored in local registers of n bits, here termed RWmh.

Figure 2. General structure of the RBF network implemented in an FPGA.

xp[n.b](k)

c11[n.b](k)
RC11

RC1p

...

c1p[n.b](k)

x1[n.b](k)

...
...

ϕ1( ).

cH1[n.b](k)
RCH1

RCHp

...

cHp[n.b](k)

...

ϕΗ( ).

...

w10[n.b](k)

...

w1H[n.b](k)

...
...

wM1[n.b](k)

...

wMH[n.b](k)

...
...

...

...

...

...

yM[n.b](k-D2)

y1[n.b](k-D2)...

...

ΝM

Ν1RW10

RW1H

RWM0

RWMH

...

ϕ0=1

UAM

OLMILM

...
...

...

d1[n.b](k)

dM[n.b](k)

...



Sensors 2014, 14 18228

The ILM, OLM and UAM modules function sequentially. For each instant k, the vector of inputs,
x(k), is processed to generate the output vector, y(k), and all of the synaptic weights are calculated in
order to update the registers, RWmh. It is important to note that it would be possible to further improve
the performance of the RBF by using the modules in the form of a pipeline (this was not employed in
the present work).

3.2. Radial Basis Functions

Figures 3 and 4 present details of the processing associated with the h-th radial basis function of
the ILM.

Figure 3 illustrates the implementation corresponding to Equation (5). In this case, the overall
implementation is performed in a partially parallel manner, as described previously [2,7,26]. The delays
associated with the additions and multiplications are also shown in Figure 3. Each addition can be
implemented with a delay z−a and each multiplication with a delay z−r. The insertion of delays in
the operations relaxes the conditions of routing between the cells in the FPGA, principally in complex
operations, such as those involving multipliers. On the other hand, the introduction of delays slows the
response of the system, which can often be disadvantageous [23]. The calculation of the total delay, D,
with respect to Equation (5), can be expressed as:

D = r + a+ a log2(p) (11)

Figure 3. The implementation as described in Equations (2) and (5).

x1[n.b](k)

ch1[n.b](k) - X

+

- X

x2[n.b](k)

ch2[n.b](k)

xp-1[n.b](k)

chp-1[n.b](k) - X

+

- X

RChp-1

xp[n.b](k)

chp[n.b](k)
RChp

RCh2

RCh1

...

...

+

+

+

...

...

...

vh[Un.b](k-D)

z
-r

z
-r

z
-r

z
-r

z
-a

z
-a

z
-a

z
-a

z
-a

z
-a

z
-a

z
-a

z
-a

Figure 4. The implementation with respect to Equation (1).

ROM
(LUTh)

vh[Un:b](k-D)

sh[Ub
LUT

.b
LUT

](k-D1)

X

z
-rBETAh

z
-q

rescale

vh[Un:b
LUT

](k-D-r)



Sensors 2014, 14 18229

A variety of techniques are available for the calculation of nonlinear functions in hardware, and in the
case of FPGAs, one of the most common is the use of lookup tables (LUTs) in ROM memory [2,7,26].
Figure 4 shows the proposed implementation for the h-th radial function (see Equation (1)), in which
read-only memory (ROM) was used to develop the LUT. For each h-th radial function, there is an LUTh
and a multiplication operation to adjust the scaling parameter, β (stored in the BETAh register). In order
to obtain greater resolution associated with each h-th LUTh, the vh(k) variable can be rescaled to a new
format expressed by

[
Un.bLUTh

]
, in which bLUTh is a new value for the number of bits of the fractional

part, calculated using:
bLUTh = n− dlog2 (dδmaxh e)e (12)

where:
δmaxh = max {vh [n.b] · β} (13)

Equation (13) determines the greatest distance of all of the input sets to the h-th center, and this
information enables the number of bits of the integer part to be reduced to (n− bLUTh ), while increasing
the number of bits of the fractional part in bLUTh . Figure 4 illustrates the re-scaling step performed after
the multiplication operation and before the LUT step.

As vh(k) ·β > 0, for any k, the value of the response of the radial function is limited to 0 ≤ sh(k) ≤ 1

and can therefore be represented at a fixed point as
[
UbLUTh .bLUTh

]
, in which the number of bits of

the integer part is zero. The values stored in the h-th LUT can be characterized by the vector LUTh,
expressed as:

LUTh =



s0h
[
UbLUTh .bLUTh

]
...

sjh
[
UbLUTh .bLUTh

]
...

s(P−1)h

[
UbLUTh .bLUTh

]


(14)

where P is the depth of the LUT, characterized as:

P =
⌈
dδmaxh e · 2bLUTh

⌉
(15)

and:
sjh
[
UbLUTh .bLUTh

]
= et

j
h (16)

where:
tjh =

j · dδmaxh e
P − 1

for j = 0, . . . , P − 1 (17)

The delay associated with Equation (1), D1, can be expressed as the sum of the delay corresponding
to the calculation of distance (see Equation (11)) and the delay corresponding to processing of the LUT:

D1 = r + q +D (18)

where q is the LUT delay (z−q)



Sensors 2014, 14 18230

3.3. Output Layer Neurons

The implementation of each m-th neuron, Nm, of the output layer is illustrated in Figure 5. Similar
to the processing presented in Figure 3, the sums of the products amongst the inputs and the synaptic
weights were also implemented in a partially parallel manner [2,7,26].

