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Abstract: Stress corrosion cracks (SCC) in low-pressure steam turbine discs are serious 

hidden dangers to production safety in the power plants, and knowing the orientation and 

depth of the initial cracks is essential for the evaluation of the crack growth rate, 

propagation direction and working life of the turbine disc. In this paper, a method based on 

phased array ultrasonic transducer and artificial neural network (ANN), is proposed to 

estimate both the depth and orientation of initial cracks in the turbine discs. Echo signals 

from cracks with different depths and orientations were collected by a phased array 

ultrasonic transducer, and the feature vectors were extracted by wavelet packet, fractal 

technology and peak amplitude methods. The radial basis function (RBF) neural network 

was investigated and used in this application. The final results demonstrated that the 

method presented was efficient in crack estimation tasks. 

Keywords: phased array ultrasonic transducer; artificial neural networks; low-pressure 

turbine disc; crack orientation; crack depth; RBF 

 

1. Introduction 

Low-pressure steam turbine discs are critical components in power plants which rotate at high speed 

throughout the year. With the increase of usage time, stress corrosion cracking may occur in the blade 

attachment region of the turbine discs, leading to heavy financial losses, and even severe accidents [1–3]. 
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Therefore, the initial crack inspection and the forecast of their propagation are essential to the safe 

operation of the turbine discs, and reliable methods should be developed to serve in this task. 

Ultrasonic phased array inspection technology has recently been attracting a great deal of attention in 

nondestructive evaluation applications [4]. The most desirable feature of phased array inspection is the 

ability of steering and shaping the sound beam flexibly, which is appropriate for detecting components 

with complex geometrical shapes. Yang and co-workers obtained crack depth information in the 

turbine discs from sector images produced by the phased array ultrasonic technique [5]. However, the 

orientation information of the smaller initial cracks, which is important for the estimation of the crack 

growth rate, propagation direction and working life of the turbine disc, cannot be distinguished 

effectively in the sector images. Moreover, the crack orientation can greatly influence the evaluation of 

crack depth, for the reason that the echo amplitudes vary from reflective surfaces with different 

directions. As a result, the estimations of the depth and orientation information of the initial cracks are 

both essential in turbine disc crack detection.  

There are some traditional methods for the estimation of flaw size in ultrasonic non-destructive 

testing. When the flaw size is smaller than the ultrasonic beam diameter, the amplitude-equivalent 

method is most often used, including the equivalent test specimen method and the AVG curve method; 

to the contrary, when the flaw size is larger than the ultrasonic beam diameter, the length testing 

method is always used which includes the 3, 6 and 12 dB methods. However, none of the methods 

mentioned above take the orientations of the flaws into account, which is an obstacle to the testing of 

the cracks with different orientations. To solve this problem, crack tip diffraction signals are generally 

used to detect the location of the crack tip, and then the depth and orientation information can be 

obtained simultaneously [6]. However, this method has its limitations, that is, the isolation of the crack 

tip signal requires the face of the crack not to be oriented perpendicular to the direction of beam 

propagation, and commonly, the early cracks are not big enough to generate tip diffraction signals and 

cannot be measured in this way. In light of the above, more effective methods are needed to estimate 

the depths and orientations of smaller cracks in their early stage. 

In recent years, artificial neural networks have been proved to be effective for flaw identification 

and evaluation in ultrasonic non-destructive testing. For instance, in respect of qualitative analysis, 

neural networks can be used to identify the different flaw types such as cracks, pores and slags in metal 

welds [7]; for quantitative analysis, neural networks can effectively estimate the crack size [8] and the 

bonding level of composite materials [9]. Neural networks are nonlinear mapping processes which 

have significant good self-learning, self-adaptivity, fault tolerance, associative memory capacity and 

high degree of parallelism features. This kind of model has no special data distribution requirements so 

that it can efficiently solve non-normal distribution and non-linear problems. Especially for their 

excellent generalization ability, artificial neural networks have a great advantage and have achieved 

good application results in various fields. There are many other common pattern recognition methods, 

such as support vector machine, hidden Markov model, naive Bayes classifier and decision tree which 

we did not choose in this paper, because they have some disadvantages compared with neural networks 

in our application. For example, the support vector machine is not suitable for large-scale training data; 

the hidden Markov model requires prior knowledge of the data statistics; the naive Bayes classifier 

needs data which must fit a certain statistic distribution; the decision trees may make larger errors as 

the number of classes increases, and so on. Neural networks also have their own shortcomings, for 
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instance they are prone to plunge into local minima and their training speed is slow, etc. Improved 

neural network models such as the RBF neural network have conquered these problems. This kind of 

network can process large-scale data, and has simpler structure, faster convergent speed and powerful 

nonlinearity approach capability in global as well.  

