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Abstract: Oil sand pumps are widely used in the mining industry for the delivery of 

mixtures of abrasive solids and liquids. Because they operate under highly adverse 

conditions, these pumps usually experience significant wear. Consequently, equipment 

owners are quite often forced to invest substantially in system maintenance to avoid 

unscheduled downtime. In this study, an approach combining relevance vector machines 

(RVMs) with a sum of two exponential functions was developed to predict the remaining 

useful life (RUL) of field pump impellers. To handle field vibration data, a novel feature 

extracting process was proposed to arrive at a feature varying with the development of 

damage in the pump impellers. A case study involving two field datasets demonstrated the 

effectiveness of the developed method. Compared with standalone exponential fitting, the 

proposed RVM-based model was much better able to predict the remaining useful life of 

pump impellers. 

Keywords: pump impeller; remaining useful life (RUL); prognosis; relevance vector 

machine (RVM); sum of two exponential functions 

 

1. Introduction 

Slurry pumps are widely used to remove mixtures of abrasive solids and liquids in wet mineral 

processing operations. These pumps usually experience severe erosive and/or corrosive wear even 
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under normal working conditions. Consequently, their performance becomes severely comprised over 

time and at a certain point, the pumps will begin to fail without warning. The prevention of such 

unscheduled downtime requires substantial investment to maintain the system near the initially 

intended maximum level of efficiency. In particular, it becomes necessary to implement a scheduled 

preventive maintenance program capable of predicting the trend of degradation and estimating the 

remaining useful life of the pumps, to ensure a safe, economical, and efficient operation of the pump 

systems in the field. The remaining useful life of an asset or system is defined as the length of time 

from the present time to the end of the asset’s useful life [1].  

A review of the literature on the degradation of slurry pumps shows that several studies have 

investigated the process of wear associated with the machines and the possibility of improving pump 

performance through the use of more durable materials [2–6]. Llewellyn et al. applied the Coriolis 

method to assess the scouring attack resistance of cast alloys for slurry pump components [3]. Their 

tests were useful in evaluating the scouring erosion resistance of metallic, ceramic, and cement 

materials for various slurry transport components. Walker [4] compared the field wear performance of 

side-liners with that anticipated from laboratory data. The results showed that the field wear patterns 

observed were generally similar to the wear patterns predicted from laboratory data. However, the field 

wear involved a particle size whose effect on the white iron components of the machines was milder 

than that seen in the laboratory tests, which were based on grey iron. This difference might be 

explained by the difference in the levels of hardness between the two types of parts. Dong et al. [5] 

applied a liquid-solid two-phase flow theory to study the wear location and the process of centrifugal 

slurry pump working for dense medium cyclone coal preparation. They mainly analyzed the wear 

location on the pump impeller and the factors that influenced wear, such as the diameter, velocity, 

shape, and invasion angle of the coal particles.  

However, compared with the studies on wear, few research articles have been devoted to the 

problem of monitoring the condition of slurry pumps, and even fewer have reported on the issue of 

fault diagnosis in slurry pumps [7–11]. Zhao et al. [7] modified the neighborhood rough set model by 

setting different neighborhood sizes for different features and used this model for feature selection in 

the vibration-based fault diagnosis of slurry pump impellers. The data collected from laboratory 

experiments showed that the use of the features identified by the model proposed by Zhao et al. could 

yield much greater accuracy in classification. Qu and Zuo [8] proposed a data processing algorithm to 

clean the data based on support vector classification and random sub-sampling validation. A sequential 

backward selection method was used to identify irrelevant features. The method performed well in 

relation to laboratory pump data. Hancock and Zhang [9] developed an online hydraulic vane pump 

fault detection system. In this system, pump vibration signals were decomposed using a wavelet packet 

analysis, and an adaptive neuro-fuzzy inference system was used to distinguish between functioning 

and failed pumps. Maio et al. [10] proposed an ensemble approach comprising fuzzy C-means and 

hierarchical trees to assess the wear status of oil sand pumps. This method performed well in terms of 

diagnosis when it was evaluated on the basis of data collected from oil sand pumps in the field. It 

should be noted that all of the research cited above has been limited to the problem of fault diagnosis 

in slurry pumps through the use of classification methods. In particular, although the problem has 

received some attention in other contexts [12–15], few studies have addressed the issue of  
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“prognostics” that is arguably the most important part of the condition-based maintenance of slurry 

pumps. Due to its capacity for prior event analysis, prognosis is more effective than diagnostics in 

assuring a zero-downtime performance of the machinery. In general, health prognosis involves three 

main steps: evaluating the machinery’s current condition [16], observing its future condition, and 

predicting the residual useful life of the equipment before the failures eventually occur [17].  