Figure 5. The implementation of the m-th neuron, Nm, of the output layer (see
Equation (6)).

wm0[n.b](k-D2)
X

+

Xwm1[n.b](k-D2)

wmH-1[n.b](k-D2) X

+

X

RWmH-1

wmH[n.b](k-D2)

RWm0

...

...

+

+

+

...

...

...

ym[n.b](k-D2)

z-u

z-u

z-u

z -u

z-c

z-c

RWm1

RWmH

z-c

z-c

z-c

s0[UbLUT.bLUT](k-D1) z-(D  - D )2 1

s1[UbLUT.bLUT](k-D1) z-(D  - D )
2 1

sH-1[UbLUT.bLUT](k-D1) z-(D  - D )2 1

sH[UbLUT.bLUT](k-D1) z-(D  - D )2 1

In the case of the implementations associated with the output neurons, the addition operations can
have delays of z−u samples, and the multiplication operations can have delays of z−c samples. The total
accumulated delay, from the input to the output of the RBF, can be expressed by:

D2 = D1 + u+ c log2(H) + c (19)

3.4. Online LMS Algorithm

The implementation of the online LMS associated with each synaptic weight, according to
Equation (9), is presented in the diagram shown in Figure 6. All M ×H weights are updated in parallel
and stored in the registers, RWmh. The RMU register stores the value of the learning rate, µ, and to
avoid problems in realigning the algorithm, the operations of addition, subtraction and multiplication are
implemented with zero delay.

3.5. Delays of Operations

Due to the reduction in the size of transistors and increases in clock frequency, delays caused by
interconnection paths (also known as routing delays) are one of the dominant factors affecting time
restrictions. In FPGAs, routing delays are caused by programmable routing switches, which significantly
increases the wire delay [27]. Techniques, such as wire pipelining (or delay padding), in which flip-flops
or latches are inserted between critical stages, can reduce the paths in order to achieve the necessary time
restrictions [27,28].



Sensors 2014, 14 18231

Figure 6. Updating of the synaptic weights, wmh (k), according to Equation (9).

em[n.b](k-D2) X

+
ym[n.b](k-D2)

RWmh

z-D

-

dm[n.b](k)

wmh[n.b](k-D2)
X

RMU

wmh[n.b](k-1-D2)

z-(D  - D )2

2

1
sh[UbLUT.bLUT](k-D1)

Hence, based on the technique of wire pipelining, it can be seen from Equations (11), (18) and (19)
that there are delays associated with the operations of addition, subtraction, multiplication and ROM
reading in the structures presented in Figures 3–5. The delays are implemented by the addition of
flip-flops or latches after the operations, represented here by the variables a, r, u, c and q. It is
important to highlight that the operations (addition and multiplication) in the updating circuit of the
synaptic weights, wmh (k) (see Figure 6), do not use delays (wire pipelining technique). This restriction
ensures synchronization of updating of the weights with their corresponding inputs.

It can be seen from the case studies presented in [29–33] using Virtex-6 that the value of the delay
influences the maximum clock frequency associated with the arithmetic operation in question. For
example, in [29], it was observed that the operation of addition in Virtex-6 for variables of 32 bits with a
signal could achieve a maximum clock frequency of 410 MHz, using a delay of z−3, while a maximum
clock frequency of 388 MHz was obtained in the absence of any delay.

3.6. Analysis of the Area Occupied

The occupied area (in FPGA) of the RBF network can be expressed as:

ARBF (n, a, r, c, u, p,H,M, α, γ, η, κ, P,D1, D2) =
{
AILM(n, a, r, p,H, P, γ, α)

}
+
{
AOLM(n, c, u,M,H,D1, D2, η)

}
+
{
AUAM(n,M,H, κ,D1, D2)

}
(20)

where:

AILM(n, a, r, p,H, α, γ, P ) =
{
N ILM
FF (n, a, r, p,H, P, γ, α)

N ILM
LUT (n, a, r, p,H, P, γ, α)

N ILM
EmbMult(p,H, γ), N

ILM
BRAM(n,H, α, P )

}
(21)

