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Abstract: In bearing diagnostics using a data-driven modeling approach, a concern is the 
need for data from all possible scenarios to build a practical model for all operating 
conditions. This paper is a study on bearing diagnostics with the concurrent occurrence of 
multiple defect types. The authors are not aware of any work in the literature that studies this 
practical problem. A strategy based on one-versus-all (OVA) class binarization is proposed 
to improve fault diagnostics accuracy while reducing the number of scenarios for data 
collection, by predicting concurrent defects from training data of normal and single defects. 
The proposed OVA diagnostic approach is evaluated with empirical analysis using support 
vector machine (SVM) and C4.5 decision tree, two popular classification algorithms 
frequently applied to system health diagnostics and prognostics. Statistical features are 
extracted from the time domain and the frequency domain. Prediction performance of the 
proposed strategy is compared with that of a simple multi-class classification, as well as that 
of random guess and worst-case classification. We have verified the potential of the 
proposed OVA diagnostic strategy in performance improvements for single-defect diagnosis 
and predictions of BPFO plus BPFI concurrent defects using two laboratory-collected 
vibration data sets.  

Keywords: bearing; multiple defects; fault diagnostics; class binarization; support vector 
machine (SVM); decision tree 
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1. Introduction 

In bearing diagnostics using a data-driven modeling approach, a concern is the need for data from all 
possible scenarios to build a practical model for all operating conditions. This paper is a study on bearing 
diagnostics with the concurrent occurrence of multiple defect types. The authors are not aware of any 
work in the literature that studies this practical problem. In this paper, a strategy based on one-versus-all 
(OVA) class binarization is proposed to improve fault diagnostics accuracy while reducing the number 
of scenarios for data collection, by predicting concurrent defects from training data of normal and single 
defects. The purpose of this procedure is to develop an effective bearing diagnostic model considering 
the possibility of concurrent occurrence of multiple defects. It will help build more practical classifiers 
with less data, for improved performance under more operating conditions. These help provide advanced 
failure warning and reduce unexpected failures in real applications. 

This paper is a study on vibration-based bearing diagnostics with the data-driven approach. Data 
mining and knowledge discovery methods are used, with consideration of non-exclusive bearing defect 
types. The problem of bearing fault diagnostics is formulated to diagnose multiple defects from normal 
and single defect training data. The accuracy of the proposed OVA strategy on bearing diagnosis of 
unseen observations is evaluated with vibration data collected from laboratory. 

The remaining of this section is a brief review on bearing diagnostic analysis of acceleration signals 
obtained from piezoelectric sensors, using data mining methods. Section 2 is a brief summary on the 
background of techniques used in this paper, namely support vector machine (SVM); C4.5 decision tree; 
and class binarization. Section 3 introduces the hypothesis and logic behind the problem formulation 
used in modeling. Empirical analyses of two bearing data sets, collected from a bearing fault motor and 
a multiple bearing mechanical system, are reported in Sections 4 and 5 respectively, each followed by a 
discussion of the results in the same section. Finally, this paper closes with the conclusions in Section 6. 

1.1. Bearing Fault Diagnostics 

Bearings are one of the most widely used components in machines and bearing failure is one of the 

most frequent reasons for machine breakdown. According to [1], almost 40%–50% of motor failures are 

bearing-related. Bearing fault diagnostics has a long history in research [2–4] and vibration analysis has 

been established as the most common and reliable method in this context [5–7]. The literature 
concerning the use of acceleration signals obtained from piezoelectric sensors in bearing diagnostics is 
so huge that a review is not the most useful format in summarizing recent research developments. Below 
is an overview of the logic behind vibration-based bearing fault diagnostics and some literature 
highlights of two approaches to the analysis, with focus on the statistical and data mining approach.  

Bearing faults can refer to localized defects or extended spalls. In rotating machinery, whenever a 

defect makes contact with another surface, a high-level short-duration vibration impulse is excited. The 

effect is a damped signal which comprises of a sharp rise corresponding to the impact and approximately 

exponential decay [8,9]. While the decay limits the time window that a signal can be detected, the sharp 

rise at the leading edge allows the identification of the impact time and hence time between impacts. The 
occurrence of impulses is pseudo-cyclostationary [10], i.e., they can be modeled as cyclostationary, 

although in reality the impulse due to a particular fault may not be excited in every cycle of rotation.  
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Since the rotation of the machinery is periodic, impulses and the damped signals due to a particular 

defect also tend to be generated periodically. The frequency of impulse occurrence is the characteristic 

defect frequency of a particular defect and the theoretical value can be calculated from the physics of a 

component. The existence of a fault is indicated by the occurrence of the impulses at the characteristic 
defect frequency, and the impulse amplitude provides some information about how serious the fault is. 
The same information also occurs as sidebands in the high resonant frequency bands.  

The goal in fault detection and diagnosis is to extract from vibration signals the presence of impulses 

and identify the matching characteristic defect frequencies, which act as fault signatures for the defects 

concerned. In practice, vibration signals due to defect impacts mix together with those generated by 

normal rotation of the same component, other components of the same rotating machinery and other 

random vibrations. Another complication is that the actual frequency is affected by the tightness-of-fit of 
the components and there are generally some differences between the measured frequencies and the 
theoretical characteristic defect frequency values due to random slip [8]. 

1.1.1. Approaches in Bearing Fault Diagnostics 

The signal processing approach constitutes a major part of the literature in vibration-based bearing 
fault diagnostics. This approach has been developed for decades with a huge literature and is not the 
focus of this paper. A useful review in this classic approach is given in [11], which summarizes various 
topics in bearing condition monitoring, from the underlying science to signal processing techniques that 
can be used with signals from accelerometers. More recently, the research developments since 1969 
under the classic signal processing approach have been summarized in a tutorial overview [10], where a 
procedure that is useful in the majority of cases is also described. Some popular techniques in the signal 
processing approach for bearing fault diagnostics include fast Fourier transform (FFT), wavelet 
methods, spectral kurtosis (SK), amplitude demodulation by envelope analysis or Hilbert transform, 
described in papers such as [12–14]. 

