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Abstract: With the rapid development and widespread adoption of wireless sensor 

networks (WSNs), security has become an increasingly prominent problem. How to establish a 

session key in node communication is a challenging task for WSNs. Considering the 

limitations in WSNs, such as low computing capacity, small memory, power supply 

limitations and price, we propose an efficient identity-based key management (IBKM) 

scheme, which exploits the Bloom filter to authenticate the communication sensor node 

with storage efficiency. The security analysis shows that IBKM can prevent several attacks 

effectively with acceptable computation and communication overhead. 

Keywords: key management; identity-based cryptography; bloom filter; security; wireless 

sensor network 
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1. Introduction 

Wireless Sensor Networks (WSNs) are ripe for wide adoption in several applications, such as 

military, healthcare, automotive, research, and so on. For applications such as military, higher 

requirements on WSN security is needed. However, WSN security is a challenging problem, because 

of the openness of WSNs’ network architectures, which enables adversaries to easily eavesdrop, 

intercept, inject and alter transmitted information. Besides, the existing computer network security 

mechanisms cannot be adopted in WSNs because of the restricted node resources and low 

communication bandwidth. Therefore, it is urgent to put forward low consumption key management 

schemes for WSNs. 

Until now, key management schemes in WSNs were mainly based on symmetric cryptographic 

algorithms or public key cryptography algorithms. For the symmetric cryptographic algorithm,  

pool-based key predistribution [1] and the related improved schemes, [2,3] proposed probabilistic key 

pre-distribution schemes for pairwise key establishment. Their basic idea is that each node randomly 

picks a set of keys from a key pool before deployment, so that any two sensor nodes have a certain 

probability to share at least one common key. Blom [4] and Blundo et al. [5] proposed a matrix and a 

polynomial key generation schemes, respectively. However, most of these schemes cost much memory 

and significant communication overhead with a low security level. On the other hand, the key 

management schemes based on public key cryptography algorithms could provide much simpler 

solutions with much stronger security resilience compared with those based on symmetric 

cryptographic algorithms. However, public key cryptography algorithms require more computing 

capacity, and for this reason, the public key system was generally considered not applicable for 

energy-constrained WSNs. Recent works [6–9] have demonstrated the feasibility of public key 

cryptography algorithms on the resource-constrained sensor nodes. Specially, Oliveira et al. [7] 

implement pairings for sensor nodes based on the 8-bit/7.3828-MHz ATmega128L microcontroller 

(e.g., MICA 2 and MICAz motes), and they argue that pairing-based cryptography is indeed viable in 

resource-constrained nodes. Usually, they use Public Key Cryptography (PKC) schemes for 

bootstrapping security in WSNs, i.e., for generating symmetric keys to communicate or key 

distribution. TinyPK [6] exploits the RSA cryptosystem to provide authentication and key exchange 

between an external party and a sensor network, but it needs a certificate authority (CA), and 

certificates are eliminated instead of the challenge-response protocol in which the public key is signed 

by CA’s private key. Kui et al. [10] addressed the multiuser broadcast authentication problem in 

WSNs by designing PKC-based solutions. Their schemes are built upon the integration of several 

cryptographic techniques, including the Bloom filter, the Merkle hash tree, et al., However, they use 

the Bloom filter between the base station and the network user, where the network users refer to 

personnel or devices that use the WSN; they are not sensor nodes. In our scheme, the Bloom filter is 

used among the sensor nodes in WSN to provide an efficient authentication. 

There are several problems in [6–9]. For example, how does one verify the validness of a  

public key? Conventional solutions, such as Public Key Infrastructure (PKI) and a certificate, are  

non-implementable in WSNs, due to their constrained resource. How does one apply Identity-Based 

Encryption (IBE) in WSNs efficiently and securely with the integrity of a public key? Public key 

validness is hard to be verified in present IBE schemes, because it usually depends on the certificate 
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and CA. Additionally, the certificate will result in a large communication overhead and expensive 

signature verification operations, which consume more energy [10]. 