AOLM(n, c, u,M,H, η,D1, D2) =
{
NOLM
FF (n, c, u,M,H,D1, D2, η),

NOLM
LUT (n, c, u,M,H,D1, D2, η)

NOLM
EmbMult(M,H, η)

}
(22)



Sensors 2014, 14 18232

and

AUAM(n,M,H, κ,D1, D2) =
{
NUAM
FF (n,M,H, κ,D1, D2), N

UAM
LUT (n,M,H, κ,D1, D2)

NUAM
EmbMult(M,H, κ)

}
(23)

where AILM , AOLM and AUAM are collections formed by the number of flip-flops, NFF , number of
LUTs, NLUT and number of embedded multipliers, NMult, used by modules ILM, OLM and UAM,
respectively. NBRAM is the number of embedded blocks RAMs, for which ILM can be used to implement
the H ROMs that represent the radial function [34]. It is important to observe that the ROMs can be also
implemented for logic cells.

The ILM module can be expressed by:

N ILM
FF (n, a, r, p,H, P, γ, α) ≤ HpNSub

FF (n, a) +H

dlog2(p)e−1∑
i=0

2i

NAdd
FF (n, a)

+γ(1 +H)NMult
FF (n, r) +HpNRC

FF (n) +HNBETA
FF (n)

+αNROM
FF (n, q, P ) + (H − α)NROMBRAM

FF (n, q, P ) (24)

where NSub
FF (n, a) and NAdd

FF (n, a) are the number of flip-flops required to implement a subtraction and
addition of n bits with a delay of a, respectively. NMult

FF (n, r) is the number of flip-flops required
to implement a multiplication of n bits with a delay of r. NRC

FF (n) and NBETA
FF (n) represent the

number of flip-flops required to implement each register RChp and BETAh, respectively. The variable
NROM
FF (n, q, P ) is the number of flip-flops used to implement with logic cells, the h-th ROM with depth

P and n bits (see Equation (15)). NROMBRAM
FF (n, q, P ) represents the situation where the ROM is

implemented by block RAMs. The parameter γ is the portion of the Hp multipliers (ILM) that are
implemented by logic cells, and α is part of the H ROMs, which are also implemented in logic cells.
The number of LUTs can be expressed by:

N ILM
LUT (n, a, r, p,H, P, γ, α) ≤ HpNSub

LUT (n, a) +H

dlog2(p)e−1∑
i=0

2i

NAdd
LUT (n, a)

+γ(1 +H)NMult
LUT (n, r) +HpNRC

LUT (n) +HNBETA
LUT (n)

+αNROM
LUT (n, q, P ) + (H − α)NROMBRAM

LUT (n, q, P )

+NRout
LUT (n) (25)

where NSub
LUT (n, a) and NAdd

LUT (n, a) are the number of LUTs required to implement a subtraction and
addition of n bits with a delay of a, respectively. NMult

LUT (n, r) is the number of LUTs required to
implement a multiplication of n bits with a delay of r. NRC

LUT (n) and NBETA
LUT (n) represent the number of

LUTs required to implement each register RChp and BETAh, respectively. The variable NROM
LUT (n, q, P )

is the number of LUTs used to implement, with logic cells, the h-th ROM with depth P and n bits
(see Equation (15)). NROMBRAM

LUT (n, q, P ) represents the situation where the ROM is implemented by
block RAMs. Finally, NRout

LUT (n) is the number of LUTs used for routing [34]. The number of embedded
multipliers used can be expressed as:

N ILM
EmbMult(p,H, γ) = (Hp− γ) (26)



Sensors 2014, 14 18233

and the number of blocks RAMs as

N ILM
BRAM(n,H, α, P ) = (H − α)NROM

BRAM(n, P ) (27)

where NROM
BRAM(n, P ) is the number of blocks RAMs needed to implement each h-th ROM with depth P

and n bits (see Equation (15)).
For the OLM module:

NOLM
FF (n, c, u,M,H,D1, D2, η) ≤ M

dlog2(H)e−1∑
i=0

2i

NAdd
FF (n, c) + ηNMult

FF (n, u)

+HMNDelay
FF (n,D2 −D1) (28)

NOLM
LUT (n, c, u,M,H,D1, D2, η) ≤ M

dlog2(H)e−1∑
i=0

2i

NAdd
LUT (n, c) + ηNMult

LUT (n, u)

+HMNDelay
LUT (n,D2 −D1) +NRout

LUT (n) (29)

where η represents the portion of HM multipliers (in OLM) that are implemented by logic cells. The
variables NDelay

FF (n,D2 − D1) and NDelay
LUT (n,D2 − D1) represent the number of flip-flops and LUTs

required to implement a delay of size D2 − D1. The number of embedded multipliers in OLM can be
expressed by:

NOLM
EmbMult(M,H, η) = (HM − η) (30)