Another approach to vibration-based bearing diagnostics is the use of data mining techniques. Data 
mining, first appeared as knowledge discovery in databases [15], and emerged from a diverse 
background of databases, statistics and machine learning [16,17]. Another related research field is 
pattern recognition, emerged from engineering disciplines, which can be viewed as another facet of the 
same field as machine learning, emerged from computer science [18]. According to Bishop, the field of 
pattern recognition is concerned with the automatic discovery of regularities in data through the use of 
computer algorithms. In contrast, the multi-disciplinary research field of data mining focuses on the 
non-trivial extraction of implicit, previously unknown, potentially useful knowledge about data [19,20]. 
Their advantages over signal processing methods include better adaptation to complex systems; better 
accommodation to uncertainty; and the fact they do not require calculation of characteristic defect 
frequencies from the physics of the components. On the other hand, the use of these methods requires the 
collection of sufficient historical data for the training of models, enabled by the fast development of 
small size, low cost sensors. 

Data mining techniques are grouped under different names in the machine diagnostics literature.  
For example, in the review on machinery diagnostics and prognostics [21], Jardine et al. summarized the 
diagnostics techniques into statistical approaches which included hypothesis test; cluster analysis; 
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support vector machine (SVM), hidden Markov model (HMM), and artificial intelligence approaches 
which included artificial neural network (ANN), expert systems (ES), fuzzy systems, and evolutionary 
algorithms such as genetic algorithms (GA). In a more recent overview [22], data mining techniques 
used in mechanical systems research were grouped under the term natural computing if they were 
motivated or suggested by biological systems or processes. In this overview, ’traditional’ probability and 
statistics such as hypothesis tests were omitted. They discussed in detail some data mining methods such 
as ANN, fuzzy sets and fuzzy logic, statistical learning theory and kernel methods such as SVM and 
relevance vector machine (RVM), simulated annealing, GA, Gaussian process, graphical methods and 
deep belief networks. Other data mining techniques mentioned in this paper include distance-based 
classifiers, Bayesian methods, clustering, decision trees, and HMM. These methods are also referred to 
as ’intelligent’ bearing fault diagnostics in some papers [23,24]. Data mining techniques applied to 
vibration-based bearing diagnostics include Bayesian inference [25], HMM [26], hidden semi-Markov 
model [27], SVM [28], ANN and GA [29], PCA and decision tree [30]. Important aspects in successful 
modeling with statistical and data mining techniques are also discussed under the context of 
vibration-based bearing diagnostics. For example, fault feature extraction from bearing accelerometer 
sensor signals is discussed in [31–33]. The effect of number of features used in bearing fault diagnostics 
with SVM and proximal support vector machine (PSVM) is discussed in [34]. Like signal processing 
methods, statistical and data mining methods have been used in fault detection, diagnostics and 
prognostics of various machinery components. More extensive survey of these methods can be found in 
the machine prognostics literature such as [35,36]. 

1.1.2. Fault Diagnostic Systems for Industrial Applications 

No matter which approach is used in the fault diagnosis, some common requirements exist for an ideal 
fault diagnostic system. While the discussion in [37] focused on fault diagnostics of chemical processes, the 
desirable attributes they listed for a fault diagnostic system could also be applied in machinery diagnostics: 

1. Early detection and diagnosis ability: Achieve a balance in the trade-off between quick response 
and high false alarm rate. 

2. Fault isolation ability: Be able to discriminate between different failures at different locations and 
different levels. 

3. Robustness: To maintain performance at an acceptable level under noise and uncertainty. 
4. Novelty identification ability: The ability to decide the state of a system as normal or abnormal, 

and if abnormal, a known fault or a novel fault state. 
5. Multiple fault identification ability: The ability to identify multiple faults, which is difficult due to 

the interacting nature of most faults. 
6. Adaptability: The ability to adapt to changes in external inputs or structural changes. 
7. Reasonable storage and computational requirement: Achieve a balance in the trade-off between 

the computational complexity and system performance. 
8. Explanation facility: To reason about cause and effect relationship in a process and provide 

possible explanations on how the fault originated and propagated to the current situation. To 
justify why certain hypotheses are proposed and why certain others are not, thus help the operator 
evaluate and act upon his/her experience. 
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The focus of this paper lies in the multiple fault identification ability with statistical and data mining 
techniques. One or more of different defect types can occur on a bearing concurrently in practice.  
A bearing diagnostic method that is able to identify both single and multiple defects is more useful in 
real-world applications. In classification, training data for all system states to be recognized by a model 
are usually necessary [38]. Researchers in the classic signal processing approach [10] are also concerned 
on the need of a large amount of data of all permutations and combinations of different scenarios in  
the data-driven approach. This paper is a study to propose ways of reducing the number of scenarios for 
data collection, on different combination of defect types, while maintaining or even improving the 
diagnostic performances. Two popular statistical and data mining methods, namely SVM and C4.5, are 
used in this study. 

The proposed OVA approach is designed for fault diagnosis in the second phase of the systems health 
management process. In a real application such as machinery fault diagnostics and prognostics in a 
factory, the first phase i.e., the initial establishment of the process involves identifying how many and 
which critical components to monitor, based on expert knowledge; maintenance history; costs and 
budget. These are out of the scope of this paper. The second phase of the process, which concerns the 
regular production use of the process, involves the fault detection; isolation; diagnosis; prognosis and 
remaining useful life prediction; and maintenance decisions. During the transition period before samples 
of all fault types are collected, the fault detection and isolation can still be performed. The faulty 
component/structure can then be removed and examined by domain expert for diagnosis, and the data 
sample can be added to the training data with the assigned fault type if considered appropriate by the 
domain expert. The proposed OVA approach helps speed up this process by eliminating the need of data 
collection of all different types of concurrent faults of a component/structure. 

2. Technique Overview 

Algorithms in data mining are often grouped by the type of model generated or the most usual way of 
formulating a problem. Table 1 lists the most popular data mining algorithms, along with their model 
types and their original problem formulations.  

