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Abstract: Modern observation technology has verified that measurement errors can be 

proportional to the true values of measurements such as GPS, VLBI baselines and LiDAR. 

Observational models of this type are called multiplicative error models. This paper is to 

extend the work of Xu and Shimada published in 2000 on multiplicative error models to 

analytical error analysis of quantities of practical interest and estimates of the variance of 

unit weight. We analytically derive the variance-covariance matrices of the three least 

squares (LS) adjustments, the adjusted measurements and the corrections of measurements in 

multiplicative error models. For quality evaluation, we construct five estimators for the 

variance of unit weight in association of the three LS adjustment methods. Although 

LiDAR measurements are contaminated with multiplicative random errors, LiDAR-based 

digital elevation models (DEM) have been constructed as if they were of additive random 

errors. We will simulate a model landslide, which is assumed to be surveyed with LiDAR, and 

investigate the effect of LiDAR-type multiplicative error measurements on DEM construction 

and its effect on the estimate of landslide mass volume from the constructed DEM. 
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1. Introduction 

Theory and methods of adjustment have been developed, both with the advance of measurement 

technology and with our deepened understanding of measurement errors. Although manufacturers of 

surveying instruments would always provide accuracy specifications [1], these specified numbers may 

not correctly reflect the nature of the errors of collected measurements. To understand the performance 

of a surveying instrument in practice, or equivalently, to obtain the accuracy of the instrument for a 

specific set of measurements, Airy [2] and Helmert [3] invented the theory and methods of variance 

component estimation, which has since become one of the important topics in statistics, geodesy and 

beyond (see e.g., [4–6]). If measurements are supposed to contain outliers, outlier detection and robust 

statistics are developed (see e.g., [7–13]). If prior information is available, Bayesian statistics and least 

squares collocation are accordingly borne naturally. To precisely determine the best trajectory of an 

object in motion, the theory and methods of optimal filtering, smoothing and control are incepted with 

the celebrated publication of Kalman [14]. Recently, with the advance of space observation technology 

such as global positioning system (GPS) and interferometric synthetic aperture radar (InSAR)  

(see e.g., [15–17]) and their wide applications, we have to handle observational models that contain 

real-valued and integer unknowns, which have been coined as mixed integer (linear) models by Xu [18]. 

Almost all theory and methods of adjustment have been developed on the basis of the following 

mathematical or functional model: 

( )y f     (1) 

where   is a vector of measurements, ( )f   is the linear or nonlinear functional,   is the vector of 

unknown parameters to be estimated. In the case of GPS and InSAR, the vector   may contain  

real-valued and integer unknowns.   is the vector of random errors of the measurements  . An 

important feature of the observational equation (1) is that the random errors   will disturb the true 

values ( )f   of the measurements in the additive manner, implicitly indicating that the sizes of the 

random errors   will not change with the sizes of measurements. In other words,   has nothing to do 

with   or ( )f  . However, in geodetic practice, we realize that some random errors of measurements 

change with the sizes of measurements themselves. For example, the accuracy of electronic distance 

measurements (EDM), GPS and/or VLBI baselines can be represented by using the following  

well-known formula:  

2222 LbaL   (2) 

(see e.g., [1,19,20]), where 2

L  stands for the variance of the baseline of length L , a and b are positive 

constants. From the point of view of random error theory, the accuracy formula can be equivalently 

rewritten as follows:  

LmaL    (3) 



Sensors 2014, 14 1251 

 

 

where    stands for the random error of the baseline L,    and    are the additive and multiplicative 

random errors, which are assumed to be statistically independent, with zero means and variances a
2
 

and b
2
, respectively.    in (3) is said to be a multiplicative error, since it will be propagated into the 

error of the baseline L through the baseline itself. As a result, this part of the error is proportional to the 

length of the baseline. The longer the baseline, the less accurate it is. However, the effect of the 

additive error    remains constant, irrelevant to the length of the baseline itself. As a second example, 

a SAR observational equation can be written as follows:  

),()1(),( jisjiy ij  (4) 

(see e.g., [21–26]), where ),( jis  is the unknown signal to be estimated, ij  is the random error with 

zero mean, and ),( jiy  is the measured value of the signal ),( jis . The observational models (3) and (4) 

are obviously fundamentally different from (1). From this point of view, adjustment theory and 

methods, as developed on the basis of the model (1) (with only additive errors), cannot serve as a solid 

theoretical foundation to process measurements that are collected on the model (3) and/or (4). 

