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Abstract: We investigated a lab-based hyperspectral imaging system’s response from pure 

(single) and mixed (two) algal cultures containing known algae types and volumetric 

combinations to characterize the system’s performance. The spectral response to volumetric 

changes in single and combinations of algal mixtures with known ratios were tested. 

Constrained linear spectral unmixing was applied to extract the algal content of the mixtures 

based on abundances that produced the lowest root mean square error. Percent prediction 

error was computed as the difference between actual percent volumetric content and 

abundances at minimum RMS error. Best prediction errors were computed as 0.4%, 0.4% 

and 6.3% for the mixed spectra from three independent experiments. The worst prediction 

errors were found as 5.6%, 5.4% and 13.4% for the same order of experiments. Additionally, 

Beer-Lambert’s law was utilized to relate transmittance to different volumes of pure algal 

suspensions demonstrating linear logarithmic trends for optical property measurements. 

Keywords: hyperspectral imaging; HSI; hyperspectral imaging system; HIS; spectral 

response; Beer-Lambert Law; endmember extraction; linear mixing model; constrained 

linear unmixing 

 

OPEN ACCESS 



Sensors 2014, 14 2 

 

 

1. Introduction 

Harmful algal blooms occur frequently in both freshwater and marine systems. Evidence suggests 

that algal blooms have increased during the past several decades [1,2]. Algal blooms affect food webs 

directly by altering them when the algal toxin is produced. Indirect effects of algal blooms include 

changes in the quality and quantity of food resources, oxygen stress through respiring algal cells or 

through decomposition, and alterations of dominant algae affecting higher trophic levels. In addition, 

algae have been viewed as an alternative energy resource. Growing algae requires well-controlled 

processes where algae health is constantly monitored to adjust the algae’s environmental parameters; 

therefore, there is a significant interest in the investigation of the properties of algae with new 

technologies that present themselves as fast and non-destructive solutions [3–6]. 

Hyperspectral imaging has been widely used in remote sensing applications [7–13]. Investigation  

of algal signatures using remote hyperspectral imaging has been reported by multiple research  

groups [12,14–18]. Craig et al. applied hyperspectral remote sensing for the assessment of harmful 

algal blooms in reflectance mode for the detection of Karenia brevis [16]. Szekielda et al. used 

hyperspectral imaging data collected with a portable hyperspectral imaging system in an aircraft to 

investigate accumulation of harmful algae, specifically cyanobacteria [17]. Oppelt et al. used 

hyperspectral imaging in remote sensing to map algal habitats using three classification  

techniques [18]. Casal et al. also reported hyperspectral remote sensing for mapping algal communities 

at a different location at Ria de Vigo and Ria de Aldan coast (NE Spain) [12]. Hyperspectral imaging 

systems in remote sensing are typically part of the payload for airborne or spaceborne systems  

which provide hyperspectral imagery for the end user collected in reflectance mode. For such  

large-scale imaging and remote sensing applications, the end-user is provided with the final imagery 

with preset camera and data acquisition parameters and in reflectance mode only. On the contrary,  

a laboratory-based hyperspectral imaging system allows experimentation under repeatable conditions. 

Unlike the data obtained from extraterrestrial systems, a laboratory-based system permits the 

adjustment of both the system and parameters for optimum data conditions for the given algal stock. 

The data acquisition parameters, light settings, as well as sample preparation and handling procedures 

can be controlled. Measurements can be taken in both reflectance and transmittance mode. 

Experiments can thus be conducted at a much smaller scale. 

Hyperspectral imaging techniques at smaller scales have generally matured in the medical field, 

finding applications in skin investigations as well as in dentistry, mostly in reflectance mode [19–22]. 

Hyperspectral imaging has been extensively used in the agriculture and food industry [23–27]. Utility 

has included rapid detection of crop health issues [28,29]. In field studies, Zimba and co-authors 

documented algal populations in several systems with hand-held systems to assess algal communities 

and pond preferences of cormorants. [30,31]. In a laboratory setting, Volent et al. used a hyperspectral 

imager attached to a microscope to measure the spectral response of algae in transmittance and 

reflectance modes [14]. The purpose of this group’s study was to separate bloom-forming algae, such 

as phytoplankton and macroalgae, based on the acquired spectral response that captured pigment 

information. No controlled mixed concentrations are reported in these papers. 
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We investigated the hyperspectral response of controlled mixed algal cultures containing two algal 

species at a time in transmittance mode to evaluate the response of a laboratory-based hyperspectral 

imaging system (HIS), as well as the validity of a linear spectral unmixing method in determining the 

composition of the mixed cultures. The ultimate goal of this project was to apply linear spectral 

unmixing based on linear mixing models used to predict the abundance or percent composition of algal 

species (endmembers) in mixed algal cultures. In this work, we compared the linear spectral unmixing 

results with the actual composition of the algal mixtures to assess the prediction error based on the 

difference between the actual concentrations and computed concentrations of algae. By using linear 

unmixing, linear interactions among the spectra from individual endmembers or pure algae spectra 

were assumed. A secondary goal of the project was to demonstrate the linear trends associated with  

