
Sensors 2014, 14, 779-794; doi:10.3390/s140100779
OPEN ACCESS

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

Ubiquitous Virtual Private Network: A Solution for WSN
Seamless Integration
David Villa *, Francisco Moya, Félix Jesús Villanueva, Óscar Aceña and Juan Carlos López

Department of Technology and Information Systems, School of Computer Science,
University of Castilla-La Mancha, Altagracia 50, Ciudad Real 13071, Spain;
E-Mails: francisco.moya@uclm.es (F.M.); felixjesus.villanueva@uclm.es (F.J.V.);
oscar.acena@uclm.es (Ó.A.); juancarlos.lopez@uclm.es (J.C.L.)

* Author to whom correspondence should be addressed; E-Mail: David.Villa@uclm.es;
Tel.: +34-926-295-300; Fax: +34-926-295-354.

Received: 5 November 2013; in revised form: 16 December 2013 / Accepted: 2 January 2014 /
Published: 6 January 2014

Abstract: Sensor networks are becoming an essential part of ubiquitous systems and
applications. However, there are no well-defined protocols or mechanisms to access the
sensor network from the enterprise information system. We consider this issue as a
heterogeneous network interconnection problem, and as a result, the same concepts may be
applied. Specifically, we propose the use of object-oriented middlewares to provide a virtual
private network in which all involved elements (sensor nodes or computer applications) will
be able to communicate as if all of them were in a single and uniform network.

Keywords: wireless sensor network; sensor actuator network; virtual network;
network-integration

1. Introduction

The integration of sensor networks in enterprise information systems is still problematic and
unnatural. The interaction between applications and sensor services usually requires specific
mechanisms that are often centralized on application-level gateways. Usually, the access to sensor data
in the literature is performed through a single node with two interfaces, one for the sensor data (e.g., a
802.15.4 wireless interface) and another for the enterprise information network (e.g., the Ethernet). In



Sensors 2014, 14 780

many situations, this gateway presents specific software for the adaptation of the protocol stack from the
sensor domain to the enterprise domain. However, this type of infrastructure implies a single point of
failure. From an engineering point of view, a single gateway implies a single point of failure, associated
with a specific application, which could lead to a difficult and inefficient network topology; i.e., the
network topology between the domains could be arbitrary and not dependent on the logical integration
infrastructure (Figure 1).

Figure 1. Integrating infrastructure should not constrain the topological structure.

At the logical level, this type of infrastructure is inconvenient for the actor/actuator nodes (hereinafter,
the term “sensor node” is applied to refer to any actor/actuator devices.) and complicates, or just makes
impossible, free interaction among applications and sensor nodes and, particularly, interaction among
sensor nodes.

This paper introduces a novel approach to achieve a more flexible and decoupled way to provide and
request sensor services that support several gateways among sensor and enterprise domains (sometimes
called a multi-sink). By means of a common application-level protocol, the sensor nodes and the
applications can interact in any scenario, even among sensor nodes belonging to remote networks.

Instead of designing a new application protocol from scratch, we focus our attention on the protocols
used by object-oriented middlewares, i.e., CORBA (Common Object Request Broker Architecture) or
ZeroC Ice (Internet Communication Engine). These middlewares have traditionally been used in scalable
and efficient distributed heterogeneous applications, so we start with well-known and tested protocols.
The application protocol used in these middlewares is able to marshall and unmarshall invocation
messages between distributed objects. These types of protocols are already integrated into wireless
sensor networks [1], but always inside of the same sensor network domain. Of course, this makes it
possible to use an object-oriented middleware, which transforms the sensor network integration in the
case of distributed heterogeneous programming.

2. Related Work

In a way, H. Dai [2] aims at similar goals: “Unlike application-level gateways, that require semantic
knowledge of each application in order to make a routing decision, the overlay gateway routes based on
sensor network layer information”. They propose an overlay network to interconnect applications with
sensor nodes, extending the sensor network internal protocol over the Internet. This process functions as



Sensors 2014, 14 781

a virtual sensor network thanks to overlay gateways. In these researchers’ words: “It is a sensor network
overlaying IP (Internet Protocol)” (see Figure 2). The gateway encapsulates the sensor network protocol
packets (including the network; and the transport and the application headers) on the TCP (Transport
Control Protocol) or the UDP (User Datagram Protocol) segments. As the sensor network stack is
preserved, the components at hosts (the virtual sensors) must process all of these strange headers at the
application layer to maintain the illusion of a single flat network.