The observational model (4) is called a multiplicative error model, which is widely known as a 

generalized linear model in statistics (see e.g., [27,28]). In engineering, it is also called a 

multiplicative speckle model (see e.g., [21,24]). The most widely used method in statistics to handle 

such a model is the quasi-likelihood method, which was invented by Wedderburn [27]. Quasi-likelihood 

has since become a standard method for parameter estimation in the model (4) and been widely 

applied in practice (see e.g., [29–32]). Mathematically, the method directly solves a set of nonlinear 

equations for the unknown parameters without any link to an objective function. As a result, 

Wedderburn [27] showed that the method is equivalent to maximum likelihood, if and only if  

the joint probability density function (pdf) of measurements is of exponential class. Unlike 

Wedderburn [27], Xu and Shimada [33] did not assume any pdf for the measurements with 

multiplicative errors. Instead, they directly started with the least squares (LS) method and derived the 

bias-corrected LS method for parameter estimation in the model (4). 

A digital elevation model (DEM) is a numerical or digital representation of the topography of  

the Earth. A number of mathematical interpolators have been proposed for the construction of a DEM 

on the (implicit) assumption that the measurements are contaminated with additive random errors  

(see e.g., [34–36]). Recently, robust methods have also been proposed to construct a DEM by allowing 

the measurements to contain a certain percent of erroneous data (outliers) (see e.g., [37,38]). DEMs 

have found important applications in hazard assessment for disaster prevention and/or mitigation, for 

example, in landslide analysis [39,40], in construction of hazard maps [41] and to help reconstruct the 

history of hydrological and glacial events (see e.g., [42]). Practically, a DEM can be constructed by 

using remote sensing techniques such as (In)SAR and light detection and ranging (LiDAR). Although 

(In)SAR and LiDAR measurements have been well known to be of speckle (or multiplicative) noise, 

they have been used to construct a DEM as if these types of measurements were of additive random 

errors (see e.g., [37,39,43–45]). One of the purposes of this paper is to extend the methods of DEM 

construction to the case in which measurements are contaminated with multiplicative random errors 

and investigate their effect on the estimate of volume computed from LiDAR-type DEM, which can be 

important in practical hazard evaluation of landslides. 
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Although the errors of GPS, EDM and VLBI baselines and measurements of InSAR and LiDAR 

have been shown to be of multiplicative nature, almost nothing can be found in the geodetic and DEM 

literature, except for Xu et al. [46]. In this paper, we will limit ourselves to the model of multiplicative 

errors and substantially extend the work of Xu and Shimada [33]. We will not assume any pdf for the 

measurements with multiplicative errors. The paper is organized as follows: Section 2 will briefly 

outline three LS-based methods for parameter estimation. We will focus on analytical error analysis of 

all adjusted quantities of interest in Section 3, which further supplements the work of Xu and  

Shimada [33] in the sense that they mainly discussed parameter estimation and stochastic/numerical 

simulations. The error analysis of quantities other than model parameters is not covered by Xu et al. [46] 

either. In Section 4, we will derive the estimators of variance of unit weight in association with the 

three LS-based methods. Finally, we will simulate an example of DEM construction from LiDAR-type 

data contaminated with multiplicative random errors and investigate their effect on the estimate of 

volume from the constructed DEM. 

2. Parameter Estimation in the Model with Multiplicative Errors 

2.1. Representation of Models with Multiplicative Errors 

As in the case of adjustment with additive random errors, given a set of measurements with 

multiplicative errors, we have the corresponding adjustment model as follows: 

( )(1 ), ( )
i i i

 y f i = 1,2,...,n  (5) 

(see e.g., [21,33]), or equivalently in vector form:  

( ) ( )y f   1  (6) 

where yi is a measurement,  is the functional model of the measurement yi,    is the random error 

with mean zero. If all these scalar quantities are represented in vector form, the corresponding vectors 

of the measurements yi, the functional models , and the random errors    can be denoted by  , 

( )f   and  , respectively. Here   is the t-dimensional vector of unknown parameters and  stands 

for the Hadamard product of matrices and/or vectors. In the observational equations (6), 1 stands for a 

vector with all its elements being equal to unity. Without loss of generality and for convenience of 

derivations, we will further assume that the elements of the random vector  are all independent, 

namely, the variance-covariance matrix of   is assumed to be equal to    , where  is the identity 

matrix. If the functional models  are linear with respect to ,  namely, , 

 is a t-dimensional vector, in this case, the model (6) with multiplicative errors can 

be rewritten as follows: 

( ) ( )y X  1  (7) 

where            
 . It is obvious from the model (7) that the errors of the measurements   are 

proportional to the strengths of the signals. The stronger the signals    , the larger the errors of  . 