The research reported in this paper was conducted in response to a particular requirement in oil 

mining whereby slurry pumps need enhanced monitoring because they are prone to sporadic 

catastrophic breakdowns. In the oil-mining sector, equipment owners need to be aware when their 

pumps require an overhaul or when the related pump components will shortly need to be replaced to 

avoid unplanned pump downtime. To reduce potential costs, it is of great practical importance to have 

available a method to monitor the condition of the pump that is capable of determining when it should 

be overhauled or replaced, or how long its useful life is expected to be. Experience has shown that 

slurry pumps wear mainly because of impeller failure that can be indicated in advance by a decrease in 

impeller diameter [2]. This suggests that the impeller might be used as the target of monitoring to 

assess the health of the pump and to calculate the associated estimation of remaining useful life. The 

reliable prediction of the remaining useful life (RUL) of pumps is likely to yield considerable cost 

savings and improvements in operational safety.  

Recent years have witnessed the rapid development of RUL prediction methods for maintenance [1]. 

Many RUL prediction approaches have been proposed and they can be broadly categorized into: 

physics-of-failure approaches [18–20], data-driven approaches [1,21,22], and fusion approaches [23,24]. 

Physics-based models rely on the understanding of physics-of-failure mechanisms. By conducting 

physics-of-failure experiments, Jin et al. identified the failure mechanism of lubricant loss in a space 

bearing, and on this basis proposed a physics-of-failure-based degradation model and life prediction 

method for the Momentum Wheel in long-life satellites [19]. However, it is typically difficult to 

understand the physical failure mechanisms in complex engineered systems that generally consist of 

multiple components. Furthermore, it is too expensive and time-consuming to test systems to physical 

failure through experimentation [23]. Data-driven approaches derive models directly or indirectly from 

condition-based data collection. With the rapid development of technologies for the acquisition, 

storage, and processing of data, such data-driven approaches have become widely used. Si et al. 

presented an excellent review of data-driven prognostic approaches associated with the estimation of 

RUL [1]. They pointed out that many challenges remained for further study, especially in relation to 

some practical engineering-oriented problems. The fusion method combines the physics-of-failure and 

the data-driven models and hence combines some of the merits of these two approaches. Cheng and 

Pecht proposed a fusion prognostic method to predict the remaining useful life of electronic products [25]. 

In their approach, the physics-of-failure model was used to identify the products’ failure mechanisms, 

failure models, and critical parameters, and the data-driven method was used to obtain the indicators 

and to detect the state of the monitored product.  

As the data were sampled from oil sand pumps under extremely complicated and adverse working 

conditions, which may include all kinds of disturbances, the use of data pre-processing, feature 

extracting, and model building in this study was much more challenging than in research based on 

laboratory datasets. To the best of our knowledge, little effort has been devoted to pump prognosis 

based on field datasets in the literature. In this study, relevance vector machines (RVMs) were 
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combined with the sum of two exponential functions to arrive at a method capable of predicting the 

degree of wear of field impellers and their remaining useful life. RVM—a method first introduced by 

Tipping [26]—is a data-driven method with the Bayesian treatment of the support vector machine 

(SVM). Hence, in contrast to the SVM, the RVM naturally incorporates prior knowledge. The key 

feature of an RVM is that it is an order of magnitude more compact than the corresponding SVM [27]. 

This compactness results in a significant improvement in the process speed while offering a 

generalization performance through sparse predictors comparable to an SVM. Additionally, an  

RVM represents a mechanism that can avoid over-fitting by implementing a priori knowledge on the  

model weights. The RVM has been proven to be an efficient prognostic technique in many 

applications [24,28–30]. Saha et al. developed a fusion method by combining relevance vector 

machines (RVMs) and particle filters to predict the RUL of a lithium-ion battery [24]. Their  

well-developed fusion method was based on knowledge of the physics-of-failure model of the battery. 

Zio and Di Maio combined RVMs with a Paris-Erdogan growth function to describe the health 

deterioration of a fatigue crack growth process [29]. Di Maio et al. explored the use of a combination 

of RVMs and one exponential function to predict the RUL of partially degraded thrust ball bearings [30]. 