Figure 2. Architectures for integrating sensor networks with the Internet: (a) application
gateway or NAT (Network Address Translation); (b) IP overlaying sensor network and
(c) sensor network overlaying IP.

SenseWrap [3] follows another approach. In it, virtual sensors are referred to the wrapped versions
of the actual sensors. It focuses on self-configuration providing a standard Zeroconf to discover and
find the sensor services. It is a middleware to get IP overlaying to the sensor network. SensorWrap
is, in many senses, similar to OSGi (Open Services Gateway Initiative) [4], which is the paradigm of
a semantic application-level single gateway and, therefore, the model that we try to avoid. Tenet [5] is
a more sophisticated network architecture that divides the sensor network into a set of tiers. Each tier
has a master and several nodes. Most of the processing and application-specific tasks run in the masters.
Hence, it is a multi-gateway approach that avoids a single point of failure, but may significantly degrade
the network performance if some of the masters fail. Other approaches, such as [6], provide families of
middlewares to address heterogeneity, although they are more geared toward solving the problem with
devices rather than communications.

The “all over IP” approach could solve the problem, but introduces overhead, even in the most the
low-footprint implementations (i.e., uIP (microIP) [7]) and is not affordable for some sensor domains.
Other protocols, such as message queue telemetry transport protocol [8] (MQTT) from IBM, are for
telemetry applications, so they do not support actuators and individual sensor-to-actuator interactions.
6LowPAN (IPv6 over Low power Wireless Personal Area Networks), CoAP (Constrained Application
Protocol) and similar protocols follow the same idea. They imply additional overheading and do not
avoid using protocol translation between the sensor network and the trunk network.

As we will see in the following sections, our approach uses the network and the transport protocol
stack most appropriate at each domain; we use a common protocol only at the application level. As far
as we know, none of the existing approaches provide an integrating mechanism with such flexibility and,
integrating in a transparent way, with different domains and applications.



Sensors 2014, 14 782

2.1. Virtual Networks

Let us focus the problem in a more generic way. Network interconnection (between sensors, trunk
networks, etc.) is feasible when both use the same protocol, at least at the network layer. However,
in practice, there are many scenarios and applications that impose specific/proprietary/non-compatible
protocols on the sensor network. There are many causes for this (i.e., energy efficiency, real time
characteristics, etc.), but we will not analyze them here. Under these circumstances (the usual case),
application-level gateways are used. Our concept is quite similar to the conventional virtual private
network. That is, hosts suitable for interchanging information have identifiers in the same address space,
creating the illusion that they are all neighbors, although a portion of them are remotely connected
through other networks. Note that our work is not related with the virtual sensor network (VSN)
concept. VSN [9] is a mechanism to select (sometimes dynamically) a subset of sensors and provide
them to the user/task as a different (virtual) network, so it is an issue focused on providing sensor
node logical aggregation, which is not to be confused with a virtual private sensor network (VPSN).
A VPSN [10] is virtual in another sense. It provides a per-user sensor network vision. Neither of them
are related to network interconnection issues. Perhaps these are not the more suitable names for their
claimed purposes.

The conventional VPN protocols in the TCP/IP world work mostly at two levels:

• Link level: The VPN may expose a diffusion link or LAN (Local Area Network), such as a
virtually switched Ethernet, in which everyone receives all broadcast frames or even multicast
frames, independently of where they are. From the operating system point of view, a virtual NIC
(Network Interface Controller) is provided.

• Network level: The alternative is to emulate an IP network (or other network layer protocol). In
this case, all the hosts have IP addresses of the same address block, usually private addresses.
Any host may send IP packages to any other “neighbor”. The mechanism is usually provided as a
point-to-point network interface.

In both cases, the involved hosts may have conventional/physical network interfaces. Additionally,
in both cases, the responsible device for maintaining the illusion is called the VPN switch, but despite
its name, it is a pure software engine, although there are many commercial solutions based on physical
devices for practical convenience.