Because of the absence of PKI and a certificate, there is no authentication in the state-of-the-art IBE 

schemes, which are subject to many attacks, such as the Sybil attack, the man-in-the-middle attack, etc. 

Focused on addressing these problems, we propose an efficient identity-based key management 

scheme (IBKM) in this paper, which adopts an identity-based cryptosystem to distribute session keys 

between nodes without the complicated operations of the public key certificate; specifically, we exploit 

the Bloom filter to provide authentication with storage efficiency. A Bloom filter is a simple  

space-efficient randomized data structure based on a hash function for representing a set in order to 

support membership queries. Although Bloom filters allow false positives, for many applications,  

e.g., WSNs, the space savings outweigh this drawback when the probability of an error is sufficiently 

low [11]. 

The main contributions of this paper are as follows: 

(1) To the best of our knowledge, we are the first one to exploit the Bloom filter to authenticate 

sensor nodes in WSNs. The sensor node’s public key in IBE is verified using the Bloom filter 

together with its ID. 

(2) We come up with a security analysis, as well as quantitative memory, computation and 

communication overhead to demonstrate the effectiveness and efficiency of IBKM. The 

computation overhead that is brought by the Bloom filter is quite small, as hash operations are 

negligible compared with the bilinear pairing. 

The rest of this paper is organized as follows. Section 2 introduces related works. Section 3 gives 

some preliminaries on bilinear pairing, bilinear computational Diffie–Hellman (BCDH) and the Bloom 

filter. We describe IBKM in Section 4. In Section 5, a security analysis of IBKM is given to prove its 

resilience against various types of attacks. Section 6 gives the evaluation of the storage, computation 

and communication overhead. Finally, Section 7 concludes the paper. 

2. Related Works 

The notion of identity-based public key schemes was firstly introduced by Adi Shamir [12],  

who presented an identity-based signature scheme. As compared with the traditional certificate-based 

public-key cryptosystems, the ID-based system utilizes the users’ identity (for example, name or  

email address) as the public key; therefore, additional computations to verify the corresponding 

certificates are not needed. 

Until now, several cryptography algorithms based on identity have been proposed; however, these 

solutions cannot completely meet the requirements of practical use, especially in WSNs. In 2001, 

Franklin and Boneh [13] proposed an identity-based encryption scheme from Weil pairing. They also 

showed that their scheme can gain security against an adaptive chosen cipher text attack in the random 

oracle model. Their work is based on bilinear pairings on elliptic curves and led to high research 

activity in this field. 

Yang et al. [14] propose an approach based on identity-based encryption and Diffie–Hellman 

algorithms, which provides authenticated key agreement between pairs of sensor nodes. However, its 
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computation and memory overhead are too high to be practically applied. Zhang et al. [15] propose a 

new security scheme based on LOCK [16] and ID-based secure group key management. They use the 

exclusion basis system (EBS) [17] for key agreement between the gateway and node, while ID-based 

key management between the base station and gateway. 

Since Boneh et al. [18] proposed a signature and encryption scheme based on identity from pairing; 

many schemes [19–22] attempt to apply pairing on WSNs. Yang et al. [22] proposed IBAKA using 

pairing-based cryptography. Their scheme achieves significant improvements in terms of security 

strength, communication and storage overhead. Later in this paper, we will compare our scheme with 

theirs. However, the pairing costs too much computation overhead for WSNs. Barreto [23] proposed 

an efficient approach to compute pairings on supersingular curves, which can be used for elliptic and 

hyperelliptic curves with very efficient results. Manel et al. [24] propose a scheme based on identity, 

which supports the establishment of pair-wise keys and cluster keys. However, their scheme does not 

verify the authenticity of the identity before the key agreement between two nodes; also, nodes in this 

scheme store a bunch of other nodes’ public key and the identity value, which increases the storage 

overhead. Cheng et al. [25] presented EKAES, which is an ID-based key agreement and encryption 

scheme for WSNs, but their scheme has an expensive communication overhead. Chatterjee et al. [26] 

propose an ID-based key management scheme using bilinear pairings. The nodes in their scheme verify 

the authenticity of other nodes through the cluster, which causes a heavy communication overhead. 