In this paper, based on a phased array ultrasonic transducer and artificial neural network, a method 

to estimate both the depth and orientation of initial cracks in fir-tree type turbine discs, which are the 

most prevalent in low-pressure turbine rotors, is proposed. In the following sections, firstly, the data 

collection system was built and the experimental data is described. The A-scan echo signals from 

cracks with different depths and orientations were collected through a phased array ultrasonic 

transducer, and the feature vectors were extracted by the wavelet packet, fractal technology and peak 

amplitude methods. Then, the RBF neural network was investigated for this estimation work. Finally, 

the estimation results of the neural network were analyzed. Our results showed that the proposed 

method can efficiently estimate both the depth and orientation of initial cracks in turbine discs. 

2. Data Collection 

The experimental data was obtained using the pulse-echo inspection method. The data collection 

system consists of the following main components: M2M ultrasonic detector, linear phased array 

ultrasonic transducer with a 36° wedge, the specimen with artificial defects, and a PC. The detector 

sampling rate is 100 MHz, and a phased array ultrasonic transducer with a center frequency of 5 MHz 

served as the transmitter and receiver, the number of elements is 64, element width is 0.49 mm, 

element length is 10 mm and the inter-spacing between centers of adjacent elements is 0.59 mm. For 

our study, we machined a small part of the turbine disc which is made of steel and has three hooks as 

the experimental specimen. The whole experimental set up is shown in Figure 1.  

Figure 1. Data collection system. 
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In order to reduce the transducer movement, for this inspection we chose a sector scan, which can 

scan all the three hooks without movement in radial direction of the disc, then the A-scan signals from 

cracks in each hook can be obtained from this sector scan data. The steering beams were not focused 

because the three hooks are in different depths. The sector scan in the specimen is shown in Figure 2(a), 

and the orientation angle θ and depth d of cracks are shown in Figure 2(b). We can see that the three 

hooks are detected by different steering angle beams. To avoid the influence of differences between 

beams, the estimation works are discussed for the three hooks respectively, so cracks were processed 

in each hook, which contains depth 0.5 mm, 1.0 mm, 1.5 mm, 2.0 mm and orientation angle 5°, 25°, 

45°. Crack depths and orientations are shown in Table 1. All the A-scan signals from these cracks  

are analyzed for the estimation work. Due to space limitations, only one set of these A-scan signals  

is shown in Figure 3 and the relevant frequency spectrum is shown in Figure 4 to help us observe the 

signals preliminarily. 

Figure 2. (a) Sector scan in the specimen. (b) Crack orientation angle and depth. 

(a) (b) 

Table 1. Orientation and depth of crack in the specimen. 

NO. Orientation (deg) Depth (mm) 

1 5 0.5 
2 5 1.0 
3 5 1.5 
4 5 2.0 
5 25 0.5 
6 25 1.0 
7 25 1.5 
8 25 2.0 
9 45 0.5 
10 45 1.0 
11 45 1.5 
12 45 2.0 

  

θ
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Figure 3. One set of A-scan echo signals from the cracks in the specimen. 

 

Figure 4. The relevant frequency spectra of the A-scan echo signals. 