2.2. Object-Oriented Communication Middlewares

Object-oriented communication middleware has been a well-known concept for more than ten years.
Some examples are CORBA [11], ZeroC Ice [12], Java RMI (Remote Method Invocation) [13], etc.
Figure 3 shows the essential behavior of this type of middleware. From a programmer point of view, the
invocation occurs as usual in the object-oriented paradigm (dotted arrow). In reality, it does not happen in
this way. The client invokes over a reference of the remote object: the proxy. Using the communication
core, the invocation is coded (the marshalling process) to the specific binary protocol and transmitted to
a server using the underlying network. At the server side, the invocation is re-built (unmarshalling) and
finally arrives at the object; the reply goes back to the client in the same manner.



Sensors 2014, 14 783

The server side implements a well-defined interface shared by the clients. Interfaces are usually
defined using an interface description language, such as IDL (Interface Definition Language) in CORBA
or Slice in Ice. That is, the concrete invocation message format depends on a set of interfaces specified
by each distributed application designer. Both the proxy and the skeleton parts are dependent on the
interface and may be generated by tools, usually provided by middleware vendors.

Figure 3. Object-oriented middleware invocation mechanism.

This communication is feasible thanks to the object request broker (ORB), or just broker. The ORB
is usually a library that provides to clients transparent references to remote objects (proxies). The
interaction between the client and the object requires data communication between local and remote
ORBs. To assure interoperability, the protocol and the rules to communicate these ORBs (the inter-ORB
protocol) must be standardized.

In any case, the middleware provides a uniform, generic and fully specified application protocol
to transport invocation messages and their corresponding replies, errors, etc. We can say that the
middleware protocol is more similar to an invocation transport protocol than an application protocol.
We propose the middleware protocol as a common message format for all of the entities participating in
the communication (sensor node or applications).

2.3. picoObjects

The picoObject approach [1] is a previous work that makes it possible to implement conventional
distributed objects on network-embedded nodes with a minimal footprint. This is the ability of the sensor
network nodes (or similar platforms) to directly process, send and reply standard inter-ORB invocation
messages. The present work assumes that all of the sensors or actuators in the nodes are provided
as distributed objects by means of picoObjects. This approach was proven to be applicable to several
conventional object-oriented middlewares (CORBA, ZeroC Ice and even web services), and it does not
imply a loss of generality.

3. Ubiquitous Virtual Private Network (UVPN) for Sensor Networks

Our approach, called the ubiquitous virtual private network (UVPN), uses the same VPN concept
available in TCP/IP networks, although implemented at a higher abstraction layer. Each host may
have one or more object adapters. An object adapter is responsible for exposing local objects to
the network. Each object adapter is accessible through endpoints, i.e., logical network connection



Sensors 2014, 14 784

points. In the general purpose middlewares, these endpoints provide support for the TCP/IP protocol
suite, and they are associated with IP addresses and ports by means of sockets or other programming
artifacts. Emulating the conventional VPN model, we assign homogeneous addresses to all the involved
components, regardless of whether they are physical sensor nodes or PC applications. To achieve this,
we require a new type of endpoint (a UVPN endpoint), encapsulating the specific addressing. Note that
the UVPN endpoint, as the conventional VPN counterpart, uses the same underlying transports, i.e.,
TCP, UDP or SSL, in the Internet case. We are using ZeroC Ice [14] in our current prototypes, although
any other object-oriented middleware could be used instead. Sensor nodes with a minimal footprint are
able to process application messages using the underlying middleware protocol (IceP (Ice Protocol) for
Ice [14]) thanks to the picoObject approach.

Of course, these virtual logic addresses need to be mapped to the corresponding underlying address
scheme by some translation mechanism (equivalent to neighbor discovery in conventional protocols).
Because this type of translation may be expensive and complex for a sensor network, our approach
here uses a shared address scheme (not translated or mapped) to the node link technology. In this way,
the endpoint can deliver the invocation directly to the corresponding node. Obviously, this shortcut
couples the protocol with a concrete physical communication technology, but even so, it is an interesting
improvement to achieve a seamless network interconnection. Our approach may be perceived as a virtual
private network, because the components outside the sensor network have addresses belonging to the
sensor network space address. Regardless, this limitation may be overcome by defining a general purpose
address scheme, assuming the cost of the appointed address mapping. This more ambitious approach is
now a work in progress.