Beer-Lambert Law and changing path length in transmission mode to allow the computation of optical 

properties such as the absorption coefficient using the gradient in linear logarithmic plots from 

hyperspectral data. 

Changes in the spectral response of HIS to variations in volume and combinations of  

algae concentrations in transmission mode are presented. Equipment used, experimental details,  

data acquisition, and data conditioning are described in Section 2. The application of linear spectral 

unmixing to predict percent composition of algal mixtures is described in Section 3. In addition,  

Beer-Lambert’s Law and its implementation to investigate optical properties, such as the  

absorptivity is presented in Section 3. Experimental results and analysis of HIS’ response in 

differentiating algae samples and volumes are also presented in Section 4 followed by discussion  

and conclusions. 

2. Instrumentation, Experiments, and Data Preprocessing 

The work presented here can be separated into data acquisition, data conditioning, spectral analysis 

for predicting algal composition of the mixtures and for computing prediction errors, and finally 

application of Beer-Lambert’s Law to investigate optical properties based on changing path lengths. 

The hyperspectral imaging system, data acquisition, noise characterization and data conditioning 

(preprocessing) are described in this section. 

2.1. Hyperspectral Imaging System 

Figure 1 represents the hyperspectral imaging system in transmission mode. In this configuration, 

the halogen broadband diffuse light source (EKE 21V 150W) illuminates the sample from the bottom. 

After interaction with the sample, the transmitted light is collected by the camera lens, fed into a 

spectrophotometer, and captured by the CDD line-scan camera, which, all together form the 

hyperspectral imaging system (Hyperspec
TM

 VNIR P-Series Imaging Spectrometer, Headwall 

Photonics, Fitchburg, MA, USA) [32]. 
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Figure 1. The lab-based hyperspectral imaging system in transmission mode. 

 

2.2. Experiments 

Pure algae samples were grown at the Center for Coastal Studies laboratories in f/2 media and 

included the eustimatophyte Nannochloropsis salina (nanno), the diatom Phaeodactylum tricornutum 

(phaeo), and unidentified coccoid cyanobacteria, which represent members of the green, brown, and 

cyanobacterial plant line of algae. The samples varied in algae density based on growth parameters and 

environmental factors. The algae samples were shaken gently before hyperspectral analyses to prevent 

algae from settling at the bottom of the tubes or forming aggregates that could affect hyperspectral 

scans. Care was taken to prepare a homogenous-looking batch for experimental measurements. 

Two independent set of experiments were conducted to test the hyperspectral imaging system’s 

performance. The first set of experiments investigated spectral composition of two algal species in 

their pure and mixed forms. Each measurement was taken from a fixed volume of 10 mL. Spectra from 

pure algae (100%) and algae mixed in preset ratios (10%–90%, 50%–50%, 90%–10% combinations) 

were acquired and used in the constraint linear spectral unmixing model as discussed in Section 3.1 to 

determine the percent algae composition of the tested mixtures. Spectra from algal suspensions of 

100% single-species were used as reference spectra. 

The second set of experiments assessed the hyperspectral imaging system’s as well as the linear 

spectral unmixing model’s ability to differentiate among various mixed volumes of pure algae 

suspensions with differing concentrations of algal biomass and associated pigments related to algal 

growth factors. Light transmitted through 4, 6, 8 and 10 mL algae suspensions in 3.6 cm-diameter clear 

Petri dishes were recorded. A 2 mm-thick milky-white translucent plastic was placed under the clear 

Petri dishes to act as a diffuser during transmission mode measurements. 

2.3. Data Acquisition and Conditioning 

Hyperspectral data was collected over spectral bands covering 400–1,000 nm with a spectral 

resolution of 3 nm. Pixel size from the camera’s data sheet was 7.4 μm. Hyperspectral image cubes 

were acquired at spatial dimensions of 1,600 samples (fixed rows) by 50 to 150 lines (variable 

columns) in pixels depending on the homogeneity of the liquid samples, the step size of the horizontal 

moving stage, and spectral binning (number of averaged wavebands). The spectral dimension of the 

image was 811 bands at full spectral resolution, 406 bands with spectral binning of 2, and 271 bands 
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with spectral binning of 3. Figure 2 shows sample image frames at 600 nm obtained from two-algae 

mixtures for three volumetric combinations (10%–90%, 50%–50%, 90%–10%) of pure algae. Region 

of interest (ROI) was selected from an area representing spatially uniform algal signal (no aggregates). 