Their method showed good RUL estimation accuracy and the capability of uncertainty while directly 

handling the vibration signals of bearings. Wang et al. combined RVMs and a conditional  

three-parameter function to predict the remaining useful life of lithium-ion batteries [32]. In this study, 

the sum of exponential functions is chosen due to the much flexibility to fit the very complex 

degradation curves. The historical data on the pump impeller in question were first used to extract some 

useful feature(s). The RVM-based model was then trained by an input vector constructed by a serial of 

inspection file numbers and the target vector was indirectly obtained from these feature(s) so that the 

corresponding degradation evolution curve could be calculated. Finally, the pump’s remaining useful life 

was estimated by extrapolating the degradation evolution curve up to the predefined alert threshold. 

The remainder of the paper is organized as follows: after an introduction to the basic theory of 

RVM in Section 2, Section 3 presents a prediction of the deterioration trend and RUL in a field oil 

sand pump derived from vibration-based degradation signals. In Section 4, the results of this 

prognostic procedure are presented and the prognostic performance of the developed model applied to 

real data is analyzed. We conclude the paper in Section 5. 

2. Introduction to RVM 

An RVM is a Bayesian sparse kernel model that introduces a prior distribution over the model 

weights that are governed by a set of hyper-parameters [33]. In comparison with the equivalent SVM, 

the most compelling feature of the RVM is its superior generalization performance and a shorter time 

for prediction because relatively few “relevance vectors” are used in effecting the prediction [34]. The 

RVM also provides posterior probabilistic outputs. Taking these advantages into consideration, in this 

study an RVM is adopted to build a degradation model to predict the remaining useful life of the 

machine components.  



Sensors 2013, 13 12667 

 

 

The RVM starts with the concept of linear regression models that are generally used to find the 
parameter vector 0 1 2{ , , ,..., }Nw w w ww . For a new input x ( Nx ), the prediction of z  can be 

obtained according to the following equation: 

n z Φw  (1)

where Φ is a ( 1)N N   design matrix, constructed with the thi row vector denoted by 

1 2( ) [1, ( , ), ( , ),..., ( , )]i n n n n Nx K x x K x x K x xΦ ; the offset n  is an additional noise component of the 

measurement with mean zero and variance 2.  In this way, the likelihood of the dataset can be written as: 

2 2 2

2

1
( | , ) (2 ) exp{ }

2
Np  


  z w z Φw  (2)

In many applications, due to the singularity of the coefficient matrix in Equation (1), over-fitting 

problems may arise during the maximum likelihood estimation of parameters in Equation (2). This 

could lead to poor prediction performance. To overcome this problem, Tipping proposed the use of 

additional constraints on the parameter vector, w [26]. 

In the RVM learning process, the parameter vector w  is constrained by putting a zero mean 

Gaussian prior distribution on the weights, that is: 

1

1

( | ) ( | 0, ),
M

i i
i

p N w  


 w α  (3)

where i  is used to describe the inverse variance of each vector ,iw  andα  denotes as 1 2( , ,..., ).M    

From this formulation, it can be easily seen that there is an individual hyper-parameter i  associated 

with each weight to control how far each parameter vector is allowed to deviate from zero [33]. 

By Bayes’ rule, the posterior probability over all of the unknown parameters can be expressed as:  
2 2

2 ( | , , ) ( , , )
( , , | ) ,

( )

p p
p

p

  
z w α w α

w α z
z

 (4)

where: 
2 2 2( ) ( | , , ) ( , , ) .p p p d d d     z z w α w α w α  (5)

However, the solution of the posterior 2( , , | )p w α z in Equation (4) cannot be computed directly 

because the normalizing integral on Equation (5) cannot to be executed. Instead, we decompose the 

posterior as: 
2 2 2( , , | ) ( | , , ) ( , | ).p p p  w α z w α z α z  (6)

According to Bayes’ rule, the posterior distribution over weights can be expressed as:  

 
(7)

where the mean m  and covarianceΣ are: 
2 ,Tm ΣΦ z  (8)
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2 1( ) ,T   Σ A Φ Φ  (9)

where 0 1( ) ( , ,..., ).Ndiag diag    A α  

The probability distribution over the training targets can be obtained by integrating the weights to 

obtain the marginal likelihood for the hyper-parameters: 

 (10)

where the covariance matrix is given by 2 1 T   C I ΦA Φ . Then the log probability distribution over 

the training targets is:  

2 2 2 1

0

1 1
ln ( | , ) ln( ) ( ) ln(2 ) ln( ).