Although conventional gateways and UVPN switches are physically similar (both are devices
connected to two or more heterogeneous networks), they have very different behaviors. Conventional
gateways expose sensors to the trunk network applications as virtual artifacts (delegates) using the
protocol and the specific communication technology of the trunk network (for example, web services).
A software service at the gateway provides these delegates and addresses the sensor network using a
specific protocol (example: Crossbow motes). The gateway is a stateful engine, and this makes the
multi-sink complex.

The UVPN switch just forwards the middleware protocol messages (for example, GIOP (General
Inter-ORB Protocol) or IceP) between the switch ports using the source and the destination addresses. In
some aspects, its behavior is similar to that of an Ethernet bridge switching frames among heterogeneous
LANs. With our approach, both applications and devices can address the middleware messages. The
UVPN switch is stateless, and this makes it possible to cause several of them to interconnect two
networks, providing redundancy. Certainly, this redundancy causes cycle problems, but it can be solved
using the same techniques typical of switched networks.

UVPN along with the middleware protocol provides a good level of interoperability among
heterogeneous networks. The source node (client) creates a standard middleware request that is
encapsulated in the corresponding protocol stack (most likely TCP/IP). The request arrives to the UVPN
switch, and it is unencapsulated. The switch determines the destination node (depending on the UVPN
address) and encapsulates the request using the destination port stack; the reply message is managed in
the same way. This is similar to the behavior of an IP gateway or an Ethernet hybrid bridge. Note that



Sensors 2014, 14 785

both the source of the request (the client) and destination (the object) can be computer applications or
WSN nodes.

3.1. Object Proxies

The object proxy is a usual concept in object-oriented middlewares. It is a delegate, a local object
(in the client memory space) that transparently forwards received invocations to the actual object in a
remote location. The proxy encapsulates the details to connect and send messages to the corresponding
remote object. These details include the object identity (a globally unique identifier) and a set of
endpoints. For example, in the ZeroC Ice middleware, the string representation of a typical proxy may be
“OBJ1 -t:tcp -h example.com -p 2020”, where “OBJ1” is the object identity and “example.com:2020” is
a remote passive TCP socket.

The UVPN endpoint has its own communication details. An example of a proxy using the UVPN
endpoint would be “OBJ2 -d:uvpn -h 0x01”, where “0x01” is the native sensor node address. It works
on the other side, too; that is, objects in a PC connected to the trunk network are accessible through the
same type of address. We call them “virtual nodes”; the virtual node may hold sensors and actuators
fully indistinguishable from its actual counterparts. In [2], a virtual sensor is defined as “any entity that
communicates with peer entities on a real sensor network through a common set of protocols, network
layer and above”. We take this definition with the following alteration: it is not required to have the
same set of protocols. In UVPN, only the application-layer protocol (the inter-ORB) and the addressing
scheme must be shared; the underlying protocols may be absolutely different. Note that the virtual nodes
may hold sensors/actuators, but also may have pure clients, that is, applications that only makes queries
or produce events.

3.2. Functional Components

The main component of the UVPN architecture is the UVPN switch, a service that should reside in a
host that has physical interfaces to both networks: sensor and trunk. Its goal is similar to a conventional
VPN switch. The switch knows all compatible remote object adapters; that is, those that have an endpoint
supporting UVPN addressing. For this, each of these adapters must register themselves in the switch. The
switch is a conventional distributed object implementing the UVPN::Switch interface shown below:

module UVPN {

class Address {};

interface Transceiver {

void send(Address addr, ByteSeq payload);

};

interface Switch extends Transceiver {

void add(Address addr, Transceiver* prx);

void remove(Address addr);

Transceiver* find(Address addr);

};

};



Sensors 2014, 14 786

For better transparency, the UVPN endpoint (on the conventional computer side) performs the
registration on behalf of the adapter. When an endpoint is instantiated, it invokes the Switch.add()
method in the designated remote switch to bind a sensor network address (addr) to a callback object
provided by the UVPN endpoint. Later, the switch can resolve remote virtual sensor nodes using these
associations between the addresses and the endpoints. This mechanism is functionally equivalent to the
creation of a tunnel in a conventional VPN.