Mathematically, the variance-covariance matrix  of the measurements   is the function of the 

unknown parameters . In the following, we will briefly outline three LS methods for parameter 

( )
i

f 

( )
i

f 



I

( )
i

f  ( ) T

i i
x f

1 2
( , ,..., )T

i i i it
x  x x x

yΣ
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estimation, namely, the ordinary LS method, the weighted LS method and the bias-corrected weighted 

LS method. 

2.2. The Three LS-Based Methods for Parameter Estimation 

When the ordinary LS method is applied to the linear model (7) with multiplicative errors, we have 

the following minimization problem:  

1
min:  F ( ) ( )T

y X y X     (8) 

It is well known that the optimal solution to (8) is the LS estimate of the parameters , i.e. 

1( )T Tˆ X X X y 
LS

 (9) 

It is trivial to prove that the ordinary LS estimate LS
̂  is an unbiased estimate of  . 

If the random errors  in the model (7) are assumed to be statistically independent 

with the same variance, the measurements  are still statistically independent but are no 

longer of the same variance or weight. In this case, the weight matrix of the measurements 

 now depends on the unknown parameters . By denoting , with  

standing for a diagonal matrix, we have the variance-covariance matrix  of the measurements   

in (7) as follows:  

2 2 2

1
E( )T

y y y y
D D   Σ    (10) 

where ( )
y

X   . Since the elements of D1 are the functions of the parameters  , those of the 

variance-covariance matrix of the measurements y are also the functions of  . If one replaces    

in (10) with its approximate value, one can obtain an approximate variance-covariance matrix and then 

go on to estimate   with it. If an approximate value is sufficiently precise, the approximate estimate 

of   should be almost the same as the optimal estimate with a true variance-covariance matrix of the 

measurements. However, if approximate knowledge is not sufficient to obtain a precise approximation 

of y
Σ , the difference between the approximate and optimal estimates cannot be neglected, as can be 

seen in Xu et al. [46]. 

As a result of (10), we can apply the weighted LS method to (7) and obtain the following 

minimization problem: 

1

2
min:  F ( ) ( )T

y
y X D y X     (11) 

Differentiating (11) with respect to the unknown parameters  and letting it equal zero, we have: 

1

1

1

1

( ) ( )

2 ( ) 0

( ) ( )

yT

WLS WLS

T

y WLS

yT

WLS WLS

t

D̂
ˆ ˆy X y X

ˆˆX D y X

D̂
ˆ ˆy X y X

 



 







 
  

 
    
 
 

  
  





 (12) 

  



( = , , ..., )
i

i 1 2 n

iy ( , , ..., )i = 1 2 n

iy

( , ,..., )i = 1 2 n 1
diag( )T

i
D x  diag( )

yΣ y
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where WLS
̂  stands for the weighted LS estimate of  , and  is the estimate of . According to the 

rule of matrix differentiation (see e.g., [47]), we have: 

1

3

11

3

( )

2 2
β

( )

i

T

y

i

i

ni

T

n

ˆx
D̂

P̂

ˆx







 
 
 
    
 
 
 
 

WLS

WLS

x

x

 (13) 

Inserting (13) into (12) and after some arrangement, we can obtain the weighted LS estimate of , 

which is denoted by WLS
̂  and given as follows:  

1

1 1 1 1 1

ˆ ˆˆ( ) ( )

ˆ ˆ ˆ ˆ( ) ( )

ˆ ˆˆ( ) ( )

    

  
 

   
 

  

T

WLS WLS

T T T

WLS y y y

T

WLS t WLS

y X P y X

X D X X D y X D X

y X P y X

 



 

 (14) 

The weighted LS estimate WLS
̂  of (14) is obviously nonlinear with respect to the measurements , 

even though the functional models  are linear in the unknown parameters  , since the matrix  

and the elements of the second term on the right hand side of (14) are all the nonlinear functions of the 

weighted LS estimate  itself. In general, we can only use numerical methods to solve for . 

Statistically, Xu and Shimada [33] proved that the weighted LS estimate  is biased, even though 

 are linear; this is fundamentally different from the weighted LS estimation in a linear model with 

additive random errors. They also derived the bias of , and further proved that the bias of the 

weighted LS estimate  is solely due to the fact that the variance-covariance matrix  of the 

measurements  is the function of the unknown parameters  . In other words, the nonzero partial 

derivatives  in (13) or (14) should be totally responsible for the bias of the weighted LS estimate 

 [33,46]. In the case of linear models with additive random errors, since the variance-covariance 

matrix of measurements is independent of the unknown parameters, all  are equal to zero. Therefore, 

they suggested removing the second term on the right hand of (14) and constructed an unbiased 

estimate as follows: 

1 1 1ˆ ˆ ˆ( )T T

y y
X D X X D y   bc

 (15) 

where 
bc

̂  is the bias-corrected weighted LS estimate. 

