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Abstract: This paper presents a non-intrusive approach for monitoring driver drowsiness
using the fusion of several optimized indicators based on driver physical and driving
performance measures, obtained from ADAS (Advanced Driver Assistant Systems) in
simulated conditions. The paper is focused on real-time drowsiness detection technology
rather than on long-term sleep/awake regulation prediction technology. We have developed
our own vision system in order to obtain robust and optimized driver indicators able to be
used in simulators and future real environments. These indicators are principally based on
driver physical and driving performance skills. The fusion of several indicators, proposed in
the literature, is evaluated using a neural network and a stochastic optimization method to
obtain the best combination. We propose a new method for ground-truth generation based
on a supervised Karolinska Sleepiness Scale (KSS). An extensive evaluation of indicators,
derived from trials over a third generation simulator with several test subjects during different
driving sessions, was performed. The main conclusions about the performance of single
indicators and the best combinations of them are included, as well as the future works derived
from this study.
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1. Introduction

Of all the problems related to transport, safety is the one that has a greater impact on the everyday
life of citizens. In addition, it significantly affects the majority of socio-economic indicators. A great
deal of effort has been made in recent years in the EU on programs of action for road safety, reducing
traffic crashes by 40% from 2001 to 2010 [1]. However, the situation is still far from satisfactory. In 2010,
there were almost 31,000 deaths and 1,400,000 crashes on the roads of Europe of the twenty-seven states
(27 EU), which represents an annual cost of approximately 200,000 million Euros, equivalent to 2% of
the EU GNP (Gross Domestic Product) [2]. The current white paper on transport in the EU, published
in 2011, aims to halve the number of road deaths by 2020 [3].

Recent studies have identified the inattention of the driver as the main cause of crashes. Additionally,
the National Highway Traffic Safety Administration (NHTSA) estimates that approximately 25% of
police-reported crashes involve some form of driver inattention [4]. One common definition of driver
inattention is given in [5]: “Driver inattention represents diminished attention to activities that are critical
for safe driving in the absence of a competing activity.” There are different categories for the driver
attention state, but in practice, two main categories are proposed: (1) distraction and (2) fatigue. In this
paper, we will focus on the fatigue category.

The term fatigue refers to a combination of symptoms, such as impaired performance and a subjective
feeling of drowsiness. Even with the intensive research that has been performed so far, the term fatigue
still does not have a universally accepted definition [6]. The European Transport Safety Council (ETSC)
defines fatigue as tiredness concerning the inability or disinclination to continue an activity, generally
because the activity has been going on for too long. Besides, it establishes drowsiness as one external
representation of fatigue, being the most important for driving. For the purpose of this paper, the terms
drowsiness and fatigue will be employed interchangeably, unless otherwise stated. Therefore, some
studies carried out by ETSC conclude that there are four drowsiness levels, based on user behavior [7]:
completely awake, moderately awake, drowsy and severely sleepy. In this paper, we will group them into
two levels, alert and drowsy, in order to reduce complexity and to obtain generalized results by using
binary classifiers. Fatigue during driving has been shown to result in a greatly increased risk of suffering
a collision. In particular, [8] have shown that driving with fatigue raises the accident risk between four
to six times, compared to alert driving. In fact, most of the research works carried out so far concluded
that aspects related to fatigue were present in 15%–20% of the crashes [9]. As a consequence, the
development of systems capable of monitoring drivers’ fatigue state in real-time and capable of warning
them just before they fall asleep is vital to prevent crashes.

In the last few decades, diverse techniques have been developed for monitoring driver drowsiness.
According to the state-of-the-art, there are five main categories depending on the type of measures used
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in the detection: driver biological, subjective report, driving performance, driver physical and hybrid
measures [10].

The first category directly measures the biological signals on the driver’s body. The most important
signals are: electroencephalography (EEG), electrocardiogram (ECG), electrooculography (EOG),
surface electromyogram (sEMG), galvanic skin response (GSR) and respiration [11–13]. The main
drawback of such signals is that conventional measuring instruments are intrusive. In addition, most of
the biological patterns vary between individuals. However, some biological variables, such as ECG, GSR
and respiration, can be measured with non-intrusive devices in the vehicle. These include sensors based
on seat pressure [13], flying instrumented with electrodes [14] and nanosensors [15]. These devices are
based upon the same technology as conventional devices, but the body contact is achieved indirectly by
taking advantage of the driver’s own position while driving. Their main limitation is that the quality of
contacts is worse than those made clinically, which means using more sophisticated methods of signal
analysis to remove noise and extract the relevant parameters. This causes a performance decrease that
makes the proposal impossible in most cases. These signals are normally used in psychological studies
and as the ground truth for other non-intrusive methods.

There are several subjective measurement scales in use. The two most common are the Sanford
Sleepiness Scale (SSS), proposed by Hoddes et al. [16], and the Karolinska Sleepiness Scale (KSS),
proposed by [17]. In the last few years, KSS has become the most employed tool for the subjective
self-assessment of drowsiness. A supervisor asks the driver from time to time about his or her status
while he or she is driving. The scale involves nine steps, of which every odd number is associated
with a label as follows: KSS = 1 (extremely alert), 3 (alert), 5 (neither alert nor sleepy), 7 (sleepy,
but not fighting sleep) and 9 (very sleepy, fighting sleep). KSS has been shown in several studies
to suitably correlate with physiological signs of drowsiness [18,19]. However, KSS is recorded over
relatively long time intervals, e.g., every 15 min, as a trade-off between high temporal resolution and
avoiding intrusive feedback. As a consequence, KSS cannot record sudden drowsiness variations caused
by different situations. In addition, this kind of approach requires that the driver frequently reports his
or her state. Thus, both the drowsiness level result and the driver could cause interference. In brief,
this is an intrusive measure that cannot be employed in the development of an automatic monitoring
system to warn drivers before they fall asleep at the wheel in real time. As in the previous category, this
measure is normally exploited for psychological studies of drowsiness and as the ground truth to test the
performance of other proposals.