After acquisition, data preprocessing or conditioning was applied to prepare the data for linear 

spectral unmixing, where the computed abundances were to be compared against actual abundances to test 

prediction errors, thus the sensitivity of the system and validity of the data acquisition/analysis methods. 

Figure 2. 8-bit scaled image frames at 600 nm for three algae mixtures:  

(a) 10% nanno–90% phaeo; (b) 50% nanno–50% phaeo; (c) 90% nanno–10% phaeo. Red 

rectangles show the region of interest (frame pixels (samples and lines) to be averaged to 

obtain a single spectrum representing each mixture). (nanno: Nannochloropsis salina; 

phaeo: Phaeodactylum tricornutum). 

 

2.3.1. Noise Characterization 

A raw spectrum from a single pixel location across multiple frames produced a noisy signal. To 

characterize the noise, the expected value   , of the spectrum Ii,j,, at location (i, j) is computed from the 

region of interest as in Equation (1): 

E[Ii,j] =    = 
 

  
    

   
 
   Ii,j (1) 

where E[Ii,j] and    are the expected value of the spectrum Ii,j obtained from a single pixel located at  

(i, j) across frames representing all bands, which also represent the average spectrum. [1, M] and [1, N] 

form the boundary of the ROI depicted in Figure 2 represented by the red rectangle with M = 15 and  

N = 100 pixels. The resultant average spectrum,   , was subtracted from a single-pixel spectrum, Ii,j, 

also obtained from the region of interest to estimate the noise, N, on the spectral signal, as in  

Equation (2): 

  = Ii,j−   (2) 

N was used to compute the noise parameters, such as variance and standard deviation in the spectral 

dimension. Figure 3 shows the noisy single-pixel spectrum (Figure 3 Top left), the ensemble average 

of the spectrum within the ROI (Figure 3 Top right), and the difference between the two depicting the 

estimated noise (Figure 3 Bottom left). These results were compared with the dark field noise signal 

(Figure 3 Bottom right) from a single and average of pixels. 
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The noise variance in bottom left noise plot in Figure 3 was calculated to be 750.1 with a standard 

deviation of 27.4. The noise variance in the bottom right dark field noise plot was calculated as 71.5 

with a standard deviation of 8.5. The over 10-fold difference between the variances of the dark current 

noise and noise estimated from the difference between a single-pixel spectrum and ensemble average 

of this spectrum suggests that there are other contributors to noise than just the dark field noise. The 

signal-to-noise ratio (SNR) was computed using Equation (3) through Equation (6): 

SNR = (RMSsignal/RMSnoise)
2
 (3) 

or, in decibels: 

SNR(dB) = 10log(SNR) (4) 

Figure 3. Noise characterization from a single spectrum (Top left), average spectrum  

(Top right), difference between the two (Bottom left) and dark field measurements  

(Bottom right). 

 

where: 

RMSsignal =  
 

 
     

  
    (5) 

and: 

RMSnoise =  
 

 
    

  
    (6) 

In Equations (5) and (6) above, k is the waveband (or frame number in the hyperspectral image 

cube),    is the central wavelength corresponding to the waveband k, and n is the last waveband.    
is 

the intensity of the noise signal at wavelength   . 

From the above equations, RMSsignal using the expected value of the signal spectrum was calculated 

as 1,005.0, and RMSnoise as 29.3, leading to SNR of 1,178.5 or SNR (dB) of 70.7 dB. Expected noise 

components include the detector and electronic noise associated with the dark field noise. Additional 
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noise beyond the dark field noise riding on the expected value of the spectral signal is attributed to the 

fiber bundle used to deliver the broadband light from the source to the location of the sample 

contributing to additional residual spatial variations in the light field within the field of view. Such 

effects can be quantified by the average spatial variance. The average spatial variance across a ROI of 

15 × 100 pixels at the 600 nm image frame for the spectra in Figure 3 was computed as 7,978.1 for the 

hyperspectral data cube used for Figure 3. The standard deviation at the same image frame (600 nm) 

was found as 87.9, showing the need to use an average value to smooth the data in the spatial domain 

and at a more selective region of interest. 