Table 1. The top 10 data mining algorithms [39] and their categorization. 

DM Algorithm Type Formulation 
C4.5  

k-means  
SVM (Support Vector Machine)  

Apriori  
EM (Expectation Maximation)  

PageRank  
AdaBoost  

kNN (k Nearest Neighbor)  
Naı̈ve Bayes  

CART (Classification and Regression Tree) 

decision tree  
distance-based  

geometric  
rule-based  
statistical  

network graph  
boosting  

distance-based  
statistical  

decision tree 

Classification  
Clustering  

Classification  
Association rules  

Clustering  
Ranking  

Ensemble  
Classification  
Classification  

Classification; Regression 
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Classification and regression are the most common data mining formulations, where the classes 
(categorical in classification and continuous in regression) are utilized in the modeling (supervised 
learning). Five of the ten popular algorithms are designed for classification and regression. 

The most intuitive formulation for fault diagnostics is classification and the simplest formulation for 
fault prognostics is regression. As in any modeling problems, the actual formulation used in the 
diagnosis/prognosis depends on the data available and how the analyst formulates the problem. For 
example, bearing diagnostics can also be modeled as a clustering problem [40] for unsupervised 
learning. Bearing remaining useful life can be predicted by classification [41], which can be considered 
as an approximation to simplify the modeling, when difference of a few minutes does not matter in the 
prognosis interpretation. This allows a wide range of classification techniques to be applied to the 
prognostics problem. Diagnosis with a regression method [42] is also computationally possible, though 
there is no physical meaning to a decimal regression estimate in between different defect types. 

In this paper, we stick to the classic formulation of bearing diagnosis with classification. 
Classification, the most familiar and most popular data mining task, is a mapping from the database to 
the set of predefined, non-overlapping classes that partition the entire database. SVM is a kernel method 
which builds a model by constructing a hyperplane that best separates two classes. Decision tree 
methods recursively generate a tree by constructing hierarchical and non-overlapping classification rules 
using a greedy algorithm. By taking the best immediate, or local, solution in finding an answer, the 
algorithm selects an attribute to split on at any given node with any given data set, decides whether to 
stop branching and what branches to form. SVM and C4.5 are used in our proposed method due to its 
popularity in prognostics and systems health management (PHM) related research, including but not 
limited to bearing diagnostics with vibration data. 

Besides the algorithm(s) to use, the way how data are utilized in modeling is another critical factor for 
the success of data-driven methods in modeling a problem. For example, when a multi-class real-world 
problem is modeled with a binary class classification algorithm, as in SVM, different class binarization 
strategies can be used. Just as classification algorithms can be useful in regression problems, class 
binarization strategies may also be utilized in improving diagnostics performances and possibly enable 
diagnosis of multiple defects from single defect training data. 

The following notations will be used in both Sections 2.1 and 2.2. Let X be the n-by-d matrix of 
predictors used in training and Y be the n vector of corresponding classes (responses) assigned to each 
example (instance) in the training set D, where n is the number of training examples and d the number of 
predictors (features).The rest of this section is a brief overview of the SVM algorithm; the C4.5 decision 
tree and the class binarization strategy to be used in the proposed method. 

2.1. SVM 

SVM is a kernel method first introduced in [43], which builds a model by constructing a hyperplane 
that best separates two classes. A detail review of the algorithms, including the SVM for classification 
and the support vector regression (SVR) for regression can be found in [44]. A more concise 
introduction in the context of structural health management can be found in [45]. 

Consider the case of two classes, i.e., Y ∈ {1, −1}. When the two classes are linearly separable, it is 
possible to define a separating hyperplane f(X) = 0, characterized by the n-vector w and the scalar b: 
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𝑓(𝐗) = 𝐰𝑇𝐱 + 𝑏 = �  
𝑛

𝑖=1

𝑤𝑖𝑥𝑖 + 𝑏 = 0 (1)  

If the two classes are completely separable, the data set should satisfy the constraints below: 

� 𝑓(𝑥𝑖) = 1  if 𝑦𝑖 = 1
𝑓(𝑥𝑖) = −1  if 𝑦𝑖 = −1

� (2)  

These can alternatively be expressed in complete equation, 

𝑦𝑖𝑓(𝒙𝒊) = 𝑦𝑖(𝐰𝑇𝒙𝒊 + 𝑏) ≥ 1  for  𝑖 = 1, 2, … ,𝑛 (3)  

where the geometrical margin between the two classes is 2/||w||. 
The optimal separating hyperplane is the separating hyperplane with greatest distance between the 

plane and the nearest data points on both sides, i.e., the boundary in the middle of the maximum 
geometrical margin between the two classes. The nearest data points that used to define the margin are 
called support vectors. After the support vectors are selected, the rest of features are not required. 

With consideration of the not completely separable case, the SVM modeling can be expressed as an 
optimization problem with slack variables ξi and error penalty C: 

Minimize 1
2

||𝒘||2 + 𝐶 ∑  𝜉𝑖 𝑛
𝑖=1  

Subject to  �𝑦𝑖(𝐰
𝑇𝒙𝒊 + 𝑏) ≥ 1 − 𝜉𝑖

𝜉𝑖 ≥ 0
�   for  𝑖 = 1, 2, … ,𝑛 

(4)  

where ξi measures the distance between a data point xi and the boundary, for any xi that lies on the wrong 
side of the margin. To simplify the calculation, the above optimization problem can be converted to the 
equivalent Lagrangian dual problem with Kuhn-Tucker condition, followed by the substitution of the 
discrete form of saddle-point equations to obtain the dual quadratic optimization problem.  

For non-linear classification tasks, the application of kernel functions is required to transform the 
problem into a higher dimensional feature space to make linear separation possible. The choice of the 
appropriate kernel function is very important. A common choice is a polynomial kernel with the kernel 
parameters and the penalty margin C selected by cross-validation. 