The measured signals on the vehicle reflect the actions of the driver, and therefore, by analyzing them,
the driver’s behavior can be indirectly characterized in a non-intrusive way. They are usually directly
obtained from a simulator or from the internal sensors of a vehicle through the CAN (Controller Area
Network) bus. The force on the pedals, changes in vehicle speed, steering wheel movements, the lateral
position or lane changes are typically employed in this category [20,21]. Indicators of driver drowsiness
may be formed by extracting relevant information from signals, such as those mentioned above. These
indicators are scalar-valued functions that map given segments of signals onto numerical values. Several
indicators, based on individual signals or a combination of them with different complexities have been
exploited in the literature [22,23]. The advantage of this approach is that the signals have physical
meaning, and their acquisition and posterior indicator computation is relatively easy. This is the reason
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why the few commercial systems currently available are mainly based on this category: Volvo’s Driver
Alert Control [24], Mercedes-Benz’s Attention Assist [25], Lexus’ Driver Monitoring System [26] or
Saab’s Driver Attention Warning System [27]. However, these systems usually require a training period
for each person; thus, they are not applicable to occasional drivers. Additionally, they do not work in the
detection of so-called micro-sleeps [28] (when a drowsy driver falls asleep for a few seconds on a straight
road without changing the direction of the vehicle). On the other hand, from the authors knowledge, in
the open literature, there are very few details available with regard to the mechanisms or parameters of
commercial systems.

The physical measures approach is mainly based on monitoring the driver’s face, employing cameras
and image processing techniques to obtain some physical indicators: blink duration, blink rate,
PERCLOS (Percentage of Eye Closure) [29], eye closure duration, nodding frequency, fixed gaze, etc.
This approach is effective, because, on the one hand, driver drowsiness is exposed by the appearance
of the driver’s face and the activity of his head and eyes and, on the other hand, measures can be
carried out in a non-intrusive way. However, they are normally used in research and simulated scenarios,
but not in real ones, due to the problems of vision systems working in outdoor environments (lighting
changes, sudden movements, etc.). Additionally, they do not work properly with users wearing glasses
and need high computational requirements. In the state-of-the-art, different kinds of cameras and
processing algorithms have been proposed: visible camera-based methods [13,30–32]; near-infrared
(NIR) camera-based methods [33–35]; and methods based on stereo cameras [36–38]. Some of them
are commercial products. These include the faceLAB [38], the DSS (Driver State Sensor) [38], the
Smart Eye [37] and DFM (Driver Fatigue Monitoring) [31]. Numerous research groups have purchased
commercial facial trackers for measuring physical signals related to the face and eyes, which allowed
them to concentrate on exploring the drowsiness detection algorithms instead of the image acquisition
and processing. However, these commercial supporters are closed source systems, and they only work
properly under restricted conditions of the environment, significantly reducing their performance in real
driving conditions. In addition, they usually require a hard calibration setup for each user. They lack of
scientific publications in journals, and they do not provide the comprehensive tests and self-evaluations
in rigorous scientific studies.

Regarding systems based on a single sensor, they usually have difficulties, due to the uncertainty of
the observations associated with the measurements obtained in real conditions. The use of multi-sensor
systems reduces the uncertainty and ambiguity of data obtained by a single source. Furthermore,
the combination of indicators from different sensors, e.g., combining driver physical with driving
performance measures, increases the confidence of drowsiness detection. These proposals are known
as hybrid measurement systems. A review of the most representative works in this area shows that this
strategy has been exploited in recent years [39]. Among them, we highlight the work of [22], where
they presented some artificial neural networks (ANNs) to analyze vehicle parameter data (lane position,
steering-wheel angle) and an eye-closure indicator computed from camera images (PERCLOS) in order
to infer driver drowsiness without optimizing the indicators. It was reported that the system had an
accuracy of 88%, with a false-alarm rate of 9% in simulation. In [40], a proposal called PERCLOS+
was presented, where PERCLOS was combined with lane deviation indicators. Based on simulation
and preliminary on-road tests, their proposal was found to be more robust than only using PERCLOS.
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This work was focused on long-term drowsiness estimation technology, as opposed to our approach with
real-time drowsiness detection technology. Another interesting work is the one presented in [23], where
a variety of state-of-the-art optimized indicators based on driving signals are evaluated and combined
using ANNs with a mathematical model of drowsiness. They showed that a nonlinear combination of
indicators based on driving behavior with a model of drowsiness significantly improved driver fatigue
detection, yielding a score of 0.83 in simulation. In the conclusion, they suggested that it might be
worthwhile to include an indicator based on eye closure data.

This paper presents a non-intrusive approach for monitoring driver drowsiness employing the fusion
of several optimized indicators based on driver physical and driving performance measures in simulation.
This work is focused on real-time drowsiness detection technology rather than on long-term sleep/awake
regulation prediction technology. The main goals of our proposal are: (1) to develop our own vision
system in order to obtain robust and optimized driver physical indicators able to be used in simulators
and future real vehicles; (2) to evaluate the fusion of several indicators using a neural network and a
stochastic optimization method to obtain the best combination for the simulated scenarios; (3) to propose
a new method for ground truth generation based on a supervised KSS; and (4) to validate our proposal
by using a third generation simulator and different drivers.

The remainder of the paper is organized as follows. In Section 2, the dataset and ground truth
methodology is described. Section 3 presents our drowsiness detection proposal. Section 4 explains
the driver indicators and Section 5 the driving indicators employed in the proposed methodology. The
optimization of indicators is studied in Section 6, and the data fusion process is analyzed in Section 7.
Experimental results are drawn in Section 8. Finally, Section 9 concludes the paper and depicts some
further work.

2. Dataset and Ground Truth

The dataset is composed of several sequences collected in a realistic driving simulator. The main goal
of the simulated experiments was to infer drowsiness in the test subjects attending to different strategies,
i.e., sleep deprivation, day time and driving operation time and driver/driving behavior analysis in
extreme conditions. A total of nine drivers participated in the experiments. They were recruited
from the Spanish national register of professional drivers. They had to be frequent drivers, driving at
least 5,000 km a year, not wearing glasses and not suffering from habitual sleep disturbances. Before
participation, the subjects were informed and signed a consent form. Conditions in simulated roads for
the different driving trials are shown in Table 1.