Finally, the expressions that estimate the occupied area of the UAM module are expressed as:

NUAM
FF (n,M,H,D1, D2, κ) = MHNSub

FF (n, 0) +MHNAdd
FF (n, 0) + κNMult

FF (n, 0)

+HMNDelay
FF (n,D2 −D1) +HMNDelay

FF (n,D2)

+HMNRW
FF (n) (31)

NUAM
LUT (n,M,H,D1, D2, κ) = MHNSub

LUT (n, 0) +MHNAdd
LUT (n, 0) + κNMult

LUT (n, 0)

+HMNDelay
LUT (n,D2 −D1) +HMNDelay

LUT (n,D2)

+HMNRW
LUT (n) +NRout

LUT (n) (32)

where κ represents the portion of the 2HM multipliers that are implemented in logic cells. NRW
FF (n)

and NRW
LUT (n) represent the number of flip-flops and LUTs required to implement each register RWmh,

respectively. The number of embedded multipliers in UAM can be expressed by:

NUAM
EmbMult(M,H, κ) = (2HM − κ) (33)



Sensors 2014, 14 18234

4. Results and Experimental Tests

Two operational scenarios were analyzed in order to validate the implementation of the RBF in
an FPGA. The first scenario was a widely known problem of nonlinear classification, in which the
RBF attempted to copy the functioning of the XOR gate. In the second scenario, the RBF performed
interpolation of the sine function. Tables 1–3 present the parameters used in the experimental tests
involving the two scenarios. The results were obtained using the System Generator development platform
(Xilinx) [23] and a Virtex-6 xc6vcx240t 1ff1156 FPGA. The Virtex-6 FPGA possesses 37, 680 slices
grouping 301, 440 flip-flops, 150, 720 LUTs that can be used to implement logic functions or memories
and 768 DSPcells (Virtex-6 FPGA DSP48E1) with multipliers and accumulators [23,29,33]. In both
scenarios, the signal sampling rate was Rs =

1
Ts

, where Ts is the time between the k-th samples.

Table 1. Parameters used for the XOR gate scenario.

Number of inputs (p) 1

Number of centers (H) 2

Number of neurons of the output layer (M ) 1

Scaling parameter associated radial function (β) 2

Learning rate (µ) 0.3125

Table 2. Parameters used for the sine function interpolation scenario.

Number of inputs (p) 1

Number of centers (H) 4

Number of neurons of the output layer (M ) 1

Scaling parameter associated radial function (β) 0.125

Learning rate (µ) 0.5

Table 3. Delays associated with the arithmetical operations used in the two scenarios.

z−r 3
z−a 0
z−q 1
z−u 0
z−c 0

In the results described in this section, the operations of addition and subtraction were implemented
with logic cells utilizing LogiCORE IP Adder/Subtracter v11.0 (Xilinx) [30]. All of the multiplication
operations were implemented using embedded multipliers (γ = η = κ = 0) of the type Virtex-6 FPGA
DSP48E1 Slice with LogiCORE IP Multiplier v11.2 [29,33], and all of the ROMs associated with the
radial functions were implemented using logic cells (α = H) with LogiCORE IP Distributed Memory
Generator v6.3 [32].



Sensors 2014, 14 18235

In the Virtex-6 FPGA, the arithmetic operations (addition, subtraction and multiplication) do not
possess restrictions related to the delays (a ≥ 0, r ≥ 0, u ≥ 0 and c ≥ 0). Meanwhile, as described in
Subsection 3.5, the technique of wire pipelining can assist in the routing process, reducing the distance
between the operations in order to achieve the time restrictions. In the case of the ROM, implementation
in the Virtex-6 FPGA requires the use of internal memory blocks (Virtex-6 block RAMs) with q > 0.
In the absence of this condition, q ≥ 0 (in this case, the ROM is implemented by logic cells) [31,32].
Table 3 presents all of the delay values used in the simulations, where the values selected were based on
test cases presented in [29–31], where various delay values and the maximum frequencies obtained are
illustrated. For example, in [29], it was found that the multiplication operation for variables of 18 bits
with a signal could achieve a maximum clock frequency of 450 MHz, using a delay of r = 3.

4.1. Results Obtained for Synthesis of the RBF in the FPGA

Tables 4 and 5 present the results obtained after the process of synthesis of the RBF (with the
parameters presented in Tables 1–3) in the FPGA. For both scenarios, it can be clearly seen that the
sampling rate and the area of occupation were highly sensitive to the number of bits. On the other hand,
due to the parallelization, differences between the two scenarios were not large, using the same quantity
of bits (14, 15 and 16).

Table 4. Processing speed and area occupied for different fixed point formats, in the XOR
gate scenario. LUT, lookup table.