2 2 2 2

N
T T

i
i

N N
p       


     z α z z m Σ m  (11)

Thus, the estimated value of the parameter weights w is given by the mean of the posterior 

distribution in Equation (7), and the hyper-parameters α and 2 can be estimated by maximizing 

Equation (11), which is known as the evidence approximation procedure. Further details on the 
approximation procedure are available at [33]. For a new input, newx , the probability distribution of the 

predictor newz is given by: 

 (12)

where the mean and variance of the predictor are: 

( ),T

new newm x m  (13)

and: 
2 2ˆ ( ) ( ),T
new new newx x   Σ  (14)

respectively. 

3. Application of the Model to the Oil Sand Pump  

Slurry pumps are used to deliver a mixture of bitumen, sand, and small pieces of rock from one site 

to another in wet mineral processing operations. Experience has shown that the components of slurry 

pumps undergo a great variety and degree of abrasiveness and erosion. Often, the pump wear results in 

sudden downtime. This leads to huge economic losses due to the interruption of the mineral processing 

operations. Hence, it is of critical significance to have a method that is capable of helping to decide 

when a pump should be taken out of service and overhauled. In this study, a prognostic method is 

developed to assess the pump’s performance degradation and to predict the RUL of the pump. The 

schematic diagram of the developed method is depicted in Figure 1. The method involves three steps: 

data acquisition and feature extraction, sparse dataset acquisition through the RVM learning process, 

and model fitting and prediction by extrapolating the fitted model. Further details about each step are 

given in the following subsections. 
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Figure 1. Schematic diagram of the developed method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1. Data Collection  

Field data were collected from the inlet and outlet of slurry pumps operating in an oil sand mine. 

Vibration signals using the same sampling frequency rate (51.2 kHz) were obtained from four 

accelerometers mounted at four different pump locations. These four accelerometers were named as 

casing 1, casing 2, casing 3, and casing 4, respectively, in Figure 2. Data collection began immediately 

after all of the components inside the pump had been renewed. It was continued intermittently for 

around three months with one sampling per hour until the pump’s impeller wore out sufficiently to 

need replacement. In total, the pump was subjected to 904 measurement hours. The increased vibration 

levels in certain components of the pump indicated the level of degradation of the pumps, so the 

vibration signals could be used to monitor the health of the pump system. Data cleaning was done by 

manually removing outliers exceeding a predefined threshold. 
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Figure 2. The measurement locations of the four accelerometers mounted on a slurry pump 

(the four accelerometers named as casing 1, 2, 3 and 4) [35].  

 

3.2. Characteristic Frequency of the Pump  

The fast Fourier transform (FFT) technique converts time-domain signals into frequency-domain 

signals and can thereby identify salient features in machines [36]. In this application, the characteristic 

frequencies of the oil sand pumps were analyzed using FFT. As shown in Figure 3a, the motor on the 

pump used at the oil sand mine generally ran at 1,526 rpm (26 Hz), and was stepped down through a 

gearbox to drive the pump at a speed of 388.4 rpm (6.62 Hz). The pumps usually showed quite strong 

vibration components at 1  its shaft rotational frequency, known as the pump rotating frequency at 

6.62 Hz. The impeller’s vane-passing frequency was 4  its shaft rotational frequency [37]. Because 

the impeller used in this study had four vanes, therefore, the vane-passing frequency was 26.48 Hz. 

The first harmonic frequency and the second harmonic frequency of the tooth meshing frequency were 

calculated from experimental data as 364 Hz and 728 Hz respectively. Figure 3b(i) showed the 

damages caused to the impeller’s vanes by oil sand and small rocks and Figure 3b(ii) showed the close 

up view of one of the damaged vanes. These pictures were captured in the oil sand exploration field. 

One can see that the damages to the vanes caused by the bombardment of oil sands are severe and 

cannot be comparable to those caused by normal water and oil pumps.  

Three representative frequency spectrums of the oil sand pump are shown in Figure 4. It is clearly 

seen that none of the frequencies (the motor frequency, the vane-passing frequency, or the tooth 

meshing frequency) were exactly equal to the characteristic frequencies. The reason is that in practical 

installations, the working motor speed often fluctuates or drifts. Therefore, in the subsequent step of 

feature extraction, a narrow spectrum band was selected within which an averaging algorithm was 

executed and the corresponding results were used to substitute for the vane-passing frequency.  
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Figure 3. (a) The pump speed stepped down through a gear box; (b) The damages caused 

to the impeller’s vanes by oil sand and small rocks (i) The impeller with damaged vanes; 

(ii) The close up view of one of the damaged vanes.  