Additionally, SNR was affected by the intensity or power setting of the light source. Low light 

source intensity settings reduced SNR as well as the spectral content of the incident light and  

was avoided. 

2.3.2. Signal Averaging and Scaling 

Let us revisit the single spectrum obtained by averaging multiple spectra that corresponded to 

spatial locations (i, j) in the image frames within the ROI, but this time, including the band information 

as in Equation (7). Due to non-uniform lighting across the image frames as characterized in Section 2.3.1 

above and in [32], the region of interest was selected near the center of the frame (red rectangular areas 

in Figure 2) and at the same loci in all algal hyperspectral images. Each pixel in the single image frame 

of Figure 2 is associated with a single spectral algal response represented across multiple spatial image 

frames at the same (i, j) location within the hyperspectral cube: 

    
 

 

  
     

      

 

   

 

   

 (7) 

where     
 represents the average pixel value computed from the region of interest in a single image 

frame, at average wavelength, λ, associated with the wave band, k. M and N are the row and column 

size of the spatial 2D image frame at wave band k.    
      is the pixel value at spatial pixel location  

(i, j) on the image frame associated with wavelength   . k   {1, 2, 3, …, n}. For k = 1,    = 400 nm. 

For k = n,    = 1,000 nm. When n = 811, no spectral binning has been applied (SB = 1). n = 406 

corresponds to spectral binning of 2 (SB = 2), and n = 271 corresponds to spectral binning of 3 (SB = 3). 

   corresponds to the 400 nm image frame.    corresponds to the 1,000 nm image frame. 

    
 is computed for each available band, k, from 400 to 1,000 nm. The average single spectrum 

from the ROI is then represented as a vector in Equation (8), similar to Equation (1): 

    = [    
     

       
         

     
  (8) 

Figure 4 shows the concepts of the hyperspectral image cube, selection of region of interest, and 

representation of the single average spectrum from the region of interest that is represented by the red 

rectangle in Figure 2. 

The averaging process across multiple pixels within an image frame acts as a smoothing filter 

reducing noise in the resultant single spectral value in that image frame. When repeated across multiple 

image frames at different wavebands and within the same locus of points, the result is low-noise average 

spectrum whose spectral properties have been minimally compromised. 
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In addition to the averaging process, the resultant spectrum was subsampled to only include the 

wavelengths 400 to 690 nm. This spectral range was selected due to the apparent discriminant spectral 

features showing notable variability among the observed algal mixture and endmember spectral 

signatures. To enhance the shape variations associated with absorption and transmittance properties 

within this wavelength range, the subspectrum was scaled between 0 and 1 using Equation (9) below. 

The results are demonstrated in Section 4: 

   = (   −  min)/(   max−  min) (9) 

where    is the scaled subspectral region between 400 and 690 nm for each of the observed algal 

sample average signatures,   max is the maximum spectral signal value in    within this spectral region, 

and   min is the minimum spectral value in   . The resultant    is the scaled spectrum with intensity values 

between 0 and 1 (See Figure 6 in Section 4 for scaled spectral plots). 

Figure 4. Representation of a hyperspectral image cube, and the region of interest (ROI) 

that is ensemble averaged to obtain a single spectrum. The ROI represents the red rectangle 

in Figure 2. The spectra associated with a pixel location, (i, j), (top view) include multiple 

central wavelengths λ1 – λn, where λ1 = 400 nm and λn = 1,000 nm. cj represents the column 

pixel (px) (sample) value at location j; ri is the row pixel (line) value at i. λk represents the 

different wavelengths of the spectra at wavebands k. 

 

3. Resolving Spectral Data 

3.1. Experiment 1—Resolving Spectra in Mixed Algal Suspensions—Linear Spectral Unmixing 

Linear spectral unmixing is used for predicting the abundance (percentage) of different endmembers 

(pure spectra represented in each algal suspension). In this work, algal species are assumed to undergo 

linear interactions in the algal mixtures. The objectives of this work include the analysis and 

demonstration of linear separability of the two algae species and prediction of their concentration using 

the constrained linear mixing model. Linear spectral unmixing was achieved heuristically by 

computing the root mean square (RMS) error, or RMSE, for different algal combinations, and finding 

the abundances of the two algal species that produced the lowest RMS errors. The lowest error is 
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assumed to occur when the correct percent combinations or abundances is identified. This value is then 

compared and subtracted from the known or actual combinations or abundances to compute the 

percent prediction error. 