Fixed Point Sample Flip-Flops Logic Cells Multipliers
Format ([n.b]) Rate Rs (MHz) and Latches (LUTs)

[12.8] 100.9285 321 1, 170 10

[13.9] 84.7673 349 2, 038 10

[14.10] 75.5401 376 3, 610 10

[15.11] 74.9569 404 6, 284 10

[16.12] 66.8717 431 12, 184 10

Table 5. Processing speed and area occupied for different fixed point formats, in the sine
function scenario.

Fixed Point Sample Flip-Flops Logic Cells Multipliers
Format ([n.b]) Rate Rs (MHz) and Latches (LUTs)

[14.8] 103.4554 106 2, 370 16

[15.9] 80.5477 115 3, 944 16

[16.10] 75.5589 124 6, 519 16

[17.11] 68.4650 133 12, 801 16

[18.12] 65.4332 142 24, 176 16



Sensors 2014, 14 18236

Occupation of the area used by the registers is due to the storage of fixed centers (RChi), constants
(Betah, RMU), synaptic weights (RWmh) and delays. This is affected to a greater extent by the
architecture of the ANN (number of inputs, p, number of centers, H , and number of outputs, M ) than
by the number of bits. Occupation of the logic cells is related to the addition operations performed using
the construction of logic functions, as well as the radial functions that were developed by means of the
construction of ROM memories, as described in Section 3.2. In the latter case, the degree of precision and
the architecture of the network exert a direct influence, as shown in Tables 4 and 5. The multiplication
operations were synthesized in internal DSP circuits, as a result of which, the area consumed by these
operations remained constant, in terms of the number of bits, and only altered in terms of structural
changes in the network.

4.2. Precision of the Response

Figures 7 and 8 present the results obtained for the MSE as a function of the number of samples in
the two scenarios tested. In the case of the first scenario (XOR gate) (Figure 7), the MSE was calculated
using frames of 16 samples, and 40 frames were tested. For the scenario involving interpolation of the
sine function (Figure 8), frames of 4096 sample were utilized to calculate the MSE, and 128 frames were
tested. In both cases, the RBF implemented showed satisfactory convergence, with the best results being
directly related to the number of bits, n.

Figure 7. Performance of the RBF in tests using the XOR gate scenario.

0 5 10 15 20 25 30 35 40
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Frames (16 samples)

M
S

E

 

 
12.8
13.9
14.10
15.11
16.12



Sensors 2014, 14 18237

Figure 8. Performance of the RBF in tests using the sine function scenario.

0 20 40 60 80 100 120 140
10

−5

10
−4

10
−3

10
−2

Frames (4096 samples)

M
S

E

 

 

14.8

15.9

16.10

17.11

18.12

4.3. Estimate of the Area Occupied

Using as a reference the parameters presented in Tables 1–3, Equations (20)–(27) and the
estimates provided by the Xilinx manufacturer (see Tables 6 and 7) [29–33], it was possible
to obtain estimated area occupation limits for the flip-flops and LUTs with n = 8 and
n = 32 bits, as shown in Figures 9–12. These figures also show the real results obtained
after the synthesis in the case of the XOR gate (n = {12, . . . , 16}) and the sine function
(n = {14, . . . , 18}). Since embedded (fixed) multipliers were used, the multiplications did not influence
the area occupied. However, it is important to point out that if the onboard multipliers are not sufficient,
multipliers could be constructed with logic cells. It is important to observe that the number of bits will
result in an exponential growth in the occupied area.

Table 6. Estimated number of flip-flops provided by the Xilinx manufacturer [29–33].

n NSub
FF (n, 0) NAdd

FF (n, 0) NMult
FF (n, 3) NRC

FF (n) NBETA
FF (n) NRW

FF (n)

8 0 0 110 8 8 8

32 91 91 – 32 32 32

n NDelay
FF (n,D2 − D1) NDelay

FF (n,D2) NROM
FF (n, 1, P ) NMult

FF (n, 0) NRout
LUT (n)

8 (D2 −D1)× 8 (D2)× 8 8 110 0
32 (D2 −D1)× 32 (D2)× 32 32 – 0



Sensors 2014, 14 18238

Table 7. Estimated number of LUTs provided by the Xilinx manufacturer [29–33].

n NSub
LUT (n, 0) NAdd

LUT (n, 0) NMult
LUT (n, 3) NRC

LUT (n) NBETA
LUT (n) NRW

LUT (n)

8 8 8 116 0 0 0

32 93 93 – 0 0 0

n NDelay
LUT (n,D1 − D2) NDelay

LUT (n,D2) NROM
LUT (n, 1, P ) NMult

LUT (n, 0) NRout
LUT (n)

8 0 0 ≈ 2(8−4) 116 0
32 0 0 ≈ 2(32−4) – 0

Figure 9. Area occupied (flip-flops) for different fixed point formats, in the XOR
gate scenario.