 
(a) 

 

(i) (ii) 

(b) 

Figure 4. The frequency spectra of the vibrations collected from the oil sand pump. 
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3.3. Feature Extraction  

In the mineral processing field, some critical components of slurry pumps frequently fail earlier 

than their expected service time. For example, according to field observations, the vanes of impellers 

were usually the first component to wear out due to abrasion from the fluid-solid materials [11]. This 
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research therefore focuses on the pump impeller. Instead of using the crude vibration data directly for 

the prognosis of the pumps’ health, a feature extraction procedure was implemented to identify 

feature(s) that indicated the clear progressive degradation of the pump impeller. As shown in Figure 5, 

a suite of processes was designed to extract an indicator that would vary increasingly with progressive 

damage to the pump.  

Figure 5. Feature extraction process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The details of the feature extraction process are given as follows. At the first step, the vibration 

data ( , )T nX were standardized to scale all of the data into the same interval, thus: 

( , ) mean( ( , ))
( , ) ,

std( ( , ))new

T n T n
T n

T n




X X
X

X
 (15)

where new ( , )T nX is the standardized data; mean( ( , ))T nX  is the mean value of the elements in 

vector ( , )T nX ; std( ( , ))T nX  returns the standard deviation; T  is the pump measurement time and 

1, 2,..., 904T  , n  is the sample number index for each T  ( 1, 2,...,n N and N = 51,200). 

A Fourier transform-based sliding-window averaging technique was then used to obtain averaged 

FFT amplitude values ( , )t fY  by sliding a window along a sequence of pump-measurement times, thus: 

1

new
0

1 2
( , ) ( , )exp( )

l L N

T l n

i fn
T f T n

L N

 

 


  Y X  (16)

where ( , )T fY is the averaged FFT amplitude value; f is the frequency index and L is the window width. 
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Then, the averaged FFT amplitude values ( , )T fY  were summed up within a narrow spectrum band, 

19~40 Hz and the energy ( )TV  was calculated by integrating the frequency within the narrow 

spectrum band: 
40

19

( ) ( , ),
f

T T f


 V Y  (17)

where the energy ( )TV  is taken into account to substitute for the “rating frequency” of the vane-passing 

frequency of the monitoring pump. The frequency band was selected from the overall frequency band 

by manually checking the frequency bands of all of the pump-measurement times one by one to ensure 

that all of the situations had been included. 
Finally, the sequential standard deviation values ( )STD j  were calculated by augmenting one 

element from the cleaned summed results, thus: 

( ) ( (1), (2),..., ( 1)).STD j std V V V j q    (18)

where j is referred to the file number index and 1, 2,..., 1j K q   , and q  indicates the file numbers at 

the steady stage. (1)STD  was calculated from the first q  elements that were regarded as the steady 

stage as impeller deterioration progresses. 

When compared with the progression of pump damage demonstrated by the energy evolution based 

on averaged FFT amplitude as shown in Figure 6, the standard deviation contains similar information 

on the condition of the pump’s health. Furthermore, it illustrates a progressive trend of developing 

damage along the file number. For this reason, this feature was selected as the favorite and most 

effective candidate to be a feature to monitor the health of the pump.  

Figure 6. (a) Energy evolution (T2G1C3); (b) The standard deviation values (T2G1C3). 
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3.4. RVM Learning Process and Model Fitting 

The RVM learning process was performed on the pair of vectors  ,z x , where the input 

vector x was constructed from successive inspection file numbers. The target vector z was constructed 

by generating the corresponding random numbers that follow the Gaussian distribution with mean 

values equal to a serial of STD values and variance values equal to a certain pre-defined value. The 
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detailed flowchart for the RUL estimation is shown in Figure 7a. At each inspection file number 

jx , 1,...,j J , the target values 1 2{ , ,..., }jz z zz  indicating the pump degradation information were 

assumed to be known up to jx . To train the RVM model, a Gaussian kernel was used as the mapping 

feature space and the value of kernel width was determined using a one-dimensional search method 

from 30 to 80 with a step length of 0.5 with a view to obtaining the optimized RVM training process 

with the smallest root mean square error (RMS). Thus the hyper-parameters w  and 2 in Equation (1) 

were determined during the machine learning process. After building the RVM training model, the 

representative estimators * * * *

1 2{ , ,..., }
r r

z z zz (upon renumbering) whose number was much smaller than 

that of the training data, were found at the corresponding inspection file numbers 
* * * *

1 2{ , ,..., }
r r

x x xx (upon renumbering), denoted as a sparse dataset * *{ , }
r r

z x . The pairs of feature data 
* *{ , }
r r

STD x  associated with the sparse dataset were labeled as Relevance Vectors (RVs) [33].  