For problems with more than two classes, a multi-class classification strategy, such as one-versus-all 
(OVA), one-versus-one (OVO), or directed acyclic graph (DAG), is required. 

Recent examples of research papers applying SVM to bearing fault diagnostics include [46–48]. 
SVM methods have also been applied in other bearing PHM formulations such as one-class anomaly 
detection [49], two-class fault detection [50], prognostics and RUL prediction [51]. In particular, 
Widodo and Yang [46] summarized the use of SVM in machine condition monitoring and fault 
diagnosis up to 2007 into a table, categorized by machine component, with the multi-class handling 
strategy used if specified in the corresponding literature. Abbasion et al. [47] discussed multi-fault 
diagnosis of normal and three fault types in two different bearings at different locations of a system. 
Sugumaran et al. [48] discussed the use of a multi-class SVM built from one-class SVMs to reduce the 
computational efforts required by the traditional binary SVM. The authors are not aware of any 
publications in the literature that discuss the prediction of combined-fault conditions from normal and 
single-fault training data. In this paper, we propose a novel strategy to accomplish this by OVA  
class binarization. 
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The SVM used in this paper is built using sequential minimal optimization (SMO) [52]. Although a 
SVM model depends on only a subset of the training data, it is well-known for its excellent performance 
in generalization and the classification of high-dimensional data [46]. It also has a reputation for 
handling dependent classes. However, just like any methods, SVM methods may not be the most 
accurate algorithm for all situations. In particular, it does not naturally handle multiple classes or 
generate proper probability estimates. In the formal statistical sense, the SVM do not belong to 
techniques of the ‘Bayesian’ approach. While historical data are used to train the models, no notion of 
subjective probability is introduced thus these two methods do not require updating of priors. An 
example of a ‘Bayesian’ technique is the relevance vector machine (RVM) [53].  

2.2. C4.5 Decision Tree 

C4.5 decision tree is the most popular method in the ID3 decision tree family. The ID3 decision tree [54] 
family chooses attributes on the basis of information gain (reduction in entropy). C4.5 is an enhancement 
of ID3 that constructs a branch using the attribute with maximum information gain ratio.  

In Information theory, a probabilistic method for quantifying information is developed by Shannon [55]. 
The entropy H(Y) of the distribution p(y), a measure of the uncertainty about Y, is defined as: 

𝐻(𝑌) =  −� 𝑝(𝑦𝑖) log(𝑦𝑖)
𝑛

𝑖=1
 (5)  

The entropy ranges from zero to infinity. It is zero if and only if there is only one probable value for Y 
(with probability 1) and all other values have zero probability. Its value is at its maximum if and only if 
all possible values for Y are equally probable.  

Similarly, the uncertainty of Y with knowledge on Xj, or the conditional entropy H(Y|Xj) on the 
distribution of the conditional probability p(y|xj), is given by: 

𝐻�𝑌|𝑋𝑗� =  −� � 𝑝�𝑦𝑖�𝑥𝑗� log�𝑦𝑖�𝑥𝑗�
𝑛

𝑖=1

𝑑

𝑗=1
 

       = −�
�𝐷𝑥𝑗=𝑣�

|𝐷|𝑣∈𝜒
𝐻(𝑌|𝑥𝑗 = 𝑣) 

(6)  

where χ is the set of possible values of Xj, Dxj = v is the subset of the dataset for which feature xj has value 
v, and the notation | • | denotes the number of instances in a dataset. 

Information gain Gain (Y, Xj), or average mutual information I(Xj; Y), is a measure of reduction in 
uncertainty about Y due to the knowledge on a feature Xj, quantified by the change in entropy:  

Gain�𝑌,𝑋𝑗� =  𝐻(𝑌) − 𝐻(𝑌|𝑋𝑗) (7)  

One drawback of information gain is its bias towards attributes with a large number of possible  
values [56]. The information gain ratio is the default splitting criterion of C4.5 and C5.0 decision trees, 
which attempts to correct this bias by scaling information gain with the entropy of Xj: 

GainRatio�𝑌,𝑋𝑗�=
𝐺𝑎𝑖𝑛�𝑌,𝑋𝑗�
𝐻(𝑋𝑗)

 (8)  
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C4.5 decision tree starts modeling with the whole training set D, and each time chooses the attribute 
with maximum information gain ration to split the data set. It produces a branch/node for each value of a 
discrete attribute, or form a binary split for a continuous attribute. It does not stop branching until it 
correctly classifies all instances, or each leaf node contains a minimum number of records. Note that this 
split is a greedy choice and the effect of future decisions is not taken into account.  

C4.5 decision tree allows the use of fields with missing values and employs post-pruning to avoid 
overfitting. It is capable of handling different measurement scales as well as both continuous and 
categorical variables. Advantages of C4.5 include easy to implement, no underlying assumptions and 
ability to generate non-parametric and non-linear models, and ability to reduce the dimensionality of 
input feature space in a way interpretable to the analysts. On the other hand, the trees produced by C4.5 
are very large and complex. C5.0 is another enhancement of C4.5 with additional effectiveness, 
efficiencies and supports boosting. However, the C4.5 and C5.0 decision tree algorithms produce 
models with similar predictive accuracies [57]. 

While C4.5 decision trees naturally handle multiple classes, they can only examine a single feature at 
a time and do not perform well when the features are highly interdependent. However, they generate 
models that resemble the human decision-making process and become popular due to their interpretable 
results [58]. Examples of research papers applying C4.5 decision trees to bearing fault diagnostics 
include [30,48,59,60]. They have also been applied in other machinery fault diagnostics problems such 
as motor [61], pump [62] and shaft rotor [63]. 

2.3. Class Binarization 

Real-world problems often involve multiple classes, but some classification algorithms, such as 
SVM, are inherently binary. Class binarization strategies reduce a k-class problem into a series of binary 
problems for classification. Two most common strategies in the literature are one-versus-one (OVO) and 
one-versus-all (OVA) [64], also named one-against-one (OAO) and one-against-all (OAA) [65]. More 
discussions on using binary classifiers in multi-class problems can be found in [66].  