2.1. Trials in the Simulated Scenario

The study was designed such that each driver would carry out some sessions under two different
conditions: (1) without sleep deprivation (NSD), after having slept at least seven hours in the night prior
to the day of the experiment and starting at 11:30; (2) with sleep deprivation (WSD), after having slept
only four hours during the night preceding the experiment and after a normal working day, starting at
15:30 (after having lunch). Each driver carried out one driving session (1 h) for the NSD condition and
two driving sessions (2 h) for the WSD condition, as depicted in Figure 1b. There was a small break of a
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few seconds between sessions 2 and 3 for data recording. Nine drivers participated in the study. A total
of 27 driving hours were collected with and without sleep deprivation in a 2/1 proportion. It is worth
mentioning that some drowsiness symptoms appeared in six of the test subjects, obtaining very valuable
information about driver drowsiness situations.

Table 1. Distribution and main features of driving trials. NSD, no sleep deprivation; WSD,
with sleep deprivation.

Trials Simulation (2.1)

Number of users 9
Conditions with & without sleep deprivation
No. of sessions 1 (NSD) 2 (WSD)
Session duration 1 h 1 h
Characteristics Simulator (AP-2 highway)
Brand Vehicle IVECO (Industrial VEhicle COrporation) Stralis

Figure 1. Simulation test design. (a) Simulation environment overview; (b) Driving
sessions schema.

(a)

(b)
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Simulation methodologies in the field of drivers fatigue research have been proven to be both
cost-effective and efficient. Simulation aims at offering to the driver the opportunity to immerse himself
in his habitual workplace. In our case, the study employed a third generation simulator called TUTOR
and placed at the CEIT (Centro de Estudios e Investigaciones Técnicas de Gipuzkoa) facilities [41].
For a deeper explanation about the simulator, we refer the readers to the authors’ publication [42]. A
50 km-long snippet of a sampled actual 12.5 m-wide per direction AP-2 highway, with two 3.75 m-wide
lanes, a speed limit of 120 km/h and that was moderately curved was looped during the driving session.
All the driving sessions were carried out under a daylight setting, although day and night conditions
were very similar in the simulation environment. During the different driving sessions, there was sparse
oncoming traffic and some traffic in the same direction in order to encourage monotonous driving and
infer driver drowsiness. The simulator registered driving and driver variables. The driving variables are:
vehicle-lane lateral position, steering wheel angle, heading error, speed, braking and acceleration, among
others. These are signals that measured the motion of the vehicle resulting from the actions of the driver.
These signals were registered at 30 Hz. With regard to the driver variables, these were obtained from our
own NIR vision system placed in the dashboard, and they showed the driver behavior by his or her face.
These driver variables, such as PERCLOS, blink frequency, blink duration, fixed gaze and others, were
also registered at 30 Hz.

2.2. Ground Truth Generation

To reduce the very high complexity of the drowsiness detection problem, this is usually treated as a
binary classification problem in which the data collected during a given driving interval is categorized
as an alert or a drowsy driver state. The class assignment is usually based on the driver’s own subjective
drowsiness estimation or on experts’ estimation from the driver and driving indicators analysis. As we
pointed out in the introduction, the Karolinska Sleepiness Scale (KSS) [18] is the subjective scale most
employed nowadays. The alert class is normally defined as the driving period corresponding to KSS
estimates from one to six and the drowsy class to KSS estimates of eight and nine. To obtain a clear
separation of the two classes, samples with KSS = 7 are normally discarded. Some authors argue that it
is an intrusive method and that both the drowsiness level and the driver cause interference. Then, they
say that drivers have difficulty judging their fitness after three hours of monotonous driving [43–45].
Nevertheless, other authors do not consider these arguments and advocate the use of KSS [17,23].

The estimation of drowsiness level by experts has supporters and detractors. On the one hand, this
is a non-intrusive method that is easy to implement for a binary classification case. On the other hand,
experts must be trained to estimate the levels of drowsiness from the driver and driving indicators, but
clues can change among drivers and experts.

Taking into account that there is no consensus in the state-of-the-art respecting the method that
generates the ground truth, we propose a supervised KSS method. Basically, it is a fusion of the two
existing tendencies in the literature. The binary output of the KSS is fed back by three experts, previously
trained in driver drowsiness detection. Each expert classifies each interval as alert or drowsy based on the
binary KSS level assigned by the driver, the indicators obtained from the vision-based driver monitoring
system and the driving indicators obtained from the vehicle sensors. A voting criterion is employed
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to assign the final level. To perturb the test subjects as little as possible while collecting a sufficient
number of estimations, they were required to provide estimates every 5 min. Hence, each hour of driving
provided 12 supervised KSS estimates. A very high correlation between KSS and supervised KSS was
obtained in our experiments, having most of the divergences when the drivers were drowsy. In our
opinion, the interference of the proposed drowsiness level estimation was very low. However, it must be
remarked that the maximum trial duration was three hours, and according to the literature, KSS starts
having problems after 3 h.

3. Drowsiness Detection Proposal

The drowsiness detection is based on ANNs learning and the data fusion of several optimized
indicators obtained from driver physical and driving performance signals. Figure 2 shows the general
architecture of our proposal.

Figure 2. General architecture of our Drowsiness Detection System.

Driver physical indicators are obtained from our monocular vision system. An NIR illuminator and
a camera, sensitive to the NIR, are placed in front of the driver, in the dashboard, in order to acquire
images of the driver’s face independently of the ambient lighting conditions. When the lighting is low,
the NIR illuminator automatically turns on and vice versa. Image processing algorithms are used for eye
detection and tracking and eye closure parametrization to estimate some driver drowsiness clues.