Kui et al. [10] presented several public-key-based schemes to achieve immediate broadcast 

authentication in WSNs, and the Bloom filter is used. However, in their schemes, the broadcast 

messages are initiated by network users, which are personnel or devices that use the WSN; they are not 

sensor nodes. Instead, our scheme is used to authenticate among the sensor nodes in a WSN. 

Altogether, state-of-the-art identity-based approaches do not verify the authenticity of the 

corresponding node before the key agreement, because certificate verification usually needs extensive 

computation, which causes much computation overhead on the sensor nodes; besides, more entities, 

such as CA, should be setup. In this paper, we address this problem by adopting the Bloom filter with 

minimized computational and storage costs to cope with the resource-constrained nature of WSNs. 

3. Preliminaries 

In this section, we give a brief introduction to bilinear pairing, the bilinear Diffie–Hellman (BDH) 

problem and the Bloom filter. 
Bilinear Pairing: Let 1G  be a cyclic additive group of prime order q and 2G  be a cyclic 

multiplicative group of the same order q. 1 1 2:e G G G× →  between these groups is a bilinear pairing if 

it satisfies the following properties: 

1. Bilinear: We say that a map 1 1 2:e G G G× →  is bilinear if ( , ) ( , )abe aP bQ e P Q=  for all 

1,P Q G∈ , while ,a b Z∈ . 

2. Non-degenerate: There exists 1,P Q G∈ , such that ( , ) 1e P Q ≠ . 

3. Computable: There exists an efficient algorithm to compute ( , )e P Q  for all 1,P Q G∈ . 

Bilinear Diffie–Hellman (BDH) problem: For given { }, , ,P aP bP cP , it is a hard problem to 

compute ( , )abce P P  for some , ,a b c Z∈ . 
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Bloom filter: A Bloom filter [11] is a simple space-efficient randomized data structure; it can be 

used to succinctly represent a set in order to support membership queries. In our scheme, we use it to 

authenticate a sensor node while receiving the communication request. A Bloom filter is described by 
a vector of m bits, which are initially all set to zero. In order to represent a set { }1 2, nS x x x=   that 

contains n elements, we use k independent hash functions to map each item to the m-bits vector. For 
each element, x S∈  bits ( )ah x  are set to one. Then, we have: 

1, [1, ], [1,n]

. . ( )

0,
i a b

if a k b

BloomFilter s t h x i

otherwise

∃ ∈ ∈
= =



 (1)

The initial value: 0 [1, ]iBloomFilter i m= ∈  

A simple example is shown in Figure 1 when k = 3. 1x  is hashed by three hash functions, and three 

corresponding items in the Bloom filter are set to one. Note that a bit of the vector can be set to one 

multiple times, but only one works. 

Figure 1. Example of a Bloom filter. 

1x 2x

1 1( )h x 2 1( )h x 3 1( )h x

 

4. IBKM Scheme 

Basically, there are two architectures available for WSNs. One is a distributed flat architecture, and 

the other is a hierarchical architecture. Considering the limitations of WSNs, such as low energy 

supply, extremely large network size and redundant low-rate data, the hierarchical network model has 

more operational advantages than the flat homogeneous model for wireless sensors [27]. 

In this work, we focus on the hierarchical network model, which is shown in Figure 2, as in [28].  

It has three different kinds of wireless devices; base station (BS), cluster head (CH) and sensor node (N). 

We assume that the BS is trusted and that the CH is more capable than normal nodes. In a cluster, the 

CH collects and aggregates packets from its member nodes and then forwards them to the BS. 

Normally, a member sensor node can transfer packets to CH through several hops. 

Figure 2. Network model of WSN. 
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Node

CH1

CH2

CH3

BS
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IBKM consists of three phases: parameters initialization, node registration and share secret key 

generation between two nodes. Table 1 displays the notations used in this paper. 

Table 1. List of the notations used. 