In the OVO or OAO strategy, classifiers are trained to discriminate between two of the k possible 
classes. One classifier is trained with a data subset of each possible pair of classes, then the output of the 
(k 

2

In the OVA or OAA strategy, classifiers are trained to determine whether an instance belongs to one 
of the k classes or not. One classifier is trained with the whole training set, where each time k − 1 classes 
are re-labeled as the negative class (−1) and the unaltered class treated as the positive class. Only k 
classifiers are needed in this strategy, but the training set for each classifier is much larger and the 
number of instances for the negative class can be much larger than the positive class. 

) classifiers are combined for prediction. More classifiers are needed in this strategy, but the training 
set for each classifier is smaller and the number of instances for each class is more balanced. 

The differences among the formulations of multi-class classification (Figure 1a); OVO binarization 
(Figure 1b); and OVA binarization (Figure 1c) are illustrated graphically. For a three-class problem  
(k = 3), denote the three classes of the original problem as C1, C2 and C3. The application of the OVO 
binarization strategy splits the original problem into (3 

2 ) = 3 classifiers each with two classes, i.e.,  
C1 versus C2; C2 versus C3; C3 versus C4. On the other hand, the application of the OVA strategy 
(adopted in out proposed method) splits the original problem into k = 3 classifiers, each contains all 
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samples with samples of k − 1 classes relabeled, i.e., C1 versus notC1 (C2, C3); C2 versus notC2  
(C1, C3); C3 versus notC3 (C1, C2). 

Figure 1. Three different classification strategies illustrated with a 3-class problem  
(a) Simple multi-class classification; (b) One-versus-one (OVO) class binarization;  
(c) One-versus-all (OVA) class binarization. 

 
(a) 

 
(b) 

 
(c) 
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These class binarization strategies can also be useful in other situations. For example, OVA class 
binarization strategy has been adopted in a general framework for class-specific feature selection using 
any feature selectors in [67]. An extensive study in [68] has shown that the two binarization strategies 
with an appropriate combination strategy are simple and useful ensemble methods to improve classifier 
performances, even when the classification algorithm itself can handle multiple classes. C4.5 decision 
tree used in this paper is an example of classification algorithms that can handle multiple classes. 

Most of the work in binarization strategies apply multiple online empirical data sets to evaluate the 
classification performances in general. The authors are not aware of any work in the literature on the 
application of binarization strategies to the specific context of machinery fault diagnostics for our 
purpose. In this paper, the OVA class binarization strategy is adopted on all single-defect classes  
and samples of the healthy class are added to the relabeled class, to predict concurrent defects from 
normal and single-defect training data. This can help reduce the types of training data needed for bearing 
fault diagnosis of combined defects. More details of how this procedure is applied are discussed in the 
next section. 

3. The Proposed Methodology 

Common types of bearing defects with characteristics frequencies detectable from vibrations are:  
(1) fundamental train (cage) frequency (FTF); (2) ball pass frequency, outer race (BPFO); (3) ball pass 
frequency, inner race (BPFI); and (4) ball spin frequency (BSF). In practice, incipient faults first 
detected from vibration signals are usually BPFO; BPFI; or BSF. 

Multiple types of defects can develop on the same bearing concurrently i.e., the defect types are 
non-exclusive classes. From domain expert knowledge, the vibration fault signatures of multiple defects 
are different from that of a summation of the corresponding single defects. In other words, there are 
interactions between different bearing defect types and this complicates the bearing fault diagnosis 
process. However, in terms of problem formulation, if the interaction between defect types is small 
enough, combined defects can be identified from single defect classifiers, with an OVA class 
binarization strategy. 

The proposed method is summarized as a flowchart in Figure 2. Assume that the interactions between 
different defect types are small, the defect types can be formulated as independent non-exclusive classes. 
As mentioned, the OVA class binarization strategy is adopted on all single-defect classes and samples of 
the healthy class are added to the relabeled class. With the proposed OVA approach, a classifier can be 
trained to determine whether a bearing is suffering from each defect type.  

As an example, consider the multi-class bearing fault diagnosis of normal and three fault types (BPFI, 
BPFO, BSF). Applying the proposed OVA diagnostic approach to the three fault types, the 4-class 
classification problem among Normal, BPFI, BPFO, BSF is transformed into three 2-class classification 
sub-problems. They can be denoted by classifier isBPFO that handles classes BPFO versus notBPFO 
(contains cases of types normal; BPFI, BSF); classifier isBPFI that handles classes BPFI versus notBPFI 
(normal; BPFO; BSF); and classifier isBSF that handles classes BSF versus notBSF (normal; BPFO; 
BPFI). In other words, three classifiers are trained for the three defect types BPFI; BPFO; and BSF, each 
using all training data of states Normal; BPFI; BPFO; and BSF. 
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Figure 2. The proposed bearing fault diagnosis method with one-versus-all binarization. 

 

Table 2 summarizes how the data are used in training each of the OVA binarized classifier. Note that 
applying the same strategy to normal cases simply generates the fault detection classifier that handles 
Normal versus notNormal. 

Table 2. One-versus-all binarization for three bearing defect types. 

Classifier 
Training Data 

Positive Class Negative Class 
isBPFI BPFI notBPFI (Normal; BPFO; BSF) 
isBPFO BPFO notBPFO (Normal; BPFI; BSF) 
isBSF BSF notBSF (Normal; BPFI; BPFO) 

Table 3 illustrates how outputs of three classifiers, namely isBPFO; isBPFI; isBSF, can be interpreted 
together to determine the state-of-health of a bearing with all possible single defects and multiple defects.  

Table 3. Fault diagnostics with a one-versus-all class binarization strategy. 