Driving physical indicators are obtained from the following registered signals in the vehicle: steering
wheel movements, heading error and vehicle-lane lateral position. Those signals are normalized,
optimized and synchronized in time and space before the computation of the corresponding indicators.
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The two kinds of indicators, driver-related and driving-related, are combined using ANNs to get
a unique driver drowsiness level. ANNs were chosen, because they infer solutions from data with
no prior knowledge of the patterns in the data. Then, this is the fusion technique with the best
performance in driver fatigue studies, according to the state-of-the-art. For instance, in some of the
previous works [22,44,46,47], this technique retrieves recall rates between 55% and 90%, depending on
the inputs. Optimal combinations of a variety of drowsiness indicators proposed in the literature were
evaluated by using a conveniently trained ANN. The ground truth was obtained employing the supervised
KSS explained in the previous section. Indicators were then subjected to parametric optimization using
stochastic optimization methods.

The following paragraphs present the main features of the calculation process for the driver and
driving indicators for the proposed system.

4. Driver Indicators

Most of the research groups that work on this topic have purchased commercial vision systems for
measuring physical driver indicators, such as gaze direction, blink duration, PERCLOS, etc. Some
companies that provide these systems are Seeing Machines, SmartEye or Attention Technology Inc.
In this way, researchers can concentrate on exploring the drowsiness detection algorithms instead of
the image acquisition and processing. These systems work reasonably well in simulation, but their
performance is significantly reduced in real driving conditions.

Due to the fact that the final goal of the authors is to implement our proposal in real vehicles, we have
developed our own vision system in order to have full control of this. It provides the following indicators:
eye closure duration, blink duration, blink frequency, PERCLOS, nodding frequency, face position and
fixed gaze. Nevertheless, as the authors showed in [34], the most robust driver physical indicator for real
conditions is PERCLOS. We experimentally proved that any combination of indicators gave a slight
improvement to only using PERCLOS. This is the reason why we employed PERCLOS as the only
driver physical indicator.
PERCLOS represents the percentage of time that the eye is more than 80% closed, excluding

blinks, per a given period of time, of 30 s in our case, according to our own previous experiments [34].
This indicator is provided by our system in real time (30 Hz). It is user-independent, robust against
illumination changes, face gestures or scale and does not require manual calibration. PERCLOS

measurement for users wearing glasses is not the purpose of this method. Consequently, only drivers
without glasses participated in the trials. A deeper explanation of the PERCLOS computation
methodology proposed by the authors can be found in [48] for simulation and in [49] for real scenarios.

For illustration, the evolution of PERCLOS is displayed in Figure 3 for a test subject with and
without sleep deprivation conditions (drowsy/alert) during a 5-km interval. As can be seen, PERCLOS
clearly shows higher values for the sleep deprivation condition. In the trial without deprivation,
PERCLOS varies from zero to 0.11, indicating an alert state. However, in the case of sleep deprivation,
PERCLOS varies from 0.05 to 0.50, indicating clear drowsiness periods for the highest values.
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Figure 3. Temporal serie for PERCLOS.
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5. Driving Indicators

A variety of drowsiness indicators based on driving behavior has been proposed in the literature. The
most important are based on vehicle lateral position in the lane, steering wheel angle and heading error
signals [23].

The lateral position signal is measured from a point placed on the right lane boundary to a line
(perpendicular to the wheel axes) through the center of the vehicle. The lateral position always takes
positive values in the lane. With regard to the steering wheel angle, a value of zero indicates that the
steering wheel is centered, and it is positive for the anticlockwise rotation of the wheel. The heading
error is defined as the angle between the direction of the heading of the vehicle and the tangent line of
the driving lane. A positive error means the vehicle is approaching the left lane boundary and a negative
value that it is approaching the right lane boundary.

Figure 4 depicts a scheme of the indicators that are evaluated in this paper. Two studies are
carried out:

• Indicators without optimization, with given functional forms and a given parameter setting;

• Optimized indicators, in which the functional form of an indicator from the literature is used, but
where the parameters that define the indicator are subject to optimization.

Indicators are calculated by applying windowing techniques over the input signals during 30 s,
generating some time series. In this way, the time series scheme employed is the same as the one
for PERCLOS evaluation.

As in the previous section, we show some graphs depicting the driving signal measurements and the
indicators associated with them, for a test subject with and without sleep deprivation and driving in
the simulator during a 5-km segment. Then, Figure 5 exhibits the lateral position signal and its related
indicators. As can be seen, the mean of the lateral position is approximately the center of the lane
(1.875 m), and variations are closer to the right lane boundary than the left lane one. Besides, lateral
deviation in the drowsy driver is higher than in the alert one, indicating that the drowsy driver has some
problems in maintaining the lane direction.
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Figure 4. Evaluated indicators.

Figure 5. Lateral position indicators. (a) Lateral position signal; (b) the standard deviation
of the vehicle lateral position (STD lp); (c) the mean squared error of the lateral position
with respect to the center of the driving lane (MSE lp); (d) optimized fraction of lane exits
(Lanex opti); and (e) time to line crossing of 5 s (TLC 5 s).
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Figure 6 depicts steering wheel angle signal next to indicators obtained from it. Analyzing the steering
wheel angle evolution, we conclude that its values ranged from 90◦ to −120◦ for both alert and drowsy
subjects, indicating that drivers usually give higher turns to the right lane boundary than to the left lane
one. Moreover, if the driver is alert, small corrections are made in the steering wheel, continuously
having big variations that correspond to turns due to road curves. If the driver is drowsy, the small
variations disappear, and sudden turns are made from time to time to correct the trajectory.

Figure 6. Steering wheel indicators. (a) Steering wheel signal; (b) the steering-wheel angle
(STD sw) and (c) rapid steering-wheel movement (RSWM opti).
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Figure 7 depicts the heading error signal and its associated indicators. Heading error values ranged
from −10◦ to 6◦ for both alert and drowsy drivers. If the driver is alert, these variations correspond
to anticipations of road curves, and there is a high correlation with the steering wheel signal. For the
drowsy driver, anticipation of the curves is lower, and high variations appear in straight road segments,
indicating that the driver has some problems in maintaining the lane direction.

Figure 7. Heading error indicators. (a) Heading error signal; (b) the standard deviation of
the heading error (STD he) and (c) the mean squared error of the heading error (MSE he).
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Hereafter, we present the different indicators selected for this study, where xi represents the i-th
sample in a time series and n denotes the number of samples used when computing the output value of
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the indicator. For a deeper explanation of these, we refer the readers to [23].