We should note that formula (15) is the same as that derived by using the quasi-likelihood method, 

which nevertheless requires the class of exponential distributions in order for quasi-likelihood to be 

equivalent to maximum likelihood [27]. However, in this paper, we do not assume any distribution for 

the measurements y. Actually, the estimate (15) is obtained solely from applying the weighted LS 

principle, indicating that more complicated adjustment with multiplicative errors can also be solved by 

using the conventional LS estimation principle. 

  

y
D̂ y

D

y
T

i
x  y

D̂

WLS
̂ WLS

̂

WLS
̂

T

i
x 

WLS
̂

WLS
̂ yΣ

y

i
P̂

WLS
̂

i
P̂
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3. Error Analysis of Quantities in the Model with Multiplicative Errors 

Since Xu and Shimada [33] only focused on the estimation of parameters and numerical simulations 

to compute the biases and accuracy of the estimated parameters, we will complement their study by 

providing an analytical error analysis of the adjusted quantities. We should point out that error analysis 

is well documented in linear models with additive random errors, but nothing along the same line  

has ever been available in association with measurements contaminated by multiplicative errors, at 

least, to our best knowledge. Alternatively, one may carry out an error analysis with an approximate 

variance-covariance matrix of the measurements, as can be seen in geodetic adjustment of distance 

networks; but such an analysis cannot serve as a solid theoretical foundation of statistical inference in 

models with multiplicative errors, the extent of approximation will depend on the model itself, the 

stochastic model of measurements and prior knowledge on the unknown parameters. In this section, 

we will only assume the first and second central moments for the measurements y and will derive the 

accuracy formulae of the estimated quantities for the three LS-based estimation methods. We will limit 

ourselves to the first order approximation. We should note that some of the theoretical formulae to be 

given below may contain the unknown parameters, which should be substituted by their approximate 

values or estimates in practical computation. 

3.1. Accuracy of the Estimated Parameters 

Applying the error propagation law to the ordinary LS estimate (9) and after taking the  

variance-covariance matrix (10) into account, we can readily obtain the variance-covariance matrix of 

LS
̂  as follows: 

1 1

1 2 1 2

1

( ) ( )

       ( ) ( ) 

Σ
LS

T T T

ˆ y

T T T

X X X X X X

X X X D X X X



 

 

 


 (16) 

Unlike the ordinary LS estimate LS
̂ , (14) and (15) have clearly shown that both the weighted LS 

estimate  and the bias-corrected weighted LS estimate bc
̂  are nonlinear with respect to the 

measurements . In order to derive their accuracy formulae, we will have to represent  and bc
̂  in 

terms of the random errors ε and then follow the definition of variance to derive the variance-

covariance matrices of WLS
̂  and bc

̂ . In this paper, we will limit ourselves to the first order 

approximation for accuracy assessment. Since the weighted LS estimate  is not an unbiased 

estimate, we will also have to take its bias into account. In other words, we will have to compute the 

mean squared error matrix of WLS
̂  for proper error analysis. 

In order to derive the bias of the weighted LS estimate WLS
̂ , Xu and Shimada [33] Taylor-

expanded  with respect to the random errors ε and then truncated the expansion up to the second 

order term, which is directly written as follows: 

ˆ A b    
WLS   (17a) 

where: 

1 1

1
( )  T T

y
A X D X X D  (17b) 

WLS
̂

y
WLS

̂

WLS
̂

WLS
̂
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and  is a second order term of ε, and its mathematical expectation is the bias of the weighted LS 

estimate.  

We now apply the error propagation law to (17a) up to the first order approximation of ε and as a 

result, obtain the first order approximation of the variance-covariance matrix of the weighted LS 

estimate  as follows:  

1 1 2( ) Σ
WLS

T

ˆ y
X D X



   (18) 

Denoting the bias of 
WLS

̂  by E( )b , we can finally obtain the mean squared error matrix as 

follows:  

ˆ

1 1 2 1 1 1 1

ˆ( ) E( )[E( )]

( ) ( ) ( )     

 

 

Σ
WLS

T

WLS

T T T T

y y y

M b b

X D X X D X cc X D X

 



 (19) 

where . Since the essential difference between the weighted LS estimate WLS
̂  and the  

bias-corrected weighted LS estimate bc
̂  is that bc

̂  is unbiased up to the second order approximation. 