Classifier Output 
Bearing State Diagnosis 

isBPFI isBPFO isBSF 
N N N Normal 
Y N N BPFI 
N Y N BPFO 
N N Y BSF 
Y Y N BPFI + BPFO 
Y N Y BPFI + BSF 
N Y Y BPFO + BSF 
Y Y Y BPFI + BPFO + BSF 
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In this formulation, a normal bearing is expected to return the negative class (−1 in Section 2 or N in 
Table 3) for all three classifiers. Similarly, a bearing with BPFO defect is expected to generate output of 
the positive class from isBPFO and the negative class from isBPFI and isBSF. 

If the interactions between different defect types are small enough to be ignored in modeling, a 
combined defect of BPFO and BPFI shall give positive for classifiers isBPFO and isBPFI, and negative 
for isBSF. In this case, classifiers for combined defects will not be needed and hence training data of 
combined defects need not be collected. On the other hand, if a combined defect cannot be correctly 
classified with the single-defect OVA classifiers, the OVA class binarization strategy cannot help 
simplify the fault diagnosis process. In this case, the interactions between different defect types have to 
be modeled and vibration data of different combinations of defects need to be collected, if fault 
diagnostics of multiple defects (which occur at a late stage of bearing degradation) is desired.  

From domain expert knowledge, there is a known fixed relationship between the characteristic defect 
frequencies BPFO and BPFI for bearings due to geometry, i.e., BPFO + BPFI (in multiple of shaft  
speed S) = number of rolling elements. It is reasonable to assume that the most interactions may be 
generated by vibrations due to the BPFO defect and the BPFI defect. The BPFO and BPFI combined 
defect is used in the subsequent empirical analyses in this paper. 

4. Performance Evaluation—Bearing Fault Motor 

In this section, the proposed OVA strategy is evaluated with experimental data from a bearing motor 
test bed. The SVM classifier is used as an example of statistical and data mining methods that commonly 
used with OVA class binarization for other purposes.  

4.1. The Data Set 

The data set used in this empirical analysis was collected from a bearing fault motor as shown in 
Figure 3. Deep groove ball bearings of model SKF 1206 were run at rotation speed of 1,400 RPM  
(S = 23.3 Hz) with no external loading. The bearing physical parameters and the bearing characteristic 
defect frequencies calculation are shown in Table 4. 

Figure 3. The bearing fault motor. 
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Table 4. Bearing parameters and characteristic frequencies (BCFs) of each defect.  

Parameter/BCF Value 
No. of balls N 14 

Ball diameter B 8 
Pitch diameter P 46.55 
Contact angle ψ 0 

BPFI 8.203 × S or 115.45 Hz 
BPFO 5.797 × S or 71.22 Hz 
BSF 2.823 × S or 46.48 Hz 

In this experiment, the bearing could be in normal; BPFO; BPFI; BSF; or BPFO and BPFI combined 
state (COMB). An accelerometer was connected at vertical direction of the bearing. Vibration data were 
collected at a sampling rate of 4,000 Hz. Two samples were extracted for each experimental condition. 
Each sample consists of one temporal signal of 0.5 s length. By the Nyquist sampling theorem, the 
highest frequency that can be shown in a spectrum is 4,000/2 = 2,000 Hz (or 85.8 × S). The impulses 
excited by the bearing fault are most obvious by comparing a BPFO vibration data sample and normal 
bearing vibration data sample. Figure 4a shows a temporal signal of a normal bearing data sample and 
Figure 5a shows the plot of a BPFO bearing data sample. For each sample in this data set, the vibration 
signal is transformed by FFT to the frequency spectrum. Figures 4b and 5b show the corresponding 
frequency spectra of the two samples. The time between impulses in the vibration plot is the period of 
the defect which is the reciprocal of the characteristic defect frequency. The same information is shown 
as peaks at the characteristic defect frequency and its harmonics (marked with green arrows in Figure 5b. 
Examples that use defect characteristic frequencies and their harmonics in the data-driven modeling of 
bearings includes [69,70]. 

Figure 4. Plots of a normal bearing data sample: (a) Temporal signal over 0.5 s;  
(b) Spectrum—low frequency range.  
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Figure 5. Plots of a BPFO bearing data sample: (a) Temporal signal over 0.5 s;  
(b) Spectrum—low frequency range. 

 

Figure 6. Plots of a BPFI bearing data sample: (a) Temporal signal over 0.5 s;  
(b) Spectrum—low frequency range. 

 

Figure 6a shows a temporal signal of a BPFI bearing data sample and Figure 6b shows the corresponding 
frequency spectra. The BPFI characteristic defect frequency and harmonics are not as obvious as the 
BPFO, but there are numerous sidebands equal to the shaft rotation frequency (1×) in the spectrum, 
which are caused by modulation. The plots of BSF are less obvious to visual inspection and are omitted. 
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Table 5 shows the list of samples in this data set. The first eight samples were used in training and the 
last eight samples were used in testing. In other words, part of the bearing data collected at normal state 
and each of the single defect states are selected randomly for modeling training. The rest of the normal 
and single defect data, together with the COMB data, were used in performance evaluation of the 
proposed strategy. 

Table 5. Bearing fault simulation data for training and testing. 

FileID Actual_Class Train/Test 
BPFI_motorA_1s_01_sample_01 BPFI Train 
BPFO_motorA_1s_01_sample_01 BPFO Train 
BPFO_motorA_1s_01_sample_02 BPFO Train 

BPFO_serious_motorA_1s_01_sample_02 BPFO Train 
Normal_motorA_1s_02_sample_01 NORMAL Train 
Normal_motorA_1s_02_sample_02 NORMAL Train 
Normal_motorA_1s_03_sample_01 NORMAL Train 

ball_motorA_1s_01_sample_02 BALL Train 
BPFO_combine_BPFI_motorA_1s_01_sample_01 COMB Test 
BPFO_combine_BPFI_motorA_1s_01_sample_02 COMB Test 

BPFI_motorA_1s_01_sample_02 BPFI Test 
BPFO_serious_motorA_1s_01_sample_01 BPFO Test 

Normal_motorA_1s_01_sample_01 NORMAL Test 
Normal_motorA_1s_01_sample_02 NORMAL Test 
Normal_motorA_1s_03_sample_02 NORMAL Test 

ball_motorA_1s_01_sample_01 BALL Test 

Six summary statistics commonly used in the literature, namely median, 75-th percentile, maximum, 
root-mean-square (RMS), skewness and kurtosis, are extracted from the time waveform signals, the time 
series distributions and the frequency range between the 4th to 10th harmonics of the bearing 
characteristics frequencies [71]. In other words, a total of 18 features from the vibration data are used. 
Three classification algorithms, namely SVM, C4.5 and naive Bayes are applied with the proposed 
procedure and the results of the best performing method is reported below. With the use of this bearing 
fault motor data set, the proposed strategy is evaluated by comparing the bearing diagnostic performance 
with a simple multi-class formulation, as well as the random guess accuracy and the worst-case 
classification (classifying all cases to the majority class) accuracy. 