Therefore, to make the virtual network usable, it requires:

• At least one switch connected to the trunk network and at least to one sensor network, and
• At least an application or a service in the trunk network (e.g., on a desktop computer) that has the

UVPN endpoint.

A set of sensor nodes and the corresponding network interfaces are required, too. See Figure 4 for
an example.

Figure 4. Ubiquitous virtual private network (UVPN) essential components and
encapsulation.

4. Use Cases

This section discusses the different communication scenarios between node services and applications
or between nodes themselves (see Figure 5).

4.1. Application to Node

In the simplest scenario, a client application running on a computer requests a remote sensor. In the
application-level bridge-based approaches [15–17], the sensor network-specific protocols store the last
measured sensor values in the bridge. Later, the client explicitly queries the bridge, giving some sensor



Sensors 2014, 14 787

identifier. This has been the cause of many important problems: bridge complexity implementation, lack
of sensor node autonomy, single point of failure, etc.

Figure 5. Possible invocation scenarios involving sensor nodes and applications in an
heterogeneous inter-network.

With UVPN, the client (in the trunk network) performs a conventional remote object invocation
on a proxy representing the remote sensor. The switch is also a distributed object, so the invocation
for the sensor is encapsulated as a parameter of other object invocation (the switch). The UVPN
endpoint knows (by configuration) where the switch (its addressing information) is and invokes the
Transceiver.send() method, passing the entire client invocation message as an argument.

As a conventional distributed object, the switch receives the message and attempts to find (by means
of the Switch.find() method) a transceiver (virtual node) for the node address specified as the first
argument in the send() invocation.

In this case (the application to a node), the address is not found. The message is sent to the sensor
network physical interface, directly connected to the computer running the switch service. The message
is encapsulated with the sensor-network-specific stack and then goes to the air and should be received by
the target node.

The sensor node is able to receive the invocation message from the frame and process a method
invocation thanks to the picoObject approach. A middleware-level reply message may be generated if an
answer is required. The reply message is encapsulated in a frame by the sensor node and sent to the air.
The destination address of the reply is the virtual node running the client application. When the reply
message arrives at the UVPN switch, it is forwarded using the same technique (very similar to the case
in the next section).

Let us compare this mechanism with the way an Ethernet switch works. When the destination address
of the frame is not known, the switch floods. Here, the registered transceivers might have the role of
individual switch ports, and the wireless sensor network is similar to an “uplink switch”.

4.2. Node to Application

UVPN allows sensor nodes to behave as clients, that is, nodes can transparently invoke remote objects
held in computers in the trunk network. This is a very rare feature in sensor network middlewares



Sensors 2014, 14 788

and communication frameworks. Usually, the sensor nodes may only send messages to other nodes
or base-stations/bridges, but sending messages to devices outside the WSN usually requires ad hoc
non-generic solutions.

In this case, the sensor node simply sends a conventional invocation preceded by the destination node
address. The switch receives the message through the radio interface and searches for the destination
address (with Switch.find()). In this scenario, the method returns a virtual node proxy. The switch
uses it to forward the invocation to the computer.

The UVPN endpoint attached to the computer application receives the message and gives it to the
object adapter. Finally, the corresponding servant method is executed.

4.3. Node to Neighbor Node

Of course, any node may send method invocations to any other neighbor in the same physical
network using exactly the same mechanism described in the previous section. This means the invocation
mechanism provides location transparency, i.e., the client is not aware of the exact location of the
destination object or of which type of node the target is (sensor node or computer application) or where
it is (sensor or trunk network).

In this case, the switch will not find a remote virtual node, and it will send the message to the radio
interface again. This is also useful when the sensor network does not implement multi-hop routing,
because the switch will forward messages automatically. If destination nodes receive replicated messages
through different paths, they are automatically discarded by just checking the sequence number in
the header.

Messages sent to neighbor nodes pay the overhead of the middleware protocol message header (IceP).
This is the price to obtain location transparency, but it is relatively cheap: approximately 25 bytes plus
the object identity and the method name.