In other words, their first order representations in terms of  are identical. Therefore, we can simply 

write the variance-covariance matrix of bc
̂  below:  

1 1 2( ) Σ
bc

T

ˆ y
X D X



   (20) 

3.2. Accuracy of the Adjusted Measurements 

By using the ordinary LS estimate LS
̂  in (9), we can readily compute the corresponding LS adjusted 

values of the measurements: 

1( ) T T

LS
ŷ X X X X y  (21a) 

According to the error propagation law, we can then obtain the variance-covariance matrix of the 

adjusted measurements as follows: 

1 1 2( ) ( ) Σ
LS

T T T T

ŷ y
X X X X D X X X X

   (21b) 

In the similar manner, based on the weighted LS estimate and the bias-corrected weighted LS 

estimate and by using the formulae (19) and (20), we can directly obtain the adjusted measurements 

computed from the weighted LS estimate and the bias-corrected weighted LS estimate, and their mean 

squared error (MSE) and variance-covariance matrices, respectively, as follows:  

ˆŷ X
WLS WLS  (22a) 

T

1 1 2 1 1 1 1

( ) E( )[ E( )]

              ( ) ( ) ( )

T

ˆ

T T T T T T

y y y

ˆM y X X X b X b

X X D X X X X D X cc X D X X



     

 

 

Σ  



WLS
WLS

 (22b) 

1 1 1( )   T T

bc y y
ˆ ˆŷ X X D X X D y  (23a) 

1 1 2( )
bc

T T

ŷ y
X X D X X

 Σ   (23b) 

  

b

WLS
̂

E( )c b

ε
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3.3. Accuracy of the Corrections of Measurements 

As is well known, the corrections of measurements are important quantities in practical data 

processing and quality assessment/control. We denote the corrections of measurements as follows:  

ˆV y y   

where V is the correction vector of the measurements y. By substituting (21a), (22a) and (23a) into the 

above formula, we can readily obtain the corrections of measurements with the ordinary LS, weighted 

LS and bias-corrected weighted LS estimates, respectively, as follows:  

1[ ]T T

LS
V X( X X ) X I y

   (24a) 

ˆV X y 
WLS WLS

 (25a) 

1 1 1[ ]T T

bc y y
ˆ ˆV X( X D X ) X D I y
     (26a) 

By linearizing (24a), (25a) and (26a) with respect to the random errors ε, and after applying the 

error propagation law to the linearized corrections of measurements, we can then derive their 

corresponding variance-covariance matrices: 

1 1 2[ ] [ ]
LS

T T T T

V y
X( X X ) X I D X( X X ) X I

   Σ   (24b) 

1 1 2[ ( ) ]
WLS

T T

V y y
D X X D X X

  Σ   (25b) 

1 1 2[ ( ) ]Σ
bc

T T

V y y
D X X D X X

    (26b) 

Because the weighted LS estimate is biased, the corresponding corrections of measurements should 

also be biased. The bias of VWLS  can be directly computed from the bias of the weighted LS estimate 

WLS
̂ . Thus, for proper error evaluation, we have to compute the MSE matrix: 

T

1 1 2 1 1 1 1

( ) E( )[ E( )]

              [ ( ) ] ( ) ( )

WLSWLS  



Σ
V

T T T T T T

y y y y

M V X b X b

D X X D X X X X D X cc X D X X
     

 

  
 (27) 

where ( )
WLS

M V  is the MSE matrix of V
WLS

. 

3.4. The Covariances of the Adjusted Quantities 

In practical data processing, we are also interested in computing the cross-covariance matrices of 

the original measurements, the estimated parameters, the adjusted measurements and the corrections of 

measurements. With the three LS-based methods in hand, if we follow the above lines of thought for 

the variance-covariance matrices of these quantities, we can then easily derive and obtain their 

covariances. If we further limit ourselves to the linear approximation in terms of the random errors  , 

then the weighted LS estimate and the bias-corrected weighted LS estimate should lead to the  

same covariance representations. Thus, by omitting the details of derivations, we simply list the cross-

covariance matrices among the measurements, the estimated parameters, the adjusted measurements 

and the corrections of measurements for the ordinary LS and the bias-corrected weighted LS estimates 

in Table 1. 
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Table 1. Cross-covariance matrices among the measurements, the parameter estimates, the 

adjusted measurements and the corrections of measurements by the LS and bias-corrected 

weighted LS methods. 

Covariance Ordinary LS Method Bias-Corrected Weighted LS Method 

   

   

   

   

  0 

  0 

4. The Estimates of Variance of Unit Weight with the Three LS-Based Methods 

The variance of unit weight is one of the most important quantities in statistical quality evaluation 

and hypothesis testing. Since the measurements are not equally weighted, the conventional estimator of 

the variance of unit weight by using the ordinary LS residuals of measurements and the redundant 

number of (n–t) is not unbiased [48]. To estimate the variance of unit weight, we have to start with the 

naïve or weighted sum of square of the corrections of measurements, find its mathematical expectation 

in terms of the variance of unit weight 
2  and then estimate 

2 . In what follows, we will derive the 

estimates of the variance of unit weight in association with the three LS-based methods. 