4.2. Results and Discussion 

The testing performance in terms of prediction accuracy of the proposed method is compared with 
that of a simple multi-class classification using the same data split. The confusion matrices are shown in 
the corresponding subsections, followed by discussions of the results. The single-defect classification 
performance is first compared to evaluate the improvement in diagnostic accuracy for trained  
(single defect) classes. The concurrent-defect classification performance is then evaluated on the 
potential to enable multiple-defect bearing diagnostics from single-defect training data. The diagnosis 
accuracy of random guess classification and worst-case classification are also considered.  
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4.2.1. Baseline: Multi-Class Classification 

In the baseline method, multiple classes are handled by pairwise classification as in typical SVM. The 
data are neither normalized nor standardized. Table 6 shows the prediction results of the multi-class 
classification with SVM. The correct fault diagnoses are highlighted in bold. 

Table 6. Test performance of multi-class classification of single defects. 

Actual 
Predicted 

BPFI BPFO BSF Normal 
BPFI 1    
BPFO 1    
BSF 1    

Normal  2  1 
COMB 2    
Correct    2 

    0.333 

4.2.2. Multiple Defects: One-Versus-All (OVA) Class Binarization Performance  

The predictors used in the OVA formulation are the same as that in the multi-class classification.  
The 18 features are fed into three SVMs that model binary decisions of whether each of them belongs to 
each single-defect, as in Table 2. The outputs of the three SVMs are aggregated as in Table 3.  
Table 7 shows the results of the OVA formulation and the correct fault diagnoses are highlighted in bold.  

Table 7. Test performance with one-versus-all (OVA) formulation. 

Actual 
Overall 

BPFI BPFO BSF Normal BPFO BPFI 
BPFI 1     
BPFO 1     
BSF    1  

Normal    3  
COMB     2 
Correct    4  

    0.667 1.000 

4.2.3. Performance Evaluation 

The prediction performance of normal and single-defect bearings is first compared. When 
one-versus-all (OVA) formulation is used, the number of correct classification is 66.7%. This diagnosis 
accuracy is much higher than the 33.3% of the baseline multi-class classification, though triple 
computation effort is required for training. The classification accuracies of both methods are higher than 
the accuracy of random guess among four single-defect classes (25%). 

Next we compare the performance for concurrent defects, using the COMB data. When a multi-class 
classification is used, there is no way for the classifier to give the correct classification because this class 
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does not exist in the training data and hence the classifier model. When the OVA formulation is used, all 
of the COMB test samples (two out of two) are classified as the correct combined defect BPFI + BPFO.  

The use of OVA class binarization in our proposed way increases the overall bearing fault diagnostic 
accuracy, from 33.3% to 66.7% for normal and single defect types, and from 0% to 100% for COMB. 
The overall test accuracy of 75% of the proposed method is also much better than the random guess 
among eight classes (12.5%) and the worst-case classification of classifying all cases to the majority  
class, i.e., Normal (37.5%). These agree with previous studies in the literature that the use of class 
binarization with an appropriate aggregation strategy can help improve classification performance even 
when the classifier itself is capable of handling multiple classes.  

For this data set, the next best performing classifier is C4.5 decision tree, which produces a 
classification accuracy of four out of six (66.7%) for normal and single-defect test cases in the 
multi-class formulation and the slightly lower three out of six (50%) in the OVA approach. However, an 
examination of the generated model shows that only two of the four types are modeled in the decision 
tree, probably because the training size is too small. 

5. Performance Evaluation—Machine Fault Simulator (MFS) 

In this section, the proposed OVA strategy is evaluated with experimental data from a multiple 
bearing mechanical system, which includes a shaft suspended by two bearings. The popular C4.5 decision 
tree is an example of statistical and data mining methods that do not normally use with binarization, yet 
produces high diagnostics accuracies with our proposed OVA diagnostic approach. 

5.1. The Data Set 

The data set used in this empirical analysis was collected from a machine fault simulator (MFS) as 
shown in Figure 7. 

Figure 7. The machine fault simulator (MFS). 

 

In this experiment, the bearing again could be in normal; BPFO; BPFI; BSF; or BPFO and BPFI 
combined state (COMB). Either of the bearings on the left and right of the shaft can be at fault and we 
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assume that the faulty bearing has been located in the isolation stage. Vibration data were collected from 
the accelerometers at vertical and horizontal direction of the bearing either on the left or the right of the 
rotors, i.e., either positions C and D, or E and F in Figure 7. The experiment was run at 30 Hz  
(1,800 RPM), with load attachment (torque 10 in-lbs or 1.13 Nm). The vibration data were collected at a 
sampling rate of 32,768 Hz. Ten samples were extracted for each combination of experimental 
conditions. Each sample consists of two temporal signals of one second length, collected from the 
sensors along the vertical and horizontal directions. 

Figure 8. Plots of a normal bearing data sample—vertical (top) and horizontal (bottom) 
sensor (a) Temporal signal over 0.25 s; (b) Spectra—low and high frequency range.  