8 12 13 14 15 16 32
0

200

400

600

800

1000

1200

1400

1600

1800

F
li
p
-fl
o
p
s
(N

I
L
M

F
F

+
N

O
L
M

F
F

+
N

U
A
M

F
F

)

n bits

Figure 10. Area occupied (flip-flops) for different fixed point formats, in the sine
function scenario.

8 14 15 16 17 18 32
0

500

1000

1500

2000

2500

3000

F
li
p
-fl
o
p
s
(N

I
L
M

F
F

+
N

O
L
M

F
F

+
N

U
A
M

F
F

)

n bits

Figure 11. Area occupied (LUTs) for different fixed point formats, in the XOR gate scenario.

8 12 13 14 15 16 32
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

L
U
T
s
(N

I
L
M

L
U
T
+

N
O
L
M

L
U
T

+
N

U
A
M

L
U
T
)

n bits

536871935



Sensors 2014, 14 18239

Figure 12. Area occupied (LUTs) for different fixed point formats, in the sine
function scenario.

8 14 15 16 17 18 32
0

1

2

3

4

5

6
x 10

4

L
U
T
s
(N

I
L
M

L
U
T
+

N
O
L
M

L
U
T

+
N

U
A
M

L
U
T
)

n bits

1.0737 × 109

Figure 13. Area occupied (flip-flops) for different numbers of inputs, p, centers, H and
M = 1.

0 10 20 30 40 50 60 70
0

20

40

60

80

0

1

2

3

4

x 10
4

H

p

F
F
s
(N

I
L
M

F
F

+
N

O
L
M

F
F

+
N

U
A
M

F
F

)

Figure 14. Area occupied (LUTs) for different numbers of inputs, p, centers, H and M = 1.

0
10

20
30

40
50

60
70 0

20

40

60

80

0

1

2

3

4

x 10
4

H
p

L
U
T
s
(N

I
L
M

L
U
T
+

N
O
L
M

L
U
T

+
N

U
A
M

L
U
T
)



Sensors 2014, 14 18240

Figures 13 and 14 show occupation estimates for various numbers of inputs, p, and centers, H , for
M = 1 and n = 8. The curves demonstrate that the occupation capacity is more influenced by the
number of bits, n (exponential increase), than by the structure of the RBF that grows linearly with the
parameters p, H and M . The curves illustrated in Figures 13 and 14 show that, for example, with eight
bits, it is possible to work with a relatively large RBF (p = 64, H = 64 and M = 1) using around 50%

occupancy of a Virtex 6 (40, 000 LUTs and flip-flops more multipliers). This RBF configuration could
be used in adaptive equalizers [35,36] and in some applications in mobile robotics [37].

4.4. Real-World Cases

Artificial neural networks of the type RBF can be applied to different real-world problems that may
or may not require online training. Amongst these problems can be highlighted the use of RBF networks
in adaptive equalizers for wireless communication systems [35,36], for obstacle avoidance in mobile
robotics [37], in pattern recognition [38], as well as other applications. Nevertheless, for problems that
require online training, the speed of the training in terms of the number of iterations per second is a
fundamental determinant of viability in dedicated hardware. The development of the present work is
based on this perspective.

Analysis of the results obtained for time (or, in other words, the sampling rate,R, of the ANN) showed
that in both cases (XOR gate and sine function), the value was much more closely associated with the
number of bits, n, than with the structure of the network, which was due to the parallel implementation
proposed in this paper. From the results obtained, it could be seen that if space exists in the FPGA for the
implementation of the ANN, the sampling rate essentially depends on the number of bits. For example,
in the case of the FPGA used here, it was possible to achieve sampling rates of around 100 MHz (see
Tables 4 and 5); in other words, to work at 100 mega-iterations per second.

5. Conclusions

This work presents a parallel fixed point implementation, in an FPGA, of an RBF trained with an
online LMS algorithm. The implementation of the RBF was analyzed in terms of occupation area,
bit resolution and processing delay. The proposed structure was tested at different resolutions, using
two widely known scenarios, namely the problem of nonlinear classification with the XOR gate and
the problem of interpolation utilizing the sine function. The results obtained were highly satisfactory,
indicating the potential feasibility of the technique for use in practical situations of greater complexity.

Author Contributions

Marcelo A. C. Fernandes conceived and designed the experiments; Alisson C. D. de Souza
performed the experiments; Marcelo A. C. Fernandes and Alisson C. D. de Souza analyzed the data;
Marcelo A. C. Fernandes wrote the paper.

Conflicts of Interest

The authors declare no conflicts of interests.