An exponential function, a polynomial function and a sum of two exponential functions were the 

potential candidates to approximate the pump degradation curve. The reasons why we chose the sum 

of two exponential functions were given as follows. First, compared with the exponential function and 

the polynomial function with a low degree, the sum of exponential functions was more flexible to fit a 

complex degradation curve, which had been proven in reference [38]. Second, even though the 

polynomial function with a high degree showed a flexible fitting characteristic, the function becomes 

more complex as the order increases. The posterior estimation of the parameters used in the 

polynomial function with a high degree becomes extremely difficult. The goodness of fit statistics was 

used to quantify the performance of different functions. The R-square, the adjusted R-square and the 

root mean squared error (RMSE) were tabulated in Table 1, where the three statistical values 

demonstrated that the sum of two exponential functions was better than the exponential function and 

the Quadratic polynomial (a polynomial function with a degree of two) to fit the pump degradation 

curve. Therefore, considering the above two reasons, we made a trade-off between the flexibility and 

the complexity and chose the sum of two exponential functions. 

Table 1. Goodness of fit statistics used for comparing three functions. 

Goodness of Fit R-square Adjusted R-square  RMSE 

Sum of two exponential functions  0.9149 0.9147 0.1348

One exponential function 0.4874 0.4869 0.3305

Quadratic polynomial 0.8688 0.8686 0.1673

Hence in this study, the sum of two exponential functions was used to fit the degradation evolution 

of the pump impeller on the basis of the vector constructed by the mean values of the sparse dataset, 

referred to as * *{ , },r rz x where * * * * * *
1 2{z , z ,..., z },r r r r z x x . It is derived as follows: 

( ) exp( ) exp( ),  i = 1, 2, ..., r,i i i iz x a b x c d x          (19)

where the parameters ,  ,  a b c  and d are the fitted coefficients. 
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Figure 7. RUL estimation process (a) Flowchart (b) The mean values and the 

corresponding confidence bounds of the estimated remaining useful life. 
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The future evolution of degradation was predicted by extrapolating the fitted model along the 

inspection file number and the degradation trajectories were traced up to a pre-defined failure 

threshold; thus simultaneously the mean values of the remaining useful life (RUL) were obtained. The 

corresponding point jT , at which the alert threshold line and the fitted degradation curve intersect, is 

derived as:  

log log log
,F

j
z a c

T
b d

 



 (20) 

where Fz  is the predefined alert threshold value. Hence, the estimated mean value of the remaining 

useful life (RUL) at the inspection file number jx  is calculated as: 

( ) .j j jRUL x T x


   (21) 

The correspondence variance vector, 1 2{σ ,  σ ,  ...,  σ }r
   σ  of the predictors associated with the 

selected RVs can be calculated by Equations (13) and (14). Then the sum of two exponential functions 

was used to fit the RUL confidence interval curves based on the vector { , } σ x . The future evolution 

of RUL confidence interval was predicted by extrapolating the fitted model for the RUL confidence 

interval along the inspection file number. In this study, the lower and upper RUL confidence bounds 

( )l jRUL x


and ( )u jRUL x


were estimated by the “two sigma” rule, i.e., a 95.45% confidence level.  

Figure 7b illustrates the prognostic process and the corresponding results. In the figure, the black 

spots represent the target data jz , the green circles are RVs deemed to be representative of the 

evolution of the degradation of the impeller, the thick black dashed line is the alert threshold line, and 

the purple dashed line is the regression line approximating the real degradation curve. The estimated 

remaining useful life ( )jRUL x


 at the inspection file number jx was obtained by projecting the 

degradation trajectories (starting from the inspection file number jx ) into the alert threshold (ending 

with the intersected point). The thin black dashed lines in Figure 7b are the confidence interval lines 

for the estimated RUL. It is worth noting that at the oil sand mining site, otherwise well-functioning 

pumps are often forced to stop to replace the components before they are absolutely out of service so 

as to preempt production shutdowns. Consequently, the precise failure threshold for the impeller 

cannot be obtained from the field data. In conventional practice, the failure thresholds are set by the 

users on the basis of heuristically determined safe operational limits. In contrast, in this study, instead 

of failure thresholds, alert thresholds for pump impellers, beyond which alarms of the pump health are 

issued and the pump impellers may fail, were set on the basis of our empirical model and pump 

degradation trend.  