(1) The standard deviation (STD) of a time series is defined by Equation (1).

STD =

√∑n
i=1 (xi − x)2

n− 1
(1)

where x denotes the arithmetic mean of the time series.
The standard deviation of the lateral position is, perhaps, the most commonly studied indicator based

on driving behavior. However, the standard deviation of other signals, such as the steering-wheel angle
and the heading error, has also been studied in the literature [23]. In this paper, we proposed the
computation of the standard deviation of the vehicle lateral position (STD lp), the steering-wheel angle
(STD sw) and the heading error (STD he).

Figure 5b plots the STD lp indicator. As can be seen, values for the drowsy test subject are higher
than for the alert one. Then, there is a high correlation between these results and the PERCLOS ones.
For the drowsy driver, there are two segments with clear drowsiness symptoms (21.5–22.5 km and
24–25 km). Figure 6b shows the STD sw indicator. In this case, there is not a high difference between
the values for alert and drowsy subjects. Nevertheless, in straight road segments, values for the drowsy
driver are slightly higher than for the alert one. Finally, Figure 7b displays the results for STD he,
which reaches higher values for the drowsy test subject than for the alert one, even in the case of
sharp curves.

(2) The mean squared error (MSE) is defined as the standard deviation in (1), but with the mean
value, x, replaced by a parameter, p. For the mean squared error of the lateral position with respect to
the center of the driving lane (MSE lp), the expression (xi− p) equals zero when the vehicle is located
at the center of the driving lane. Then, the value of p is 1.875 m before optimization. The optimization
process carried out will be explained in Section 6. The mean squared error of the heading error is denoted
as MSE he. When (xi − p) equals zero, this means that the heading of the vehicle and the tangent line
of the driving lane are the same. Thus, p equals zero.

Figure 5c shows the MSE lp indicator. As can be appreciated, this indicator is highly correlated
with STD lp; then, the same conclusions can be drawn. Figure 7c depicts MSE he and a similar
behavior as the STD he indicator can be observed.

(3) The fraction of lane exits (Lanex) is a measure of a driver’s tendency to exit the lane [50]. It
is defined as the fraction of a given time interval spent outside the driving lane. The Lanex indicator
depends on the lateral position signal and is computed from Equation (2).

Lanex =

∑n
i=1 θ(xi)

n
(2)

where:

θ(xi) =


1 if xi > xL

1 if xi < xR

0 otherwise

(3)
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Here, xL = 2.625 m and xR = 1.125 m define the real left lane boundary and right lane boundary,
respectively, such that xi = xL corresponds to a situation in which the left wheels of the vehicle (a truck
2.25 m-wide) touch the left lane line. Similarly, at xi = xR, the right wheels touch the right lane line.
In a general way, the parameters (xL, xR) define the positions of virtual lines placed anywhere on the
road. The position of these lines can be optimized in order to improve Lanex performance obtaining
Lanex opti.

Figure 5d plots the results for Lanex opti instead of Lanex, because the vehicle never crosses
the real lane for both test subjects. Once the parameters (xL, xR) are optimized, the virtual lines are
overtaken for both drivers. In this case, Lanex opti for the drowsy subject has quite higher values than
for the alert one. Then, there is a high correlation with the previous indicators, the difference between
indicators in this last case for alert/drowsy being higher, due to the integrate values of a binarization
process controlled by a threshold.

(4) The time to line crossing (TLC) is defined as the time needed for the vehicle to cross any of the
lane boundaries (left or right) [51]. Although TLC can be accurately calculated using trigonometry,
approximations are commonly employed due to the complexity of these operations and the problem of
obtaining the required variables. In this work, the first derivative of the lateral position is applied, i.e.,
the lateral speed (ẋ). When ẋ is positive, this corresponds to a lateral movement of the vehicle towards
the left boundary of the driving lane, and when it is negative, this corresponds to movements towards the
right boundary. The TLC is calculated using the following equation:

TLC =

{
dR/ẋ if ẋ < 0

dL/ẋ if ẋ > 0
(4)

where dR = 1.125 − xi is the (negative) distance from the right boundary of the virtual driving lane
to the right side of the right front wheel of the vehicle, and similarly, dL = 2.625 − xi is the distance
from the left boundary of the virtual driving lane to the left side of the left front wheel of the vehicle.
Note that TLC is mathematically undefined for ẋ = 0. To avoid TLC values approaching infinity as
ẋ approaches zero, a constant TLCmax is introduced, such that TLCi is set to min(TLCi, TLCmax),
where TLCi denotes sample i in the time series. On the other hand, for dL < 0 and for dR > 0, TLCi is
set to zero, because it represents that the vehicle is out of the virtual lane.

Here, we will use an indicator based on [52] and defined as the number of times that the TLC signal
falls below 5 s in a given time interval (TLC 5s), which is presented in Equation (5).

TLC 5s =
n−1∑
i=1

f(TLCi) (5)

where:

f(TLCi) =

{
1 if TLCi < a

0 otherwise
(6)
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With a = 5. This parameter can be adjusted in an optimization process generating an optimized TLC
(TLC opti). Another important TLC-based indicator is the one proposed in [51], which measures the
average of TLC (TLC avg) according to the following expression:

TLC avg = − 1

n

n∑
i=1

TLCi (7)

In Figure 5e, the TLC 5s indicator is depicted. In practice, as in the Lanex case, the virtual lane
obtained from the optimized parameters is employed. As can be seen, the results are quite correlated to
the Lanex opti plot (Figure 5d).

(5) Rapid steering-wheel movement (RSWM) measures the fraction of the steering-wheel velocity
that exceeds a specified threshold value during a given time interval. This indicator is calculated by
applying the following equation:

RSWM =
1

n− 1

n∑
i=2

h(ṡi) (8)

where ṡ is the first derivative of the wheel angle signal and:

h(ṡi) =

{
1 if |ṡi| > d

0 otherwise
(9)

The value of the threshold, d, which was proposed in [50], was initially set as 125◦/s. Subjecting d
to optimization (RSWM opti), a value of 13◦/s is obtained.