Hyperspectral images were acquired for 100% pure algae, and mixtures of two pure algae in 

volumetric combinations of 10%–90%, 50%–50% and 90%–10%, as described before. Linear spectral 

unmixing was implemented to determine abundances of the two algae species contributing to the 

overall observed spectral response in each of the mixtures [33]. Linear spectral unmixing [34–36], or 

endmember extraction, is a typical method used to separate spectra that belong to individual classes 

(endmembers) in mixed media, and to find each pure spectrum’s percent contribution to the observed 

mixed spectrum. In this case, the model was applied to the average spectrum in the ROI for each pure 

or mixed algae suspension. Based on this model, abundances are related to spectral response as follows: 

    =       
   
    + E (10) 

where     is the observed spectrum from mixed cultures,     represents the spectrum from the endmember 

i (pure algal spectrum for i) that is assumed to contribute linearly to the observed spectrum   , c is the 

total number of algae classes or endmembers in the mixture (c = 2 in this case), wi represents 

abundance of the pure (100%) alga represented by spectrum,    , and finally E is the error vector 

associated with each wavelength,   , as in Equation (11). i   {1, 2} for this two-class problem: 

E =     
    

      
        

    
 . (11) 

For abundances, the following constraints apply: 

     

 

   

 (12) 

and      . From Equation (10), the error vector, E, is calculated as the difference between the 

observed and average spectrum from the mixture, and the weighted sum of pure algae average spectra. 

The optimal values for abundances were found by determining the combination of abundances that 

produced the least error. The abundances, w1 and w2, were determined heuristically by computing the 

root mean square error (RMSE) for a combination of abundances where    was varied from 0.0000 to 

100.0000% in increments of 0.0001, and    was varied from 100.0000 down to 0.0000% with 

decrements of 0.0001, conforming to the constraints of Equation (12) and non-negative    [33]: 

RMSE =  
 

 
     

   
    =  

 

 
      

        

          

     
    (13) 

where     
 is the average spectral value at wavelength    for the average raw spectrum  

(Equations (7) and (8)) observed from the algae mixture,     

 is the average spectral pixel value at the 

same wavelength from pure algae class 1, and     

  is the average spectral pixel value for the pure algae 

class 2 at   . Algae classes correspond to endmembers. w1 and w2 are the abundances of the two pure 

algae in the mixture. 

Optimum combination of    and    coincides with the minimum error on the RMS error curve, as 

demonstrated in results and discussion, Section 4.1. The true concentration information of algal 

samples is used as the ground truth to compute prediction errors between the actual and computed 
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concentrations using linear spectral unmixing. Percent prediction error was computed as in  

Equation (14): 

Prediction Error (%) = |CA−CC| (14) 

where CA represents the actual concentration of each alga, reported as the percentage of the mixture 

volume, and CC represents the estimated concentration of the same alga, using the minimum RMSE 

value, also reported as the percentage of the mixture volume. 

3.2. Experiment 2: Resolving Algal Volumes in Pure Algae Suspensions—Beer-Lambert Law 

For the second set of experiments, pure algae samples were tested with the HIS at various volumes 

in transmission mode to investigate the effects on transmittance, with fixed-size Petri dishes. As 

summarized in [37], based on the Beer-Lambert law, the transmittance, T, is directly related to the path 

length of a sample as in Equation (15): 

T = I/Io = e 
−abc

 (15) 

where a is absorptivity, b is path length, and c is concentration. I is the transmitted light intensity, and 

Io is the incident light intensity. Equation (15) leads to Equations (16) and (17) below, where:  

log(I/Io) = −abc (16) 

log(I) = −abc + log(Io) (17) 

Provided all parameters, including concentration and wavelength, are kept constant, and only path 

length (volume) is changed, then relative changes in spectral response can be analyzed through 

transmission measurements. If the thickness of the sample is small, scattering effects can be ignored 

and thickness can be used to approximate the path length of the light through the medium. 

Since Io, a, and c are constant across samples, Equation (17) reduces to the equation of a line,  

y = mx + s, with a constant slope, m = −ac, y-intercept, s = log(Io), and the variable x = b or path 

length approximated by the sample thickness. Then y represents the logarithm of measured transmitted 

intensity, I. Based on Equation (17), the path length can be plotted against the logarithm of measured 

intensity to observe linear trends and calculate optical properties. Absorptivity, a, can be calculated as 

the slope divided by concentration, or a = −m/c. All parameters must be in appropriate units for the 

optical property interpretation. The above equation can be expanded and applied to all wavelengths in 

the spectrum to compute absorptivity at different wavelengths. 

4. Results 

4.1. Experiment 1 

Figures 5 and 6 show the differentiation of spectral response from two pure algae suspensions in f/2 

media, and from controlled volumetric combinations (10%–90%, 50%–50%, 90%–10%) of the two. 