 
(a) 

 
(b) 

The total number of samples used in this analysis is: 5 (health states) × 2 (bearing locations) ×  
10 (replicates) = 100 observations. A 80-20 split is applied on normal and single defect data for training 
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and testing to evaluate the prediction accuracies, i.e., 80% or 64 observations of Normal; BPFI; BPFO; 
and BSF are used for training and 20% or 16 observations are used for testing. As in the previous 
experiment, all COMB data are used for testing to evaluate the performance of the trained classifier on 
bearing diagnostics with concurrent defects. 

Figure 9. Plots of a BPFO bearing data sample—vertical (top) and horizontal (bottom) 
sensor (a) Temporal signal over 0.25 s; (b) Spectra—low and high frequency range.  

 
(a) 

 
(b) 

Figures 8a,9a,10a show a temporal signal of a Normal; BPFO; and BPFI bearing data sample 
respectively. The two vibration signals from vertical and horizontal plane are transformed by FFT to the 
frequency spectra. Figures 8b,9b,10b show the corresponding frequency spectra of the three samples. 
Due to the much higher sampling frequency, the high frequency range (up to 16 kHz) is also captured in 
this data set. As shown in Figures 8b,9b,10b, the frequency range consists of a number of different 
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distributions. Consequently, features are extracted from two frequency ranges, namely low frequency 
between the 4th to 10th harmonics of the bearing characteristics frequencies (Table 8), and high frequency 
between 7–10 kHz in the resonant frequency bands where sidebands may occur. 

Figure 10. Plots of a BPFI bearing data sample—vertical (top) and horizontal (bottom) 
sensor (a) Temporal signal over 0.25 s; (b) Spectra—low and high frequency range.  

 
(a) 

 
(b) 

The same six summary statistics in the previous analysis, i.e., median, 75-th percentile, maximum, 
root-mean-square (RMS), skewness and kurtosis, are again extracted from the time waveform signals, 
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the time series distributions and the two frequency ranges. A total of 72 features of the vibration data from 
the two (horizontal and vertical) sensors are fed into C4.5 decision tree together for training and testing. 
Three classification algorithms, namely SVM, C4.5 and naive Bayes are applied with the proposed 
procedure and the results of the best performing method is reported below. With the use of this machine 
fault simulator data set, the proposed formulations are evaluated by comparing their bearing diagnostic 
performance with a simple multi-class formulation. 

Table 8. Bearing parameters and characteristic frequencies (BCFs) of each defect. 

Parameter/BCF Value 
No. of balls N 8 

Ball diameter B 0.3125 
Pitch diameter P 1.319 
Contact angle ψ 0 

BPFI 4.948 × S or 148.44 Hz 
BPFO 3.052 × S or 91.56 Hz 
BSF 1.992 × S or 59.76 Hz 

5.2. Results and Discussion 

The structure of this subsection is the same as Section 4.2 for the other data set, except that the 
worst-case classification accuracy for this data set is the same as the random guess classification 
accuracy. This is because equal number of training samples is used for each bearing defect type in this 
empirical analysis. 

5.2.1. Baseline: Multi-Class Classification 

Table 9 shows the prediction results of the multi-class classification with C4.5. The correct fault 
diagnoses are highlighted in bold. 

Table 9. Test performance of multi-class classification of single defects. 

Actual 
Predicted 

BPFI BPFO BSF Normal 
BPFI 4    
BPFO  4   
BSF   4  

Normal  1  3 
COMB  20   
Correct    15 

    0.938 

5.2.2. Multiple Defects: One-Versus-All (OVA) Class Binarization Performance  

Table 10 shows the results of the OVA formulation and the correct fault diagnoses are highlighted  
in bold.  
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Table 10. Test performance with one-versus-all (OVA) formulation. 

Actual 
Overall 

BPFI BPFO BSF Normal BPFO BPFI 
BPFI 4     
BPFO  4    
BSF   4   

Normal    4  
COMB 7 4  1 8 
Correct    16  

    1.000 0.400 

5.2.3. Performance Evaluation 

The prediction performance of normal and single-defect bearings is first compared. When 
one-versus-all (OVA) formulation is used, the diagnosis accuracy increases from 93.8% to 100%. The 
classification accuracies of both methods are much higher than the accuracy of random guess among 
four single-defect classes (25%). 

Next we consider the performance for concurrent defects, using the COMB data. When the OVA 
formulation is used, eight of the 20 COMB test samples are correctly classified as BPFO + BPFI. The 
diagnosis accuracy increases from 0% for the baseline to 40%, also much higher than the random guess 
among eight classes (12.5%).  

Overall, the C4.5 decision tree produces very satisfactory performances with the proposed OVA 
diagnostic approach. In particular, the diagnosis accuracy of combined fault samples using C4.5 with 
OVA is much better than that using SVM with on the same data set (which performed worse than the 
worst case classification accuracy on the COMB samples). This further suggests that the combined fault 
classification accuracy is not solely contributed by the use of polynomial kernel in the SVM. 

6. Conclusions 

In real-world applications of bearing diagnostics, multiple defect types may occur at the same time. 
While many data-driven modeling methods naturally handle mutually exclusive groups of data, no 
discussions on the handling of non-exclusive concurrent faults in bearing diagnostics are found in the 
literature. Moreover, the need for data collection from different operating scenarios such as permutations 
and combinations of fault type, location, size, machine load and speed is a concern in using data-driven 
methods for bearing diagnosis. In this paper, we have proposed a formulation strategy to improve 
diagnostics performance and reduce the number of scenarios needed in the training data, with focus on 
multiple defects that may occur concurrently. Using two sets of test bed data collected from a bearing 
motor and a multiple component mechanical system, we have shown the potential of a one-versus-all 
(OVA) approach to improve bearing diagnosis performance at the same time enable concurrent-defect 
diagnostics of BPFO and BPFI combined fault from normal and single-defect training data. Better 
formulation in bearing diagnostics helps build more practical classifiers with less data, for improved 
performance at more operating conditions. These help provide advanced failure warning and reduce 
unexpected failures in real applications. Future work includes data collection and further analysis of the 
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proposed approach with other combined defects such as BPFI BSF combined; BPFO BSF combined; 
and all three types combined. 
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