Notation Description 

1G  A cyclic additive group of prime order q 

2G  A cyclic multiplicative group of prime order q 

E A random elliptic curve 
P A point on E 

p, q Large prime numbers 
( )e  A bilinear mapping function 
( )H  Hash function 
( )kE  Symmetric encryption with key k 

T A time stamp 

r  Random number 

CHID  Identity of cluster head CH 

AID , BID  Identity of node A and node B 

CHQ , CHS  Public key and private key of CH 

AQ , AS  Public key and private key of Node A 

1CK , 2CK  Shared secret key between cluster head and node 

1SK , 2SK  Shared secret key between two nodes in a cluster 

4.1. Parameters Initialization Phase 

BS selects large prime p, q and generates a random elliptic curve E over finite field pF . One point P 

on curve E is selected and used as generator to construct an additive group 1G , and 1 1: pe G G F ∗× →  is 

a bilinear map. *
1 :{0,1} ( )pH E F→  are two cryptographic hash functions. 

(1) BS selects a random number s and computes 1pubP sP G= ∈  as the public key. BS broadcasts 

the public parameters 1 1 2( , ( ), , , , , , , )P pubG E F p q e P P H H . 

(2) BS generates each node’s ID and calculates the public and private key pair of the node. Then, 
BS preloads them into the node. The public key is 1( )N NQ H ID= , and the private key is 

N NS sQ= , where N represents a node in WSNs. 

(3) BS generates the CH’s ID and calculates the public and private key pair of the CH. Then, BS 
stores them in the CH, in which the public key is 1( )CH CHQ H ID= ; the private key is 

CH CHS sQ= , where CH is a cluster header in WSNs. 

(4) BS keeps a list of all nodes’ IDs and their public-private key pairs. BS also keeps all CHs’ IDs 

and public keys for the next steps. 
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4.2. Node Registration Phase 

In this phase, all sensor nodes register to the cluster heads and a session key is generated between 

each node and their cluster head, as shown in Figure 3. 

(1) CH broadcasts a message that contains its own identity and a public key to all neighboring 

sensor nodes: 

( )S CH CHCH
E ID Q

CH All Nodes⎯⎯⎯⎯⎯⎯→  

(2) Upon the receipt of CH’s messages, each sensor node sends its ID and public key to the CH 

with whom it wants to join. 

( )Q N NCH
E ID Q

All Nodes CH⎯⎯⎯⎯⎯→  

(3) After receiving the ID and public key of a node, CH calculates the session key 2CK . 

2 ( , )C CH NK e S Q=  

(4) Node calculates the same session key with CH. 

1 ( , )C N CHK e S Q=  

1 2C CK K=  can be proved as follows: 

1 1 1

1 1 1 1

1 1

2

( , ) ( , ( )) ( , ( ))

( ( ), ( )) ( ( ), ( ))

( , ( )) ( , ( )) ( ,Q )

C N CH N CH N CH

N CH CH N

CH N CH N CH N

C

K e S Q e S H ID e sQ H ID

e sH ID H ID e sH ID H ID

e sQ H ID e S H ID e S

K

= = =
= =
= = =
=

 

We let 1 2C C CK K K= = . 

(2)

(5) CH generates a Bloom filter of all nodes’ IDs and public keys within its cluster and sends the 

Bloom filter encrypted by the session key generated before to all nodes in the cluster. Figure 4 

shows the generation of the Bloom filter. 

( )KC
E Bloom Filter

CH All Nodes⎯⎯⎯⎯⎯⎯→  

Figure 3. Procedure of node registration. 

( || )
CHS CH CHE ID Q

(ID || Q )
CHQ N NE

Bloom Filter

2 ( , )C CH NK e S Q= 1 ( , )C N CHK e S Q=
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Figure 4. CH generates its own cluster Bloom filter. 

1 1ID Q 2 2ID Q i iID Q

1()h 2()h 3()h ()kh

 

4.3. Share Secret Key Generation between Two Nodes 

(1) Sensor Node A chooses a random number 1r  and broadcasts a message that contains its ID, 

public key and a time stamp encrypted by its own private key to neighboring nodes after it 

registers to the CH. 