Figure 6c depicts the RSWM opti indicator results. Values for the drowsy subject are clearly higher
than for the alert one. Information derived from the alert driver indicates that the threshold is not usually
exceeded. This indicator is highly correlated to that derived from the lateral position signal for the
drowsy driver, but it is almost zero for an alert driver. In this way, it is easy to differentiate between the
two conditions, although the threshold definition is critical.

6. Indicator Optimization

The indicators analyzed in the previous sections have some constant parameters whose values are set
by their proponents in an experimental way. However, there is no guarantee that these parameters are
optimized to maximize drowsiness detection. The optimization process finds values for the parameters
of a drowsiness indicator, such that the system’s ability to distinguish between a drowsy or an alert driver
is maximized. The optimization process is depicted in Figure 8.

As mentioned in Section 2, the problem of drowsiness detection has been treated as a binary
classification (alert vs. drowsy). Besides, a supervised KSS method has been proposed to generate a
binary ground truth for the optimization process.
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Figure 8. Optimization process.

When optimizing a classifier, one must take into account that the size of the dataset is finite and there
exists a risk of fitting to noise. For avoiding overfitting, a dataset that is sufficiently large and a holdout
validation is employed. In this procedure, the data is divided into three subsets: training, validation
and testing. The training subset is employed to optimize the parameters; the validation data helps in
determining the quality of the training and the stopping criteria, and finally, the testing subset allows for
the evaluation of the actual classifier performance.

As mentioned in Section 2, nine test subjects participated in the study. The ground truth signal was
generated every 5 min. Thus, in each hour of a driving session, 12 supervised KSS estimates were
obtained. Some intervals had to be removed from the data, either because of simulator/vehicle loss of
data or because of driver problems during the session. After removing those intervals, the final number
of supervised KSS estimates was 314. Note that the indicators were calculated over a time series of 30 s
(i.e., 900 samples). Thus, the time series that correspond to a supervised KSS estimate (300 s) were split
into 10 time series of 30 s in length. As a consequence, each supervised KSS estimate provided a total
of 10 data points. Then, the entire dataset in simulation contained a total of 3,140 data points, 60% for
training, 20% for validation and the remaining 20% for testing.

For binary classification, it is mandatory to apply a threshold, T , to the output values of each indicator.
Then, the class assignment is obtained applying Equation (10).

C =

{
Drowsy if Indicator > T

Alert otherwise
(10)

Prior to the application of the objective function, a confusion matrix is computed as depicted in
Figure 8. The objective function is defined by Equation (11):

f =
Γsens + Γspec

2
=

1

N

N∑
i=1

Γsens
i + Γspec

i

2
(11)

where Γsens is the sensitivity and Γspec is the specificity for all the test subjects (N ). They are obtained
from the confusion matrix through the following expressions for each subject, i:

Γsens
i =

TP

TP + FN
Γspec
i =

TN

TN + FP
(12)

where TP (true positive) is the number of data points classified as the drowsy state, FN (false negative) is
the number of data points belonging to the drowsy class and classified in the alert one, TN (true negative)
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is the number of correctly classified data points in the alert class and FP (false positive) is the number
of data points belonging to the alert class and classified as drowsy. Note that f takes values in the
range [0,1]. It is well known that there are individual differences in the effects of drowsiness on driving
behavior. In this paper, we try to minimize the effects of individual differences.

A stochastic optimization algorithm is chosen, i.e., a genetic algorithm (GA) [53], for optimizing the
indicators. A detailed description of the GA workings is out of the scope of this paper. The values
obtained in this optimization process for the parameters of the indicators are shown in Table 2.

Table 2. Optimized indicators parameters. Lanex, fraction of lane exits; TLC, time to line
crossing; RSWM, rapid steering-wheel movement.

MSE lp Lanex TLC RSWM MSE he
Trial p xL xR a d p

Simulation 1.865 m 2.27 m 1.42 m 6.4 s 13◦/s –1.2◦

7. Data Fusion

A drivers behavior is complex, variable and non-linear. Establishing dependences between driver-
related and driving-related indicators with the driver drowsiness level is a complex task. Artificial neural
networks (ANNs) have been studied and utilized in numerous drowsiness studies. One of the main
advantages of ANNs is that they infer solutions from data with no prior knowledge of the patterns in
the data. This characteristic is very important, because in driver behavior studies, the exact input-output
relationship is difficult to establish. ANNs also have the ability to generalize (i.e., they respond with a
reasonable accuracy to patterns that are broadly similar to the original training patterns), which is very
useful, because real-world data is noisy, distorted and often incomplete. ANNs are nonlinear, which
allows them to solve some complex problems more accurately than linear techniques [54].

In this work, the feed-forward neural network (FFNN) architecture, one of the most important types
of ANNs, is employed, as depicted in Figure 9. FFNNs have a layered structure, where each layer
consists of neurons receiving their inputs from neurons of a layer directly below and sending their outputs
to units in a layer directly above the unit. There are no connections within a layer. In our case, the
input signals were passed through a layer of hidden neurons. Next, the output signals from the hidden
neurons were passed through a single output neuron, thus generating the output of the FFNN. A sigmoid
transfer function has been used for both hidden and output layers. Thus, all neurons, including the output
neuron, provided output values in the range [0,1]. In order to train the FFNN, a scaled conjugate gradient
back-propagation method is used.

Different network configurations were analyzed relating the number of the hidden neurons, the time
series and the different inputs. As the first approach, indicators were provided to the FFNN at the rate of
one every 30 s. In this case, an input neuron was set for each indicator. However, this topology lacked
memory, due to only one value being accounted for, for each classification. Therefore, to improve
classification performance, some memory was added to the input. The best results were achieved for
the topology in Figure 9. For each indicator, four inputs are provided to the FFNN: I(k − t), which is
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the indicator shifted t seconds, where t = 0, 1, 2, 3. They are computed in a 30-s interval and shifted
1 s between them. Considering that the average vehicle velocity is about 90 km/h, the data samples
of the last 100 m are analyzed in order to generate each FFNN output (drowsy or alert). This topology
represents a trade-off between the desire to reduce the sensitivity to small variations, as well as corrective
maneuvers lasting a few seconds and the desire to obtain a fast detection performance.