4.4. Node to Non-Neighbor Node

There is a more interesting case, which is very rare in previous works. Two or more distant sensor
networks (with their respective UVPN switches) can be connected to the same trunk network (which
may be the Internet). In this situation (see Figure 6), a sensor node may invoke other remote sensor node
(in a different network) using switches to forward the message towards the trunk network. As explained
before, this requires that the local switch knows whether the remote object is accessible through its own
switch. This implies the registration of all sensor nodes in a central switch (the root switch). Obviously,
we are talking about a hierarchical switching protocol. Local switches have a fallback switch (a default
path) that knows where each sensor node is.

Figure 6 makes it clear that UVPN works as a tunneling protocol; so, in this case, just as in the
previous one, a similar concept of conventional TCP/IP VPN protocols is used. The major difference is
that the UVPN is based on an application-level protocol instead of a link or a network layer protocol.

The switch operation is a bit more complex when more than one sensor network participates in the
communication. When a sensor node (such as a client) wants to send a message to another node, it builds
the message as if the destination node were a neighbor, although it is in a different physical network. The



Sensors 2014, 14 789

local switch will receive the message, and it will check whether the destination address is registered on
its table. If so, it sends the message using the associated transceiver. Otherwise, it will use the fallback
switch to send the message (using the method, Transceiver.send()).

Figure 6. Invocation from a sensor node to a remote node using UVPN.

When this fallback switch (or the root switch, as stated above) receives a message, it will check if its
destination is a registered one. If so, it sends the message again, using the matching transceiver. If the
destination is unknown, then it will deliver the message to the rest of the configured transceivers, one on
each gate (flooding). It only discards the arriving gate (to avoid loops).

When the last switch receives the message, it will check its table. If the destination is registered as
a virtual node, it will send the message using the given transceiver. If not, the message will be sent to
the other interfaces (i.e., the radio interface, or to other registered switches, which are different from the
arrival one).

4.5. Application to Application?

It is also possible to communicate no-sensor clients and objects using UVPN, but this does not provide
any valuable difference with respect to using conventional middleware directly. Because the middleware
supports several transports at the same time, it is more convenient to use TCP/IP endpoints. Without any
loss of generality, this means that UVPN is used only when needed, i.e., only when at least one sensor
node is involved in the communication, either as a client or an object (server).

5. Simulation and Results

Several simulations have been built to demonstrate the correct operation of UVPN. They have
been built in the OMNet++ (http://www.omnetpp.org/doc/omnetpp/manual/usman.html) discrete event
simulator. An example smart-grid application was modeled to illustrate the operation of a network
of sensor/actuator nodes (electrical sockets and bump lights) and an IP-based network, including
conventional computers.



Sensors 2014, 14 790

This smart-grid application (see Figure 7) monitors the total electrical consumption of a house to
avoid current overload. Each socket measures the current through it and is able to interrupt the electrical
line to turn the load connected to it on/off.
Three load states are defined:

• NORMAL: The total consumption is less than 70%.
• WARNING: The total consumption is between 70% and 90%.
• CRITICAL: The total consumption is greater than 90%.

Figure 7. UVPN simulation with a smart-grid application example.

Each time a user physically plugs/unplugs an appliance in a socket, the device sends a message to a
monitor service (loadMonitor) running on a computer (server in the figure). The loadMonitor receives
that message and decides the new state. It communicates load-state changes by sending messages to a
specific event channel (using object-method invocations, too). It may include subscribers of any type
(computer applications or sensor nodes), because all of them are perceived as distributed objects. Let us
explain in detail the event sequence occurring in the simulation:

• In the initial state (NORMAL), there are four unplugged sockets.
• An appliance is plugged into the socket node1. The socket measures the current and sends a

message to the loadMonitor service.
• The loadMonitor service receives the message. It estimates that the system load exceeded the

WARNING threshold, so it sets the load state to WARNING. An application (an event channel
subscriber) running in a mobile device, tablet, etc., may advise people (see the user shape) of the
new state.

• Another appliance is plugged into socket node2. Again, the socket sends a notification. The
loadMonitor detects that the load is above the CRITICAL threshold, so it sets the load state
to CRITICAL. The sockets (that are channel subscribers) receive the message. Those that have
nothing plugged into them immediately cut the line and turn on a red LED (Light-Emitting Diode)



Sensors 2014, 14 791

to visually advertise their state to the users. This can avoid the addition of a greater electrical load
to the line, preventing overload.