From the formula (24b), we can readily derive the mathematical expectation of the sum of square of 

the ordinary LS corrections of measurements: 

1 1 2

1 2

Ε{ } {[ ( ) ] [ ( ) ]}

                 { ( ) }

LS LS
tr

tr





T T T T T

y

T T

y y

V V X X X X I D X X X X I

D X X X D X

 



  

 
 (28a) 

from which we can then construct the following estimate of the variance of unit weight:  

2

LS1 LS LS LS1
r Tˆ V V /  (28b) 

where 
LS1

r  is the equivalent redundant number of measurements and given by 

1

1
{ ( ) }r tr T T

LS y y
ˆ ˆD X X X D X

   (28c) 

If we use the weighted sum of square of the corrections of measurements in (28a), then the 

corresponding mathematical expectation can be rewritten as follows:  

1 1

1

1 1 1 2

( ) { ( )}

                      { ( )}

                      [ 2 { ( ) ( ) }]

tr

tr

n t tr 

 



T T

LS y LS LS y LS

T

y LS LS

T T T T

y y

ˆ ˆV D V V D V

D̂ V V

D X X X X D X X X X

 



  





  

 (29a) 

Accordingly, we can obtain the second estimate of the variance of unit weight from the ordinary LS 

estimate:  

2 1

LS2 LS LS LS2
r T

y
ˆˆ V D V /
  (29b) 
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y
X D X X

( )ˆcov y, y
1 2( ) T T

y
X X X X D

1 1 2( )  T T

y
X X D X X

( )cov V , y
1 2[ ]  T T

y
X( X X ) X I D
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where the second redundant number 
LS2

r  of measurements is given by 

1 1 12 { ( ) ( ) }
LS2

r n t tr T T T T

y y
ˆ ˆD X X X X D X X X X
      (29c) 

For the weighted LS and bias-corrected weighted LS methods, if the bias of the weighted LS 

estimate is not significant, both methods should lead to almost the same estimates of the variance of 

unit weight. In the similar manner to the derivation of the estimate of the variance of unit weight in 

association with the ordinary LS method, we can readily use (25b) and (26b) to obtain the estimates of 

the variance of unit weight by using the weighted LS and the bias-corrected weighted LS estimates, 

which are simply listed, respectively, as follows:  

2 1 ( )T

y
ˆˆ V D V /
 

WLS1 WLS WLS
n t  (30) 

2 1 ( )n t T

bc bc y bc
ˆˆ V D V /
   (31) 

where 
2ˆ
WLS1

  and 
2

bc
̂  stand for the estimates of the variance of unit weight by using the weighted LS 

and bias-corrected weighted LS estimates, respectively. If we remove the biases of the corrections of 

measurements due to the bias in the weighted LS estimate from the corrections of measurements, we 

can then obtain a new estimate of the variance of unit weight as follows:  

2 1( ) ( ) ( )T

y
ˆ ˆˆˆ V Xb D V Xb /

   
WLS2 WLS WLS

n t   (32) 

where 
b̂  is the bias of the weighted LS estimate. 

5. Numerical Examples and Practical Effect on the Estimate of Volume from LiDAR-Type DEM 

DEM has been playing an increasing role in hazard assessment (see e.g., [39–41]). A precise DEM 

will reduce the uncertainty of hazard mapping and could help make the operation and management of 

disaster rescue and support more focused. LiDAR has been widely used to construct DEM  

(see e.g., [37,39,40,43–45]). Although LiDAR measurements have been proved, both theoretically and 

experimentally, to be of multiplicative random errors (see e.g., [49–51]), they have been treated as if 

they were of additive error nature in DEM construction. Thus, this section is to serve two major 

purposes through numerical simulations: (i) to investigate the effect of LiDAR-type measurements on 

DEM construction; and (ii) to collectively use the error analysis and the estimates of the variance of 

unit weight given in the previous two sections to estimate the errors of the volume of landslide mass, 

since a precise estimate of the volume of a landslide from the constructed DEM can be important in 

practical hazard evaluation. 