4. Results and Prognostic Performance Analysis 

The application of the prognostic procedure to the calculation of the estimated ( )jRUL x


 at the 

inspection file number jx of the impeller is hereafter illustrated using two datasets sampled from 

different positions on the same pump. These datasets are referred to as T2G1C3 and T2G1C4. When 

verifying the RVM-based model on the basis of the empirical data, it is assumed that the equipment 

may start to fail beyond the maximum degradation level. The performance of the developed procedure 
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for estimating the impeller RUL is evaluated by comparing the results obtained by the RVM-based 

model and the conventional exponential fitting.  

Case 1: T2G1C3 

In the case of T2G1C3, the vibration signals were sampled from the Suction Pipe. During the 

feature extraction phase, the sliding window width was selected as 5. The data contained in the first 

100 files were taken to represent the steady state of the impeller. The feature extraction results are 

plotted in Figure 6. The alert threshold was set equal to the maximum STD value, and thus the file 

number at the corresponding intersected point could be easily obtained, i.e., 890. The prognostic 

results for T2G1C3 at the inspection file number {200,300,400,500,600,700}jx  are presented in 

Figures 8 to 13.  

Figure 8. Inspection file number 200 200x  . 
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Figure 9. Inspection file number 300 300x  . 
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Figure 10. Inspection file number 400 400x  . 
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Figure 11. Inspection file number 500 500x  . 
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Figure 12. Inspection file number 600 600x  . 
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Figure 13. Inspection file number 700 700x  . 
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Table 2. Values of ( )jRUL x


 using the RVM-based model and exponential fitting. 

Inspection File Number 
( jx ) 

Actual ( )A jRUL x
( )jRUL x



Using  
RVM-based Model 

( )jRUL x


Using  
Exponential Fitting 

200 690 359.4 2,000 
300 590 268.7 1,400 
400 490 333.6 1,600 
500 390 332.1 901 
600 290 275.4 483 
700 190 107.2 249 

Figure 14. Comparison of prognosis performance using the RVM-based model and 

exponential fitting for dataset T2G1C3. 
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Comparisons of the results for datasets T2G1C3 are shown in Table 2. Because the exponential 

fitting cannot provide information on the confidence bounds of predictions, the comparison results can 

only be described by the mean value of the estimated RUL at each inspection file number. Moreover, 
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the comparison results are plotted in Figure 14 in order to clearly demonstrate the performance of the 

developed procedure. From Table 2, it is apparent that the RVM-based model outperforms the 

exponential fitting. During the service stage of impeller, compared to the exponential fitting, the  

RVM-based model does not yield any overestimation of RUL, a factor that is very appealing for an 

engineer planning the maintenance strategy for the pumps. 

Case 2: T2G1C4 

As shown in Figure 15, in the case of T2G1C4, the energy evolution presents an increasing trend 

until the file number equals 568, after which a slightly decreasing trend follows. An explanation for 

this behavior is as follows. The pump impeller is usually the first suffered component and wears out 

faster than other components. As the slurry pump undergoes continuous operation with oil sands, the 

number of crack occurred in the impeller’s vanes increases. The rough surfaces of cracks will be easier 

to hook sands and small rocks, causing more cracks to occur [see Figure 3b(ii)]. Hence, the surfaces of 

the vanes become rougher and rougher, thus causing the continuous increase of vibration energy. 

Therefore, in the temporal plot of vibration energy as shown in Figure 15a, one will see the vibration 

energy level jumping up and down more. The surfaces of the vanes will become smoother due to the 

continuation of encountering the water or liquid. So the variation of vibration energy level began to 

decrease slightly instead. The alert threshold was therefore set at the corresponding STD value when 

the file number was equal to 568. For the feature extraction, the sliding window width was also 

selected as 5. The data during the first 60 file numbers were taken to be the steady state of the  

impeller as shown in Figure 15a. The prognostic results for T2G1C4 at the inspection file 

number {200,300,400,500}jx   are presented in Figures 16 to 19. 