Sensors 2014, 14 18241

References

1. Haykin, S.S. Neural Networks: A Comprehensive Foundation, 2nd ed.; Prentice Hall:
Upper Saddle River, NJ, USA, 1999.

2. Savich, A.; Moussa, M.; Areibi, S. The Impact of Arithmetic Representation on Implementing
MLP-BP on FPGAs: A Study. IEEE Trans. Neural Netw. 2007, 18, 240–252.

3. Misra, J.; Saha, I. Artificial neural networks in hardware: A survey of two decades of progress.
Neurocomputing 2010, 74, 239–255.

4. Dias, F.M.; Antunes, A.; Mota, A.M. Artificial neural networks: A review of commercial
hardware. Eng. Appl. Artif. Intell. 2004, 17, 945–952.

5. Fan, Z.C.; Hwang, W.J. Efficient VLSI Architecture for Training Radial Basis Function Networks.
Sensors 2013, 13, 3848–3877.

6. Latino, C.; Moreno-Armendariz, M.; Hagan, M. Realizing general MLP networks with minimal
FPGA resources. In Proceedings of the International Joint Conference on Neural Networks, 2009
(IJCNN 2009), Atlanta, GA, USA, 14–19 June 2009; pp. 1722–1729.

7. Hariprasath, S.; Prabakar, T.N. FPGA implementation of multilayer feed forward neural network
architecture using VHDL. In Proceedings of the 2012 International Conference on Computing,
Communication and Applications (ICCCA), Dindigul, Tamilnadu, India, 22–24 February 2012;
pp. 1–6.

8. Hassan, A.A.; Elnakib, A.; Abo-Elsoud, M. FPGA-based neuro-architecture intrusion detection
system. In Proceedings of the International Conference on Computer Engineering Systems, 2008
(ICCES 2008), Cairo, Egypt, 25–27 November 2008; pp. 268–273.

9. Liddicoat, A.A.; Slivovsky, L.A.; McLenegan, T.; Heyer, D. FPGA-based artificial neural network
using CORDIC modules. Proc. SPIE 2006, 6313, doi:10.1117/12.682529.

10. Orlowska-Kowalska, T.; Kaminski, M. FPGA Implementation of the Multilayer Neural Network
for the Speed Estimation of the Two-Mass Drive System. IEEE Trans. Ind. Inform. 2011, 7,
436–445.

11. Mahmoodi, D.; Soleimani, A.; Khosravi, H.; Taghizadeh, M. FPGA Simulation of Linear and
Nonlinear Support Vector Machine. J. Softw. Eng. Appl. 2011, 4, 320–328.

12. Patra, J.; Devi, T.; Meher, P. Radial basis function implementation of intelligent pressure sensor
on field programmable gate array. In Proceedings of the 2007 6th International Conference on
Information, Communications Signal Processing, Singapore, 10–13 December 2007; pp. 1–5.

13. Brassai, S.; Bako, L.; Pana, G.; Dan, S. Neural control based on RBF network implemented on
FPGA. In Proceedings of the 11th International Conference on Optimization of Electrical and
Electronic Equipment, 2008 (OPTIM 2008), Brasov, Romania, 22–24 May 2008; pp. 41–46.

14. Kim, J.S.; Jung, S. Evaluation of embedded RBF neural chip with back-propagation algorithm for
pattern recognition tasks. In Proceedings of the 6th IEEE International Conference on Industrial
Informatics, 2008 (INDIN 2008), Daejeon, Korea, 13–16 July 2008; pp. 1110–1115.

15. Kung, Y.S.; Wang, M.S.; Chuang, T.Y. FPGA-based self-tuning PID controller using RBF neural
network and its application in X-Y table. In Proceedings of the IEEE International Symposium
on Industrial Electronics, 2009 (ISIE 2009), Seoul, Korea, 5–8 July 2009; pp. 694–699.



Sensors 2014, 14 18242

16. Seob Kim, J.; Jung, S. Implementation of the RBF neural chip with the on-line learning
back-propagation algorithm. In Proceedings of the IEEE International Joint Conference on
Neural Networks, 2008 (IJCNN 2008), (IEEE World Congress on Computational Intelligence),
Hong Kong, China, 1–8 June 2008; pp. 377–383.

17. Evert, P.; Amudhan, R.; Paul, P. Implementation of neural network based controller using Verilog.
In Proceedings of the 2011 International Conference on Signal Processing, Communication,
Computing and Networking Technologies (ICSCCN), Thuckafay, India, 21–22 July 2011;
pp. 353–357.

18. Gargouri, A.; Krid, M.; Masmoudi, D. Hardware implementation of pulse mode RBFNN
based edge detection system on virtex V platform. In Proceedings of the 2010 7th International
Multi-Conference on Systems Signals and Devices (SSD), Amman, Jordan, 27–30 June 2010;
pp. 1–5.