Figure 9. The designed feed forward neural network.

I (k−2s)2

I (k−3s)2

I (k)2

I2(k−1s)

I1(k−2s)

I1(k−3s)

I1(k−1s)

I1(k)

Indicator 1

Indicator 2

Output

Different combinations of indicators as inputs to the FFNN are analyzed in the experimental
results section. With respect to the optimum number of hidden neurons, a ROC (receiver operating
characteristic) curve is computed for a number of neurons in the hidden layer from five to 100, adding
five each time. The best performance is obtained for 10 neurons. A model for all the subjects is built in
order to minimize the effects of individual features. Therefore, the data from all the subjects are merged
together, and a model is trained on the whole dataset available. On the other hand, the entire dataset has
been divided in the same way as described in the indicator optimization section.

8. Experimental Results

This section presents the experimental results obtained in simulation. As stated in previous sections,
our goal is to develop a drowsiness model for all test subjects minimizing the effects of individual
differences. All the results are presented according to this consideration. It is possible that one might
have obtained even better results by developing a model for each individual, i.e., by separately running
the optimization and fusion process for each test subject, but it is out of the scope of this paper for
two main reasons. The first one is that the vehicle would have had to know the identity of the driver
to estimate drowsiness, complicating the detection system. The second and more important objection
concerns the amount of data. With only a total of around 300 data points per individual, of which around
180 would be used for training and the rest for validation and testing, the risk of overfitting would
significantly increase. In addition, with only about 60 points per individual available for testing, the test
results are very sensitive to random noise [23]. Although individual variation has not been specifically
addressed during optimization nor fusion, it is possible to measure the performance of a given indicator
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or combination for each test subject. The figures in this section present several results in order to compare
the subjects with the highest drowsiness symptoms over those obtained for all the users. All the results
presented in this section have been obtained for the validation dataset.

Considering the ground truth signal, 70.9% of the cases are classified as alert and 29.1% as drowsy
for the whole simulation trial. Table 3 depicts the percentage of data points from each test subject, Ui,
in the two states.

Table 3. Percentage of samples in each class per driver (simulation).

Class U1 U2 U3 U4 U5 U6 U7 U8 U9

Alert 92 68 55 100 63 97 29 69 65
Drowsy 8 32 45 0 37 3 71 31 35

Indicators described in Sections 3 and 4 are calculated for the whole test subject trials in two
conditions: with and without sleep deprivation; so, they are used as inputs of the ANN classifier. In
order to evaluate the performance of each proposal (with and without optimization), the sensitivity
and specificity are computed for the binary classification into alert or drowsy. The results obtained
for all the users taking the parameters (if any) of the indicators specified in the literature, that is, without
optimization, are depicted in Table 4. As shown in the table, the performance (over the test set), measured
using the objective function, f (see Equation (11)), ranges from 0.37 to 0.75 for the indicators based on
driving behavior signals, whereas a score of 0.86 is obtained from the PERCLOS. The driver behavior
indicator, PERCLOS, obtains the best results, followed by the driving behavior indicator, MSE he.
Table 4 also shows results corresponding to test subject U7; that is, indicators trained over the whole
training set, but tested over the U7 test set. In general, the recall rate for each indicator stays in a rather
narrow range around the mean for most individuals. However, for U7, the results are slightly better,
because his behavior is quite standard and follows the general tendency of most of the test subjects.
These have been the reasons why U7 has been chosen to be compared with the mean of all of the
subjects. The f values range from 0.44 to 0.83 for the indicators based on driving behavior signals, the
best being MSE he, whereas a score of 0.9 is obtained from the PERCLOS indicator.

Values below 0.5 in the objective function, f , represent a random classification, which lacks interest,
so only values with the highest scores might be considered. These indicators are: PERCLOS,
MSE he, STD he, TLC avg and MSE lp.

Applying the optimization techniques explained in Section 6, the new indicators yield the results in
Table 5. The performance of these optimized indicators (over the test set) ranges from 0.65 to 0.80 for
all the test subjects and from 0.69 to 0.86 for U7. These indicators slightly improve the values in Table 4.
As can be seen in Table 5, the best results for all subjects are reached for the MSE he opti indicator
with an f value of 0.80, followed by the Lanex opti indicator with 0.75. Again, the values for U7 are
higher for the same reasons argued before.
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Table 4. Indicators without optimization (simulation).

All users User U7
Indicator Γspec Γsens f Γspec

7 Γsens
7 f

Lateral Position 0.89 0.12 0.50 0.92 0.18 0.55
STD lp 0.63 0.58 0.61 0.74 0.68 0.71
MSE lp 0.78 0.50 0.64 0.84 0.59 0.72
Lanex 0.96 0.08 0.51 0.99 0.15 0.57
TLC 5 s. 0.97 0.23 0.60 0.99 0.28 0.63
TLC avg 0.76 0.62 0.69 0.86 0.71 0.79
Steering Wheel 0.09 0.66 0.37 0.20 0.75 0.47
STD sw 0.86 0.01 0.43 0.98 0.01 0.49
RSWM 0.79 0.03 0.41 0.84 0.03 0.44
Heading error 0.33 0.47 0.40 0.45 0.56 0.50
STD he 0.88 0.53 0.70 0.98 0.62 0.80
MSE he 0.94 0.56 0.75 0.97 0.68 0.83
PERCLOS 0.90 0.82 0.86 0.92 0.89 0.90

Table 5. Indicators with optimization (simulation).