In this section, we will follow the website http://geology.com/usgs/landslides/ with information  

on landslides and choose a rotational landslide model to simulate our numerical examples. A  

landslide of rotational type may create a curved surface. If the reader is interested in the  

worldwide damaging landslides in the 20th and 21st centuries, she/he may refer to the website 

http://landslides.usgs.gov/learning/majorls.php of the United States Geological Survey (USGS) for 

more information, with a landslide ranging from a few to many thousands millions cubic meter. The 

largest landslide in record seems to be the 1920 Haiyuan landslide, with an area of 50,000 square km 

and causing 100,000 plus deaths, due to the Haiyuan earthquake of magnitude M8.5, according to the 

above USGS website. 
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To start with the simulation, we first assume a simple mountain of trapezoidal prism, with a slope of 

50°, a height of 700 m and the length of 500 m. We then assume that a landslide occurs along the slope 

of the mountain, say due to a large earthquake. The design of landslide examples may be illustrated  

in Figure 1, with the left panel showing the original trapezoidal mountain and the right panel 

corresponding to the same mountain after the landslide. The volume of landslide mass can be 

computed by the following integration:  

V [ ( ) ( )] sm
D

S1 x,y S2 x,y dxdy  (33) 

where D  stand for the integration domain of the landslide surface S2(x, y) projected on the xy plane, 

the plane function S1(x, y) and the curved surface S2(x, y) are respectively represented as follows: 

( ),   
10 11 12

S1 x y x y    (34a) 

( ),     2 2

20 21 22 23 24 25
S2 x y x y+ x xy y       (34b) 

In this simulated example, the volume of the landslide mass is about 24.5686 million m
3
.  

We now assume that DEMs are constructed by using airborne LiDAR before and after the 

landslide occurs, respectively. The height of flight is fixed at 900 m and the trajectory of the flight is 

assumed to be free of errors. For simplicity of simulation, we may also assume that the slope plane 

S1(x, y) before the landslide is sufficiently precise and treated as error-free. Since the surface function 

S2(x, y) has only six unknown parameters to be estimated for the complete reconstruction of the DEMs 

after the landslide, we use the uniform distribution to generate 30 LiDAR points for S2(x, y); this 

number of points is sufficiently large to estimate the variance of unit weight reliably. The standard 

deviation of multiplicative errors is equal to 0.5 per cent, i.e.,   = 0.005, which is transformed into an 

equivalent standard deviation of unit weight of 1.268 m for the LiDAR ranging measurements. 

With the simulated LiDAR data at hand, we can then estimate the surface S2(x, y) by using each of 

the three estimation methods given in Section 2 and further compute the estimated volume of the mass 

due to the landslide, which can be symbolically written as follows: 

j

sm
V V

      V

j j j j j j

0 20 21 22 23 24 25

j

0 2 2

+b b b b b b

+

          

T

ˆ ˆ ˆ ˆ ˆ ˆˆ

ˆb 

     


 (35) 

where j

sm
V̂  is the estimate of the volume sm

V  of the landslide, the superscript j stands for each of the 

three estimation methods, namely, the ordinary LS, bias-corrected weighted LS and weighted LS 

methods. V
0  and the coefficients kl

b  are constant, independent of the measurements and the estimated 

parameters but calculated by integrating the corresponding given functions of S1(x, y) and S2(x, y) 

without the unknown parameters 2  in the domain D , and: 

( , ,  , , ,  )

[ , , , , , ] .

b

ˆ ˆ ˆ ˆ ˆ ˆ ˆ
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2
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Figure 1. Illustrated model of landslide of rotational type. The left and right panels stand 

for the model mountains before and after the landslide, respectively. 

 

Listed in Table 2 are the true and estimated volumes of the simulated landslide mass by the  

three methods. It is clear from Table 2 that the bias-corrected weighted LS method leads to a 

difference of 38,664 m
3
 from the true value and performs better than the ordinary and weighted LS 

methods. The difference between the true volume and that estimated from the ordinary LS method is 

80,790 m
3
, about the double of the difference by using the bias-corrected weighted LS method; a 

landslide with a size of this difference by itself is sufficiently large to cause severe damaging, when 

compared to the large landslides of the 20th and 21st centuries listed in the USGS website 

http://landslides.usgs.gov/learning/majorls.php. Nevertheless, the example has indicated that all the 

three methods can lead to good results, if the measurements are sufficiently precise. 

Table 2. The estimates of the volume of the simulated landslide mass. Also listed in this 

table are the roots of the MSE of the estimated volumes and the estimates of the standard 

deviation of unit weight. 

Methods True OLS BCLS WLS 

Volume (m3) 2.45686 × 107 2.46494 × 107 2.46073 × 107 2.46105 × 107 

RMSE (m3)  1.640 × 105 1.582 × 105 1.583 × 105 

σ (m) 1.268 1.251 1.245 1.245 

The abbreviations OLS, BCLS and WLS stand for the ordinary LS, bias-corrected and weighted LS methods, 

Volume for the volume of the landslide mass, and RMSE for the root mean squared errors of the estimated 

volumes of the landslide mass. σ is the standard deviation of unit weight. 