Figure 5 shows the raw spectra obtained by averaging the spectra from neighboring pixels in each 

image obtained by HIS. This figure represents non-normalized raw data as acquired from the system. 

The spectral variations among the pure and combined algae are apparent in Figure 5 particularly 

between about 500 and 700 nm. The absorption peak observable as the trough at around 680 nm 
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corresponds to alpha peak of chlorophyll a (shifts to 663 nm in acetone extracted pure chlorophyll a 

pigment) [38], and is observed in brown, green and combined algae. The weaker absorption peak 

around 620 nm which appears as a shoulder or shallower valley in Figure 5 corresponds to chlorophyll 

a [39], and shows notable differences between brown and green algae. A smaller absorption peak for 

chlorophyll b occurs at around 580 nm and is cited as an absorption peak for the pure extracted 

chlorophyll a pigment [40]. This peak is the third highest absorption peak of chlorophyll a within  

500 and 700 nm [38,39]. Although the spectral region around the 730 nm also shows spectral intensity 

variations among the spectra, the spectral peak around this region is not unique to either alga; 

therefore, the 730 nm spectral region was not included in the analysis. 

Figure 5. Sample average spectra showing spectral response from 100% brown algae 

(diatom: Cyclotella sp.), 100% green algae, and various volumetric mixtures between the 

two species. The samples represent densely grown algae, capturing absorption peaks of its 

key components, such as chlorophyll. 

 

Figure 6. Scaled spectra from 100% green, 100% brown (diatom: Cyclotella sp.), and 

various volumetric combinations of the two. The data is scaled between 0 and 1 within 400 

and 690 nm as described in Section 2.3, and demonstrates the absorption bands and peak 

and shoulder shifts among the algae samples more clearly. 
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In Figure 6, scaled spectra are drawn in the spectral region of interest, demonstrating the spectral 

shifts from pure algal spectral peaks to those in the combined algal mixtures. The data is scaled 

between 0 and 1 for the wavelengths between 400 and 690 nm. This wavelength range captures the main 

absorption peaks observed at the spectral dips in the spectra that were also identified by Volent et al. [14]. 

Using the constrained linear unmixing method described in Section 3.1, root mean square error 

graphs are obtained for the combined algae. The RMSE values for the above data set are plotted in 

Figure 7, and show the optimal abundance values that correspond to minimum error. Abundances of 

10.4%–89.6%, 49.6%–50.4%, and 95.6%–4.5% were predicted for the 10%–90%, 50%–50% and 

90%–10% green and brown algae combinations, respectively. The lowest prediction error was 

computed as 0.4% for the 10%–90% and 50%–50% green and brown algal mixtures. The prediction 

error was the highest in the 90%–10% green and brown algae combinations at 5.6%. 

Figure 7. Computed abundances from algae mixture hyperspectral measurements based on 

the minimum error between assumed abundances and pure (single-algae) spectral 

combinations. The combined volumes for the green and brown algae were found to be  

(a) 10.4% and 89.6% for 10%–90% mixture; (b) 49.6% and 50.4% for the 50%–50% 

mixture; and (c) 95.6% and 4.5% for the 90%–10% mixture. 

  

(a) (b) 

 

(c) 

The experiments were repeated twice with independent sets of algae, each set composed of  

two different algae species: Comparable results were obtained with Nannochloropsis salina and 



Sensors 2014, 14 13 

 

 

Phaeodactylum tricornutum combinations (Algae Set 2). Prediction error (|actual concentration—calculated 

concentration|) increased with the green and blue-green algae mixtures (Algae Set 3). This third set is 

based on the data reported in [37]. Table 1 summarizes the results of abundance computations from all 

three independent experiments and data sets. 

Table 1. Actual and computed algae concentrations via linear spectral unmixing (LSU) and 

minimum RMS error. A variety of algal species were tested in three experiments under 

different settings for spectral binning (SB). (Nanno: Nannochloropsis salina; Phaeo: 

Phaeodactylum tricornutum; Green: coccoid cyanobacteria of green and brown plant lines 

(two separate green algae used in Experiments 1 and 3); Brown: diatom (Cyclotella sp.)) 

Concentrations are listed by mixed volume. 