All users User U7
Indicator Γspec Γsens f Γspec

7 Γsens
7 f

MSE lp opti 0.91 0.47 0.69 0.99 0.48 0.73
Lanex opti 0.90 0.60 0.75 0.99 0.65 0.82
TLC opti 0.77 0.58 0.68 0.86 0.59 0.73
MSE he opti 0.85 0.74 0.80 0.92 0.81 0.86
RSWM opti 0.81 0.49 0.65 0.84 0.53 0.69

The first indicator in Table 5, (MSE lp opti), which optimizes the mean squared error for the lateral
position, obtained its best performance with p = 1.865 m, which is only 10 mm to the right of the actual
center of the driving lane, making results for MSE lp very similar to those obtained for MSE lp opti.
For the case of MSE he opti, the best performance is obtained with p = −1.2, which means that there
is a small angle towards the right between the heading of the vehicle and the tangent line of the driving
lane, indicating that drivers usually drive towards the right boundary of the driving lane. For Lanex opti,
the best values achieved are obtained for xL = 2.27 m and xR = 1.42 m. They correspond to the left
virtual line being placed 0.35 m to the right of the left boundary of the driving lane and the right virtual
line being place 0.30 m to the left of the right boundary of the driving lane. Thus, both virtual lines
are placed inside the driving lane by the optimization algorithm. The best performance for TLC opti

is reached for a = 6.4, which is quite higher than the reference parameter (a = 5), because the vehicle
was a truck. For RSWM opti, the best results are obtained with d = 13◦/s, significantly lower than the
reference value (125◦/s).
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Once indicators have been optimized, the next step in the development of the drowsiness system is the
fusion of them. All the indicators of Table 5 are combined with the best unoptimized indicators shown
in Table 4. As a result, Table 6 depicts the best combination tested for all the subjects, in general, and
U7, in particular.

All the indicators show better results when combined with others in pairs. However, combinations
between driving-related indicators show only mild improvements. The highest detection performances
are obtained combining PERCLOS with other driving-related optimized indicators. PERCLOS and
MSE he opti or MSE lp opti combinations yield an f value of 0.96 and 0.93, respectively. However,
for more than two indicators, these values do not increase. An example is shown in Table 6, where the
objective function, f , is 0.91, probably due to the excessive number of entries.

Table 6. Possible combinations of indicators (simulation).

All users User U7
Indicator Γspec Γsens f Γspec

7 Γsens
7 f

PERCLOS + MSE lp opti 0.98 0.88 0.93 0.98 0.89 0.94
PERCLOS + Lanex opti 0.98 0.88 0.93 0.99 0.89 0.94
PERCLOS + TLC opti 0.98 0.82 0.90 0.99 0.82 0.90
PERCLOS + MSE he opti 0.98 0.94 0.96 0.98 0.96 0.97
TLC avg + MSE lp opti 0.98 0.54 0.76 0.98 0.55 0.76
TLC avg + Lanex opti 0.96 0.44 0.70 0.97 0.46 0.71
TLC avg + TLC opti 0.98 0.57 0.77 0.98 0.60 0.79
TLC avg + MSE he opti 0.87 0.76 0.81 0.88 0.78 0.83
PERCLOS + Lanex opti +
MSE lp opti

0.94 0.89 0.91 0.94 0.90 0.92

As a conclusion, a single driving behavior optimized indicator combined with PERCLOS is
sufficient to reach the best performance found in this paper, i.e., a score of 0.96 on previously
unseen data.

9. Conclusions and Further Work

A non-intrusive driver drowsiness system has been proposed, which employs the fusion of several
optimized indicators based on driver physical and driving performance measures in simulation.

In the ground truth generation process, a very high correlation between KSS and supervised KSS is
obtained in our experiments, most of the divergences occurring when the drivers are drowsy. Then, our
proposal validates the KSS method over our experiments and slightly improves the classification when
drowsiness symptoms appear in the drivers. In our opinion, the drowsiness interference level of this
methodology is very low. However, we have to remark that our maximum trial duration was three hours,
and according to the literature, KSS starts having problems after three hours.

Experiments were carried out in an advanced third generation driving simulator. The data was
collected from three driving sessions of 1 h for each test subject with varying degrees of drowsiness.
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The tests presented in this work are oriented toward professional truck drivers, which may present a
slightly different behavior compared to non-professional ones, although the system can be adapted to
these cases.

Different drowsiness indicators (based on driver and driving behavior) proposed in the literature are
evaluated. PERCLOS has been proven to be highly correlated to the ground truth, being the best
indicator obtained from the driver physical and driving performance measures. PERCLOS has been
computed from our own vision system, yielding results equal to, or even better than, other commercial
systems [37,38] and being more flexible. The recall rate is above 0.86, which is better than other recent
works, like [23].

To improve performance, indicators were subjected to parametric optimization using stochastic
optimization methods. Hence, the best performing drowsiness indicators were combined between them
by using an ANN. The best fusion was PERCLOS + MSE he opti. These results are, in general
terms, similar to [23], except the use of PERCLOS, but better than other works on the state-of the-art,
such as [45] or [55].

Our goal was to develop a drowsiness model for all test subjects, minimizing the effect of individual
differences. In general, we found that the recall rate for each indicator stays in a rather narrow range
around the mean for most individuals. A separate training of the classifiers for each test subject was not
carried out for the overfitting risk, due to the low number of data points per subject.

During the development of this system, some improvements have been identified to be studied in the
near future.

Regarding our vision system, it does not work correctly with users wearing glasses, due to light glare
and reflections. Consequently, we set the prior requirement for the system evaluation of test subjects
to not wearing glasses. Nevertheless, this limitation can be overcome by developing a glasses detector
and disabling PERCLOS measurements in the fusion for those drivers wearing glasses. Then, only
driving indicators would be taken into account, yielding an estimated 10% performance decrease for
users wearing glasses. Hence, our proposal could be generalized for every driver.

Even though the technique employed in the fusion process is a feed-forward neural network (FFNN),
the problem is open to other neural network topologies and other classification methodologies, using
techniques, such as active learning.

A longer database would be necessary to validate our proposal in a deeper way. Having a huge
database would allow us to explore the separate training of the classifiers for each test subject and to
compare the results with those obtained for all the subjects.

Finally, the authors have the intention of validating the proposed methodology in real conditions. We
have already carried out some tests, and the results, as well as a comparison with the simulation results,
will be published in the near future.
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