1|| ( || )A S AA
ID E r Q T

A Neighbor Nodes⎯⎯⎯⎯⎯⎯→  

(2) When the neighboring Node B receives the message, it verifies the authenticity of A by 
checking if the hash mapping of ( , )A AID Q is contained in the Bloom filter obtained from CH. 

A negative answer means authentication failure. Our node authentication algorithm takes a 

similar idea as in [10] and is provably efficient. If the authentication is passed, B chooses its 

random number r2 and returns its ID, public key and a time stamp encrypted by its own 
private key. Then, B calculates the session key 1SK . 

2|| ( )B S BB
ID E r Q T

B A⎯⎯⎯⎯⎯⎯→  

1 2 1 1(r , r ( ))S B AK e S H ID=  

(3) A decrypts the message and get B’s ID and public key with its own private key and verifies 

the authenticity of B using the Bloom filter obtained from CH. If B is authenticated, A 
calculates the session key 2SK . 

Thanks to the properties of the bilinear map, we can prove 1 2S SK K=  as follows. 

1 2 1 1 2 1 1

2 1 1 1 1 1 2 1

1 2 1 1 2 1 2

(r , ( )) (r , ( ))

(r ( ), ( )) ( ( ), r ( ))

( , r ( )) ( , r ( ))

S B A B A

B A A B

A B A B S

K e S r H ID e sQ r H ID

e sH ID r H ID e r sH ID H ID

e r sQ H ID e r S H ID K

= =
= =
= = =

 (3)

Afterwards, Nodes A and B can communicate with each other using the shared session key. The 

shared secret key between two nodes can be decided as shown in Figure 5. 
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Figure 5. Share secret key generation between two nodes. 

Node A Node B

Verified by 
Bloom  Filter

Verified by 
Bloom  Filter

calculate session keycalculate session key

2 1 2 1( ,r ( ))S A BK e rS H ID= 1 2 1 1(r ,r ( ))S B AK e S H ID=

1
|| ( || )

A S AA
ID E rQ T

2
|| ( )

B S BB
ID E r Q T

 

5. Security Analysis 

Due to the unreliable wireless channel and volatile topology, a key agreement scheme for WSNs is 

subject to various attacks, such as node-compromise attack, Sybil attack, etc. Compared to previous 

works, our scheme can resist these attacks using the bilinear map and authentication through  

the Bloom filter. 

Sybil Attack: Before node deployment, the BS allocates an ID for each node in the WSNs, and then, 

the CH generates a Bloom filter of nodes in its own cluster. Therefore, before sharing the secret key 

between two nodes, they authenticate each other using the Bloom filter generated by CH. Therefore, 

IBKM can resist Sybil attack because an adversary cannot convince another node that it has a legal ID. 

Node-compromise attack: It is easy to capture a node in WSNs and steal secret information about 

the network stored in the node. Compared to the E-G and other key pre-distribution schemes, IBKM 

can resist node-compromise attack and ensure the security of the entire network. For the E-G scheme 

and its variants, if the number of node adversaries captured exceeds a certain threshold, the adversaries 

will get almost all of the keys of the WSN. However, in our scheme, different node pairs share 

different keys; even if a node is compromised, it will not affect other node pairs’ keys. 

Rekeying and forward secrecy: IBKM employs a random number r in the process of secret key 

generation between two nodes. On the one hand, we can stipulate the secret key agreement period; 

therefore, nodes must renegotiate a new session key in a certain period. In this way, we can enhance 

the security of the network. On the other hand, the rekeying can provide forward secrecy of the 

network when a node is captured by the adversary. Even if the adversary gets the current secret key, he 

cannot deduce the keys used before, because different random numbers generate different secret keys. 

HELLO flood attack: In this attack, the main aim of the attacker is to deplete the node energy. In 

our scheme, every node possesses a Bloom filter for node identity authentication. Therefore, if an 

adversary sends a HELLO message, the receiver nodes will first check if the message is legitimate or 

not. If the result is negative, later calculation will not be carried on. Therefore, no more energy of the 

received node will be consumed. 