Experiment 

(Algae Set) 
Algae Mixtures 

Actual Concentration 

(%) (Ground Truth) 

Computed 

Concentration (%) 

(LSU) 

Prediction Error (%) 

(|Computed−Actual|) 

1 

Green (G) 

and 

Brown (Diatom: 

Cyclotella sp.) (B) 

(SB = 2) 

10–90 

G–B 

10.4–89.6 

G–B 
0.4 

50–50 

G–B 

49.6–50.4 

G–B 
0.4 

90–10 

G–B 

95.6–4.5 

G–B 
5.6 

2 

Nannochloropsis 

salina (N) 

and 

Phaeodactylum 

tricornutum (P) 

(SB = 1) 

10–90 

N–P 

8.3–91.7 

N–P 
1.7 

50–50 

N–P 

50.4–49.6 

N–P 
0.4 

90–10 

N–P 

95.4–4.6 

N–P 
5.4 

3 

Green (G2) and 

Blue-Green (BG) 

(SB = 3) 

10–90 

G2–BG 

16.6–83.4 

G2–BG 
6.6 

50–50 

G2–BG 

36.6–63.4 

G2–BG 
13.4 

90–10 

G2–BG 

83.7–16.3 

G2–BG 
6.3 

4.2. Experiment 2 

Figure 8 shows the raw average spectra obtained from green algae suspensions of 4, 6, 8 and 10 mL. 

The horizontal axis represents the wavelengths in nm which range from 400 to 1,000 nm. This range is 

limited by the response of the hyperspectral camera’s silicon-based imager.  

The absorption peaks at around 640 and 680 nm are apparent in this figure, and correspond to 

absorption peaks by chlorophyll b (640 nm) and chlorophyll a (680 nm [38,39]. Figure 8 demonstrates 

the decreasing signal intensity with increasing optical path length associated with the increasing algae 

volume, which results in higher absorption and lower transmission of the incident light. The signal 

intensity change follows a logarithmic trend in Figure 8. 
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Figure 8. Average raw spectra from green algae samples (from set 3 in Table 1; sparsely 

grown) with 4, 6, 8 and 10 mL. Data points at 600 nm are selected and substituted in the 

trasmision equation based on Beer-Lambert Law. 

 

Figure 9 represents the logarithm plots for the four concentrations based on the Beer-Lambert Law 

applied to the data points corresponding to 600 nm in Figure 8, showing the linearity of spectral 

changes in the logarithmic scale at different volumes. The 600 nm was chosen arbitrarily as a 

representative spectral peak wavelength in transmission mode. Similar results were obtained at other 

selected wavelengths. The linear trends are significant in confirming the sensitivity of the system to 

detect small volumetric variations associated with changing path length resulting in changes in the 

transmitted light signal. Through this linear trend, absorptivity can be calculated based on the gradient 

of the plotted data and other known parameters in Equation (17). 

Figure 9. Logarithm of transmitted light intensity (reported in digital numbers) at 600 nm for 

4, 6, 8 and 10 mL samples, demonstrating a linear decrease with linearly increasing algae 

sample volume. Gradient can be used to compute the absorptivity in respective units.  

 

Since all figures are based on transmitted signal strength only, and because the incident light, Io, is 

constant, the effect of Io on the logarithmic plots can be thought of as a DC offset, or vertical shift, of 

the linear graphs, preserving the integrity of the gradients. The absorptivity, an important optical 
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property, of each solution can be calculated using the concentration information and the computed 

gradient. The numeric value of the gradient of the logarithmic plot in Figure 9 is −0.08. Based on the 

gradient, the absorptivity for the green algae of Figure 8 is −0.08/c where c is the concentration of the 

algal solution. 

Linear logarithmic trends were observed in all tested algae species following Beer-Lambert’s Law. 

Raw average spectra for Nannochloropsis salina and Phaeodactylum tricornutum algae species are 

plotted in Figures 10 and 12, respectively. Corresponding linear logarithmic plots are depicted in 

Figures 11 and 13. Figures 8, 10 and 12 depict the decreasing digital numbers recorded from the 

system as sample volume is increased. As can be seen in Figures 9, 11 and 13, the logarithm of raw 

intensity values for the algae mixtures decreases linearly as the volume of the samples increases, 

following Equation (17). This is because more of the incident light is absorbed by the  

increased volume of the liquid mixture in transmittance mode. Scattering effects are ignored in this 

analysis for simplicity. Scattering is less in scarcely grown algae compared to densely grown  

algal colonies. 

Figure 10. Transmitted signal intensity (average raw spectra) at different volumes of 

Nannochloropsis salina algae samples (fixed Petri dish size). 600 nm is used for 

logarithmic calculations, and show the expected logarithmic trends in this figure. 