In order to evaluate the errors of the estimated volume by each of the three methods, we apply the 

results of error analysis in Section 3 and the estimates of variance of unit weight in Section 4 to the 

estimate of volume (35) and readily obtain the error estimates for the estimated volumes of landslide 

mass. By the ordinary LS method one usually means to use ( )T 1 ˆA A
   to represent the accuracy, 

which is incorrect statistically. In fact, if one would do so, one would end up with a standard deviation 

of 65,130, which is only about 40 per cent of the correct standard deviation, as will be seen later. The 

correct error analysis for the ordinary LS method with multiplicative errors should follow Section 3, 

since too optimistic an incorrect estimate can be disastrous in disaster evaluation. For example, if the 

magnitude of the 2011 Tohoku mega-earthquake would have not been incorrectly under-estimated by 

more than one unit, most lives (even if not all) may have survived from the tsunami. 
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More precisely, to estimate the accuracy of the estimated volume of the landslide, we first estimate 

the variance of unit weight by using (28b–c) for the ordinary LS method, (30) and (31) for the 

weighted LS and the bias-corrected weighted LS methods, respectively, and then compute the 

variance-covariance matrix of the estimated parameters in the case of the ordinary LS and  

bias-corrected weighted LS methods and the MSE matrix in the case of the weighted LS method. With 

these results at hand, we can finally apply the error propagation law to (35) and obtain the accuracy of 

the estimated volume of the landslide by each of the three methods. The MSE roots (RMSE) of the 

estimated volumes are given in row RMSE of Table 2. Obviously, the RMSE value by the  

bias-corrected weighted LS method is the smallest, which is nevertheless only better than the ordinary 

LS method by about 3.5 per cent in this specific example. The results of this example indicate that if 

LiDAR measurements are sufficiently precise, the three methods are able to precisely estimate the 

volume of landslide mass with sufficiently good accuracy. One may wonder whether the improvement 

of the bias-corrected weighted LS method over the ordinary LS method is marginally small. To answer 

this question, we simulate 500 independent examples with 30 different sampling points and repeat the 

above procedure to compute the RMSE values. The accuracy improvement of volume estimation with 

the bias-corrected weighted LS method over the ordinary LS method is shown in Figure 2. Depending 

on the locations of the measurements, the maximum improvement reaches about 19 per cent, which 

can have a significant consequence in hazard evaluation. Since the LiDAR measurements are assumed 

to be very precise, the biases of the estimated parameters from the weighted LS method are very small, 

as can be seen from the RMSE value in Table 2 in this example. 

Figure 2. Accuracy improvement of the bias-corrected weighted LS method over the 

ordinary LS method (per cent) in the 500 independent random experiments. 
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6 Concluding Remarks 

Adjustment has been founded on the basis of observational models with additive random errors to 

process data in geoscience. The most important feature of an observational model with additive errors 

is that random errors do not change with the size of a signal or a measurement. However, with the 

advance of modern space observation technology, we realize that some of random errors change with 

the sizes of measurements, which may be attributed to the random nature of physical media along the 

path of observation. For example, GPS, VLBI and EDM baselines, InSAR and LiDAR measurements 

all show the feature of multiplicative random errors in the sense that their accuracy always contains 

one term that is proportional to the length of the baseline or the strength of signal. Theoretically 

speaking, the theory and methods developed on the basis of observational models with additive errors 

cannot meet the need of models with multiplicative errors. New theory and methods have to be 

developed accordingly. Xu and Shimada [33] demonstrated that the LS principle can be used to adjust 

observational models with multiplicative errors, unless the induced bias in the weighted LS estimate 

can be removed. 

This paper has substantially extended the work by Xu and Shimada [33] by supplementing a 

complete error analysis for the quantities of interest. We have derived the cross-covariance matrices 

among such quantities. Since the variance of unit weight has been one of the most important quantities 

in statistical analysis of measurements and hypothesis testing, we have also constructed five estimators 

that correspond to the ordinary LS, the weighted LS and the bias-corrected weighted LS methods. 

Although LiDAR measurements have been known, theoretically and experimentally, to be of 

multiplicative error nature (see e.g., [37,39,43–45]), they have been used to reconstruct DEM as if  

they were of additive random errors. We have simulated an example of reconstructing DEM from 

LiDAR-type measurements and investigated the effect on volume estimation from the reconstructed 

DEM. The results have shown that all the three methods can well reconstruct the DEM, if 

measurements are sufficiently precise. The bias-corrected LS method can perform much better than the 

ordinary LS method, with a maximum improvement of about 19 per cent from 500 independent 

repetitions of the example experiment. Such an improvement could be important in hazard evaluation 

of landslides, for example. 
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