Figure 15. (a) Energy evolution (T2G1C4) (b) The standard deviation values (T2G1C4). 
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Figure 16. Inspection file number 200 200x  . 
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Figure 17. Inspection file number 300 300x  . 
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Figure 18. Inspection file number 400 400x  . 
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Figure 19. Inspection file number 500 500x  . 
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Correspondingly, the comparisons of the results for datasets T2G1C4 are shown in Table 3. More 

clear comparison of the prognosis performance using the RVM-based model and exponential fitting for 

dataset T2G1C4 is plotted in Figure 20. From Table 3, it is clear that the RVM-based model generally 

outperformed the exponential fitting, especially through not presenting any underestimation compared 

with the exponential fitting. Additionally, it is shown than the prognosis accuracy presents better in the 

later service stage of impeller compared with itself in the early service stage from Figure 20, although 

the prognosis accuracy is still not as expected. Overall, the RVM-based model yielded results superior 

to those of the exponential fitting in terms of RUL prognosis. A particular empirically observed feature 

of the developed method, namely that it does not result in underestimation or overestimation during the 

whole working stage, is an advantage in practical applications for system maintenance scheduling to 

avoid cost waste and unexpected downtime. 

Figure 20. Comparison of prognosis performance using the RVM-based model and 

exponential fitting for dataset T2G1C4. 

200 250 300 350 400 450 500
-100

-50

0

50

100

150

200

250

300

350

400

File number

R
U

L

 

 

Actual RUL

RUL using RVM-based model

RUL using Exponential fitting

 



Sensors 2013, 13 12683 

 

 

Table 3. Values of ( )jRUL x


 using the RVM-based model and exponential fitting. 

Inspection File 
Number ( jx ) 

Actual ( )A jRUL x  
( )jRUL x



Using  
RVM-Based Model 

( )jRUL x


Using  
Exponential Fitting 

200 368 33.8 181.6 
300 268 24 −2.9 
400 168 79.3 −32.2 
500 68 23.1 −50.5 

The performance of the developed procedure for estimating the impeller RUL is further evaluated 

by using the weighted average accuracy of prediction. The weighted average accuracy of prediction 

may be calculated using the following formula [28]:  

| ( ) ( ) |
(1 )*100%

( )
average of accuracyWeighted . 

A j j

j
j

A j

j
j

RUL x RU L x

RUL x







 





 

(22) 

The weights j are directly proportional to the inspection file number jx . Taking the dataset of 

T2G1C3 for example, ω200 = 200/2700 = 0.0741, ω300 = 200/2700 = 0.1111 Note that late predictions 

were penalized more heavily than early predictions. Hence, the designed performance indicator 

corresponded with actual needs and was more trustworthy in practical applications. The results with the 

weighted accuracy of prediction from the above applications are summarized in Table 4. 

From the results listed in Table 4, it is evident that the RVM-based model yielded better prediction 

accuracy compared with that based on exponential fitting. However, it should be noted that the data 

used in this study were collected from an oil sand pump operating in the field and, hence, were 

unavoidably contaminated by many uncertain factors (such as disturbances from the hybrid fluid-solid 

material circulating through the impeller outlet until discharge) arising from the extremely complicated 

working conditions. A certain unevenness in the performance of any predictive model is therefore to 

be expected. Also, it is worth noting that only a single model (RVM) was adopted to train the 

prediction system (choosing the useful RVs). This might not have been sufficient to provide a 

completely robust solution in such a rugged working environment as that of the oil sand pumps.  

Table 4. The weighted average accuracy of the prediction for pump impeller. 

Weighted Average Accuracy of Prediction 
T2G1C3 T2G1C4 

RVM-based model Exponential fitting RVM-based model Exponential fitting 
70.51 % 25.31 % 28.85% 7.05% 

5. Conclusions 

This paper has presented a model combining relevance vector machines (RVMs) and a sum of two 

exponential functions that can be used for pump impeller prognosis and for the estimation of the 

pump’s remaining useful life (RUL). The data used in the case study were all sampled from the field, 

i.e., a pump in actual use in the oil industry. It should be noted that the field datasets were used for 
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pump prognosis for the first time in a way that is much more challenging in terms of data  

pre-processing, feature extracting, and model building than in an analysis based on datasets collected 

in laboratory conditions. To solve the non-stationary problem emerging from the vibration data, a 

novel feature extracting process was proposed to arrive at a feature that increased generally as damage 

developed in the pump impellers. Different alert threshold levels were set for the two datasets sampled 

from two different positions on the same pump dependent on the practical degradation trends extracted 

from the datasets. 

The proposed procedure was found to be capable of treating degradation signals for RUL estimation 

and yielded better performance than conventional standalone exponential fitting. However, owing to 

the extremely complicated running environment of the field pump, the weighted average accuracy of 

the prediction was not as high as expected. There is certainly room for improvement, and the authors 

propose to devote their future research efforts to the development of novel ensemble prognostic 

models that can further improve the predictive accuracy of this model. 
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