 

Figure 11. Logarithm of 600 nm spectral peak (Nannochloropsis salina) at different 

sample volumes.  
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Figure 12. Transmitted signal intensity (average raw spectra) within 400–1,000 nm with 

volumes of Phaeodactylum tricornutum algae samples in (fixed Petri dish size); 600 nm is 

used for logarithmic calculations. 

 

Figure 13. Logarithm of 600 nm spectral peak (Phaeodactylum tricornutum).  

 

The strong absorption peak of chlorophyll a at around 680 nm indicated by the dip in spectral profile 

at this wavelength is apparent in all Figures 8, 10 and 12. The numerical values of the gradients of the 

plots in Figures 11 and 13 are −0.04 and −0.06, respectively, and is the product of concentration and 

absorptivity after converting into appropriate units. 

5. Discussion 

During sample preparations and measurements, the algae have a tendency to settle at the bottom; 

therefore, it is important to acquire the hyperspectral data as quickly as possible after the samples are 

mixed and placed in Petri dishes. The settled algae create inhomogeneities in the suspensions, and 

hence affect the local spectra. Such effects are reduced by spectral averaging in samples lacking 

inhomogeneity such as aggregates. The region of analysis must, therefore, be carefully and 

consistently chosen for a given experimental data set to avoid extreme spectral fluctuations. Algae 

cultures must be carefully prepared and measured to ensure homogenously distributed batches and 

samples in Petri dishes. 
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In the case of mixed algae, green and blue-green algae results produced the highest prediction errors 

compared to the other two algae sets. Several factors contributed to these results. First, the spectral 

signatures of the two algae were very similar. Second, the algae samples were the most sparsely grown 

among the three sets. Although care was taken to avoid algae binding together, dark spots associated 

with chunks of algae were observed in the measured mixtures and images, introducing error. In 

addition, this data set was taken with spectral binning of 3, further smoothing the spectral response and 

fine details of the spectra during acquisition. The error range for this set was between 6.3% and 13.4% 

compared to other two sets whose error range was between 0.4% and 5.6%, as reported in Table 1. So 

the spectral binning during acquisition is expected to have also removed subtle differences in the 

spectra of these already-sparse algal suspensions. 

The Beer-Lambert Law was applied and path length was assumed to be exchangeable with sample 

thickness as volume of the samples was increased in a fixed-size Petri dish. The sample holders, or 

Petri dishes, were 3.6 cm in diameter, or of 1.8 cm radius, r. The volume, V, of the Petri dishes was 

calculated as the volume of a cylinder. With a fixed area, A = Πr
2
 or 10.18 cm

2
, the height, h, depends 

on the sample volume added. For each milliliter of algae, the volume changes by 1 cubic centimeter. 

Therefore, since h = V/A, for every 2 mL algae sample added to the Petri dish, the height, h, increased 

by 1.96 mm (h = 2/(Π(1.8)
2
) = 0.196 cm), translating to approximately 2 mm per 2 mL of sample as 

plotted in Figures 9, 11 and 13. Considering the low density of algae in the media solution, sample 

height in the Petri dishes were approximated for path length, and linear results were obtained as 

expected for linear increases in volume. 

It is noted that although linear interactions are assumed among the mixed algal cultures, 

nonlinearities are expected due to the size distribution and translucent liquid nature of the growth 

medium with algae. For example, scattering from neighboring regions that appear to come from the 

observed pixel but does not belong to the observed pixel spectrum [41] is ignored. We expect that the 

linearity assumption also adds to the prediction error, and must be investigated further. 

6. Conclusions 

Two sets of experiments were conducted to characterize a lab-based hyperspectral imaging 

system’s capability to resolve, first, individual algae species in mixed algae suspensions containing 

two algae species, and, second, volumetric changes from pure algal batches. 

Using a linear spectral unmixing algorithm for reflectance data, abundances were computed with 

prediction errors between 0.4% and 5.6% for two data sets and between 6.3% and 13.4% for one data 

set. Raw hyperspectral data from dense algal growth produced stronger algae signatures, whereas 

sparsely grown algae produced signatures that were dominated by the growth medium. 

Small volumetric changes were successfully captured in transmission mode using the hyperspectral 

imaging system for both densely and sparsely grown pure algae suspensions. Although many factors 

affect the data quality, in general, more accurate results were obtained from data acquired with no 

spectral binning or spectral binning of two, as well as homogenously and densely grown species of 

algal suspensions. 

More complex algorithms can be used to assist with solving the reverse problem in media 

characterization and algal quality monitoring, once baseline information for optimum conditions are 
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established with the tested technology. In particular, non-linear models that capture non-linear 

interactions between the algae species and growth medium should be investigated to reduce  

prediction errors. 
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