Man-in-the-middle attack: In our scheme, the adversary cannot calculate the pairwise session key, 

even if it intercepts the system parameters, since the messages transmitted in our scheme are all 

encrypted in the public key cryptosystem. On the other hand, the session key is generated by the 



Sensors 2014, 14 17946 

 

 

private key and the random number. It is assumed to be hard for an adversary to decrypt the message 

on air or to calculate the session key. 

Mutual authentication: Our scheme achieves both identity authentication and key authentication. 

Before the session key is agreed upon, the nodes verify the authenticity of each other by checking if 

the corresponding hash mapping is contained in the local Bloom filter. A negative answer means that 

the node is illegal in this cluster. Then, we verify the identity of the node by the signature of the  

private key. While, after, Node A and Node B share the same session key, they can realize identity 

authentication by the session key, because only A and B share the same key. In this way, we can 

prevent the unauthenticated node from accessing the sensor network. 

6. Performance Evaluation 

Although security is a critical factor in WSNs, it is also necessary to evaluate the storage, 

computation and communication consumption of sensor nodes, since they are extremely resource 

constrained. In this section, we evaluate the performance of IBKM by comparing the storage, 

computation and communication overhead with two relevant schemes, Yang’s scheme [22] and 

Cheng’s scheme [25]. The two schemes were influential ones of the key management protocols 

proposed for WSNs. 

6.1. Performance of Bloom Filter 

Since we apply the Bloom filter to provide probabilistic membership verification in our scheme  

and hash functions have the disadvantage to collision, it is important to evaluate the probability of the  

false positive. 

Theorem 1: Given the number of cluster nodes n and the storage space m bits for a single Bloom 

filter, assume the number of hash functions in the Bloom filter is k; we can get the minimum 

probability of the false positive 2 kf −=  with the number of hash functions around ( ) ln 2mk n= . 

Proof: Since /(1 (1 1/ m) ) (1 e )kn k kn m kf −= − − ≈ −  [10], we can have 
/ln(1 e )kn mkf e

−−= . Let 
/ln(1 e )kn mg k −= − ; hence, minimizing f is equivalent to minimizing g with respect to k. We find: 

/
/

/

e
ln(1 e )

1 e

kn m
kn m

kn m

dg kn

dk m

−
−

−= − +
−  (4)

It is easy to check that the derivative is zero when ( ) ln 2mk n= . We substitute ( ) ln 2mk n=  into 

/(1 e )kn m kf −= −  and get 2 kf −= . 

In addition, it is not hard to show that this is a global minimum [11]. Now, we can see that the 
probability of a false positive f is a function of k, i.e., 2 kf −= . Figure 6 shows that as k increases, the 

false positive decrements rapidly. Then, we can choose appropriate k according to the different 

application scenarios of WSNs to achieve an acceptable false positive rate. In our following 

experiments, we take k as 10, since the false positive f has dropped below 310− . 
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Figure 6. Minimum probability of false positives. 
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6.2. Memory Overhead 

It can be obtained from the above analysis that the probability of the false positives reaches the 

minimum when ( / ln 2)m n k= , and the minimum value is 2 kf −= . For a certain network whose 

number of nodes n is determinate, thus the probability of the false positive changes after m and k. To 
maintain the minimum probability of the false positives, we should keep ( / ln 2)m n k= . It turns out 

that when we want smaller f, we should use larger m or k, which means more memory consumption 

and more hash computation; therefore, we should make a trade-off to choose appropriate k and m in 

accordance with different scenarios. At this point, we assume a civilian scenario in which f is 

acceptable when less than 1%, i.e., k = 10, we obtain 14.427*m n= . In Cheng’s and Yang’s scheme, 

each node is preloaded with other node’s public keys, while our scheme only use the Bloom filter to 

verify the public keys. Therefore, for convenience, to compare the three schemes, we take the whole 

cluster memory consumption as the measurement. Here, we assume the public key is 128 bits long; 

thus, the total memory of preloaded keys in the cluster is 128*m n=  for Cheng’s and Yang’s scheme. 