19. Vizitiu, I.C.; Rincu, I.; Radu, A.; Nicolaescu, I.; Popescu, F. Optimal FPGA implementation of
GARBF systems. In Proceedings of the 2010 12th International Conference on Optimization of
Electrical and Electronic Equipment (OPTIM), Basov, Ukraine, 20–22 May 2010; pp. 774–779.

20. Kim, J.S.; Jung, S. Joint control of ROBOKER arm using a neural chip embedded on FPGA. In
Proceedings of the IEEE International Symposium on Industrial Electronics, 2009 (ISIE 2009),
Seoul, Korea, 5–8 July 2009; pp. 1007–1012.

21. Yang, F.; Paindavoine, M. Implementation of an RBF neural network on embedded systems:
Real-time face tracking and identity verification. IEEE Trans. Neural Netw. 2003, 14, 1162–1175.

22. Tisan, A.; Cirstea, M. SOM neural network design—A new Simulink library based approach
targeting FPGA implementation. Math. Comput. Simul. 2013, 91, 134–149.

23. Xilinx System Generator User’s Guide. Available online: http://www.xilinx.com (accessed on 26
September 2014).

24. Matlab/Simulink. Available online: http://www.mathworks.com (accessed on 26 September 2014).
25. Haykin, S.S. Adaptive Filter Theory, 3rd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1996.
26. Al-Kazzaz, S.; Khalil, R. FPGA Implementation of Artificial Neurons: Comparison study.

In Proceedings of the 3rd International Conference on Information and Communication
Technologies: From Theory to Applications, 2008 (ICTTA 2008), Damascus, Syria, 7–11 April
2008; pp. 1–6.

27. Singhal, L.; Bozorgzadeh, E.; Eppstein, D. Interconnect Criticality-Driven Delay Relaxation.
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2007, 26, 1803–1817.

28. Dong, X.; Lemieux, G. PGR: Period and glitch reduction via clock skew scheduling, delay
padding and GlitchLess. In Proceedings of the International Conference on Field-Programmable
Technology, 2009 (FPT 2009), Sydney, Australia, 9–11 December 2009; pp. 88–95.

29. Xilinx—LogiCORE IP Multiplier V11.2—Datasheet. Available online: http://www.xilinx.com/
support/documentation/ip_documentation/mult_gen_ds255.pdf (accessed on 26 September 2014).

30. Xilinx—LogiCORE IP Adder/Subtracter V11.0—Datasheet. Available online: http://www.xilinx.
com/support/documentation/ip_documentation/addsub_ds214.pdf (accessed on 26 September 2014).



Sensors 2014, 14 18243

31. Xilinx—LogiCORE IP Block Memory Generator v6.3—Datasheet. Available online:
http://www.xilinx.com/support/documentation/ip_documentation/blk_mem_gen/v6_3/blk_mem
_gen_ds512.pdf (accessed on 26 September 2014).

32. Xilinx—LogiCORE IP Distributed Memory Generator v6.3—Datasheet. Available online:
http://www.xilinx.com/support/documentation/ip_documentation/dist_mem_gen/v6_3/dist_mem
_gen_ds322.pdf (accessed on 26 September 2014).

33. Xilinx—Virtex 6 FPGA DSP48E1 Slice—User Guide. Available online: http://www.xilinx.com/
support/documentation/user_guides/ug369.pdf (accessed on 26 September 2014).

34. Kilts, S. Advanced FPGA Design: Architecture, Implementation, and Optimization; Wiley:
Hoboken, NJ, USA, 2007.

35. Burse, K.; Yadav, R.; Shrivastava, S. Channel Equalization Using Neural Networks: A Review.
IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2010, 40, 352–357.

36. Katz, G.; Sadot, D. A nonlinear electrical equalizer with decision feedback for OOK optical
communication systems. IEEE Trans. Commun. 2008, 56, 2002–2006.

37. Cinar, E.; Sahin, F. EOG controlled mobile robot using Radial Basis Function Networks.
In Proceedings of the Fifth International Conference on Soft Computing, Computing with Words
and Perceptions in System Analysis, Decision and Control, 2009 (ICSCCW 2009), Famagusta,
Cyprus, 2–4 September 2009; pp. 1–4.

38. Lampariello, F.; Sciandrone, M. Efficient training of RBF neural networks for pattern recognition.
IEEE Trans. Neural Netw. 2001, 12, 1235–1242.

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).


	Introduction
	Radial Basis Function Networks
	Architecture
	Training Algorithm

	Architecture and Implementation
	General Structure
	Radial Basis Functions
	Output Layer Neurons
	Online LMS Algorithm
	Delays of Operations
	Analysis of the Area Occupied

	Results and Experimental Tests
	Results Obtained for Synthesis of the RBF in the FPGA
	Precision of the Response
	Estimate of the Area Occupied
	Real-World Cases

	Conclusions