• When some of the appliances are unplugged (or turned off), the loadMonitor can set the load state
to lower states, allowing new appliances to be plugged or activated.

This example illustrates UVPN direct and duplex communication between sensor/actuator nodes and
application objects running on conventional computers in the trunk network. The communication may
be initiated by any party, and they all may act as clients or objects. Additionally, sensor nodes may act
as publishers or subscribers of event channels.

There is a more complete simulation involving two sensor networks connected to the same IP network
through their corresponding UVPN switches (see Figure 8). This represents the same smart-grid
application, introducing bulbs and electrical switches that are new electrical loads. To illustrate the
communication among remote sensor/actuator nodes, the switch, node5, sends messages, set() true/false,
to turn on/off the bulb, node1. As in the previous case, nodes 1–4 send load messages to the
loadMonitor service and receive load state messages from the event channel. There are other nodes
(e.g., user) that receive notifications from the loadMonitor service. In this case, the user will alert
people about an overload.

Figure 8. UVPN simulation: direct remote communication among sensor nodes in
distant networks.

The simulations source code, brief documentation and screencasts are available for download and
watching at (http://arco.esi.uclm.es/uvpn).

The simulations attempt to provide an empirical validation of the proposed communication approach.
The simulations use abstractions and message formats very close to those used in any object-oriented
middleware, so it is relatively easy to build a functional implementation on an actual environment
similar to the prototype described in Section 6. Although it is possible to take valuable measures about
communication overhead or the number of messages, there are no equivalent approaches to compare
under similar conditions.



Sensors 2014, 14 792

6. Prototypes

UVPN has been implemented with the ZeroC Ice middleware in a demonstration kit called Motebox
(see Figure 9). It is composed of a set of four Crossbow Iris motes, several hot-pluggable sensors and
actuators, a programmer, a radio base station and a small PC for running common services and the switch
software. The virtual node, which holds the clients and the servers, runs in a conventional laptop.

Figure 9. Motebox demonstration kit using UVPN.

This kit is used to show various features upon access and interconnection between PC
applications, middleware services and sensor nodes. More information and screencasts may be found
at (http://arco.esi.uclm.es/motebox).

7. Conclusions and Future Work

It is interesting to analyze the differences in relation to [2]. It encapsulates the entire sensor network
protocol stack, which implies the requirement of providing specific support for each sensor network
protocol stack at virtual nodes. With UVPN, it does not matter which sensor network protocol stack
is used, as long as all peers use the same inter-ORB protocol (at the application layer) and the same
addressing scheme; that is, the typical requirements of an inter-network protocol. Thus, UVPN is, in
many senses, an object network protocol.

Furthermore, using the inter-ORB protocol (by means of an object-oriented middleware), provides
a high-level, well-known, well-documented programming paradigm and an application-specific API
(Application Programming Interface), but keeps the gateways generic and straightforward. The
middleware also provides valuable common services, such as object persistence, indirect binding,
location transparency, server deployment and many other advanced features.

As far as we know, UVPN is the first solution able to facilitate the communication between
sensor or actuator nodes with software objects running on conventional computers in a seamless and
decoupled way, without the application-specific delegates, application bridges or ad hoc protocols,



Sensors 2014, 14 793

despite the heterogeneous networks and protocols that interconnect sensor network fragments (including
the Internet). However, there is a constraint: all sensor nodes must use the same physical addressing
scheme. As ongoing work, we are interested in solving that limitation by generalizing the UVPN
approach using a global addressing scheme (see Section 3) and providing homogeneous dynamic routing
mechanisms through massively heterogeneous networks.

Acknowledgment

This research was supported by the Spanish Ministry of Science and Innovation and the Centre
for the Development of Industrial Technology under the project PROMETEO (CEN-20101010),
and by the Spanish Ministry of Economy and Competitiviness under the project DREAMS
(TEC2011-28666-C04-03).