Figure 7 shows the performance comparison of IBKM, Cheng’s and Yang’s schemes. From the 

comparison, we can see that our scheme costs significantly less memory consumption than  

their schemes. 

6.3. Computational Overhead 

We implement our proposed scheme in Microsoft Visual C++ 6.0. The operating system is 

Windows 7 Ultimate. The computer configuration is as follows: CPU, Intel Core i5 3.2 GHz;  

memory, 4 GB; hard disc, 1 TB. In our scheme, we need to compute one bilinear pairing, exponentiation 
on TG , 160-bit scalar point multiplication and the Bloom filter. Yang’s scheme [22] involves the 

computation of two bilinear pairings, one exponentiation on TG  and one 271-bit scalar point 

multiplication. Cheng’s scheme [25] involves the computations of two bilinear pairings, one 
exponentiation on TG , two 160-bit scalar point multiplications and one 271-bit scalar point 

multiplication. We calculate the time needed for the major operations, which is shown in Table 2. 
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From this, we can see that the most time-consuming operations are bilinear pairing, exponentiation on 

TG  and 160-bit point multiplication. The Bloom filter only costs about 1/86, 1/9 and 1/6 of the bilinear 

pairing, exponentiation on TG  and point multiplication, respectively. 

Figure 7. Comparison of memory overhead. IBKM, identity-based key management. 
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Table 2. Time consumption of major operations. 

Operations Time/ms 

Bilinear pairing 14.193 
Exponentiation on TG  1.525 

point multiplication 0.940 
Bloom filter 0.165 

A comparison of total computation overhead with the two schemes is shown in Table 3. From the 

table, we can see that, since we only use one bilinear pairing, which is the most time-consuming 

operation, our scheme needs less computation time than the other two schemes; therefore, IBKM saves 

the energy consumption of node. Notice that, although hash mapping and encryption are introduced in 

the Bloom filter, they are omitted, since they consume negligible computing power compared with that 

of bilinear pairing, etc. 

Table 3. The comparison of computation overhead in the secret key generation of two nodes. 

Schemes Bilinear Airing Exponentiation on TG  Point Multiplication Time/ms

Yang’s 2 1 1 30.951 

Cheng’s 2 1 3 32.831 

IBKM 1 0 2 16.438 



Sensors 2014, 14 17949 

 

 

6.4. Communication Overhead 

In IBKM, the secret key generation process comprises two messages: one is sent by A, and the 

other is sent by B. Each message includes the node’s ID, public key and a time stamp, namely the 
message is (rQ )ID E T . In this message, rQ is a point on elliptic curve, which given x of rQ, the node 

can derive y whenever it needs. In accordance with Yang’s scheme, Q can be compressed to 34 bytes 

and two bytes for ID. We take eight bytes for the time stamp in our scheme, and the encryption here 

does not change the length of the messages. Therefore, the communication overhead of our scheme is 
44 bytes. While Yang’s scheme needs 61 bytes for the message of ,U V  and Cheng’s scheme needs 

168 bytes for using the 1024-bit modular in Diffie–Hellman key exchange, their schemes both  

need two messages when nodes share a secret key in the communication process. We show the 

communication overhead of the three schemes in Table 4. From this table, we can see the superiority 

of our communication consumption compared with the other two schemes. 

Table 4. The comparison of communication overhead in the secret key generation of two nodes. 

Scheme Cheng’s Yang’s IBKM 

Communication overhead (bytes) 336 122 88 

7. Conclusions 

In this paper, we propose IBKM, which is an efficient key management scheme for WSNs. By 

adopting the Bloom filter into identity-based cryptosystem to distribute session keys between nodes, 

IBKM achieves the advantages of the node’s identity authentication without complex certification 

verification by the certification authority. The results of the analysis show that our scheme can resist 

various attacks and has acceptable overhead in storage, computation and communication compared to 

the existing related schemes. 
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