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Moya, F.; Villa, D.; Villanueva, F.J.; Barba, J.; Rincón, F.; López, J.C. Embedding standard
distributed object-oriented middlewares in wireless sensor networks. Wirel. Commun. Mob.
Comput. 2009, 9, 335–345.

2. Dai, H.; Han, R. Unifying Micro Sensor Networks with the Internet via Overlay Networking. In
Proceedings of the 29th IEEE International Conference on Local Computer Networks (LCN‘04’),
Tampa, FL, USA, 16–18 November 2004.

3. Evensen, P.; Meling, H. SenseWrap: A Service Oriented Middleware with Sensor Virtualization
and Self-Configuration. In Proceedings of the 2009 5th International Conference on
Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), Melbourne, Australia,
7–10 December 2009; pp. 261–266.

4. Alliance, O. OSGi Service Platform, Core Specification Release 4, Version 4.0.1; Technical Report,
Open Service Gateway Initiative: San Ramon, CA, USA, 2006.

5. Paek, J.; Greenstein, B.; Gnawali, O.; Jang, K.Y.; Joki, A.; Vieira, M.; Hicks, J.; Estrin, D.;
Govindan, R.; Kohler, E. The tenet architecture for tiered sensor networks. ACM Trans. Sens.
Netw. TOSN 2010, 6, doi:10.1145/1777406.1777413.

6. Gamez, N.; Fuentes, L. FamiWare: A family of event-based middleware for ambient intelligence.
Pers. Ubiquitous Comput. 2011, 15, 329–339.

7. Dunkels, A.; Voigt, T.; Alonso, J.; Ritter, H.; Schiller, J. Connecting Wireless Sensornets with
TCP/IP Networks. In Proceedings of the Second International Conference on Wired/Wireless
Internet Communications (WWIC2004), Frankfurt (Oder), Germany, 4–6 February 2004;
pp. 143–152.



Sensors 2014, 14 794

8. Hunkeler, U.; Truong, H.L.; Stanford-Clark, A. MQTT-S—A Publish/Subscribe Protocol for
Wireless Sensor Networks. In Proceedings of the IEEE COMSWARE, Bangalore, Indian,
6–10 January 2008; pp. 791–798.

9. Jayasumana, A.; Han, Q.; Illangasekare, T. Virtual Sensor Networks a Resource Efficient Approach
for Concurrent Applications. In Proceedings of the International Conference on Information
Technology: Las Vegas, NV, USA, 2–4 April 2007.

10. Global Environment for Network Innovations (GENI) Project. Available online:
http://www.geni.net/ (accessed on 27 February 2013).

11. Object Management Group. The Common Object Request Broker: Architecture and Specification,
Version 3.1; OMG: Needham, MA, USA, 2008.

12. Henning, M.; Spruiell, M. Distributed Programming with Ice; ZeroC, Inc.: Jupiter, FL, USA, 2013.
13. Sun Microsystems Inc. Java Remote Method Invocation (Java RMI); Sun Microsystems: Palo Alto,

CA, USA, 2006.
14. Henning, M.; Spruiell, M. Distributed Programming with Ice, Revision 3.3.0.; ZeroC Inc.: Jupiter,

FL, USA, 2008.
15. Levis, P.; Culler, D. Mate: A Tiny Virtual Machine for Sensor Networks. In Proceedings of

the International Conference on Architectural Support for Programming Languages and Operating
Systems, San Jose, CA, USA, 5–9 October 2002.

16. Yao, Y.; Gehrke, J. The Cougar approach to in-network query processing in sensor networks.
SIGMOD Record 2002, 31, 2002.

17. Madden, S.R.; Franklin, M.J.; Hellerstein, J.M.; Hong, W. TinyDB: An acquisitional query
processing system for sensor networks. ACM Trans. Database Syst. 2005, 30, 122–173.

c© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).


	Introduction
	Related Work
	Virtual Networks
	Object-Oriented Communication Middlewares
	picoObjects

	Ubiquitous Virtual Private Network (UVPN) for Sensor Networks
	Object Proxies
	Functional Components

	Use Cases
	Application to Node
	Node to Application
	Node to Neighbor Node
	Node to Non-Neighbor Node
	Application to Application?

	Simulation and Results
	Prototypes
	Conclusions and Future Work
	Acknowledgment
	Conflicts of Interest