 

3. Feature Extraction  

Feature extraction means capturing information that is relevant to different depths and directions of 

cracks from the ultrasonic echo signals, which is the critical task for the crack estimation. Ultrasonic 

echo signals always have the characteristics of high level non-linearity, non-stationarity and transient 

nature. Wavelet and fractal have been proven to be excellent methods for processing this kind of 

signals. In [10], the wavelet transform is used to analyze lamb-wave ultrasonic NDE signals; in [11], 

the fractal property of time series serves as a preprocessing tool for the classification of defects probed 

by ultrasonic signals; in [12], the wavelet transform and fractal theory are combined to analyze the 

ultrasonic NDE data on the multi-layer adhesive structure. In the following, wavelet packet and fractal 
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analysis were used for feature extraction of echo signals. Furthermore, in the time domain, the echo 

peak amplitude features were also extracted. 

3.1. Wavelet Packet Energy Spectrum Extraction 

During the detection process of the ultrasonic phased array, the transducers are excited by narrow 

pulses which are similar to function d , and then the pulsed ultrasound which has extremely short 

duration time is produced. Therefore, the ultrasound contains such a wealth of frequency spectrum 

information, that it can be regarded as the superposition of many harmonic components with different 

frequencies. When ultrasonic waves meet flaws in the specimen, some waves are reflected back. The 

flaws with different orientations and sizes can be considered as different system functions which can 

influence amplitude-frequency and phase-frequency characteristics of the incident ultrasonic to various 

degrees, so signals reflected from different flaws should have considerable differences in frequency 

band energy.  

The wavelet packet is an extension of wavelet analysis which can provide more fineness in signal 

decomposition than the wavelet. This analysis can decompose the ultrasonic signals into independent 

frequency bands completely, and then the features of different echo signals can be characterized by the 

frequency band energy.  

3.1.1. A Short Review of Wavelet Analysis 

The wavelet transform decomposes a signal into a set of basic functions which are obtained from 
the mother wavelet. A mother wavelet is a function ( )ty  which must satisfy the following 

admissibility condition: 

 (1)

where ˆ( )y w  is the Fourier transform of ( )ty . Then the basic functions , ( )a b ty  are generated from the 

mother wavelet ( )ty  by dilations and translations: 

 (2)

where ,a b RÎ , 0a ¹  are scaling and shifting factors, respectively. The basic function set , ( )a b ty  are 

called wavelet family, and the Continue Wavelet Transform (CWT) is defined as followed: 

 (3)

where f(t) is the signal to be decomposed. 
In practice, for the convenience of processing the data by computer, the signals are always a 

discrete series; therefore, one prefers to write the signal as a discrete superposition of a discrete set of 

continuous wavelets, which is called Discrete Wavelet Transform (DWT). In the transform, the scaling 

and shifting factors are discretized and given by a = a0
j and b = kb0a0

j ( ,j k Î ). In general, a0 and b0 

are always set to 2 and 1, respectively. The function family with discretized factors becomes: 
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 (4)

Then the wavelet decomposition can be expressed as: 

 
(5)

where the dj,k called wavelet coefficients which are inner products of the signal with the wavelet basis 

functions: 

 (6)

Mallat has extensively studied this discrete wavelet transform [13]. He proposed the significant 

concept of “multiresolution analysis” and built a complete mathematical theory. On the basis of this 

theory, meanwhile, a fast algorithm for wavelet transforms is presented. It is called Mallat algorithm 

and has occupied an important position in wavelet analysis.  
In the multiresolution analysis, the scaling subspaces ( )jV j Î  to describe the successive 

approximation spaces are considered. To express the multiresolution analysis, the nested structure of 
the Vj are shown as: 2

2 1 0 1 2... ...V V V V V L- -Ì Ì Ì Ì Ì Ì Ì . The scaling function ( )tf  is also 

introduced, and its dilated and translated versions are expressed as: 2
, ( ) 2 (2 )

j
j

j k t t kf f
- -= - , where 

,j k Î . Then , ( )j k tf  constitutes an orthonormal basis of the closed subspace Vj. For each j, the 

, ( )j k ty  spans a wavelet subspace Wj which is exactly the orthogonal complement of Vj in Vj − 1, i.e.: 

 (7)

Then the original signal f(t) can be decomposed to: 

 (8)

where j is the level number of the wavelet decomposition, cj and dj are the approximation coefficients 

and detail coefficients of f(t), respectively. 
To construct the mother wavelet ( )ty , one may first determine the scaling function ( )tf  which 

satisfies the two scale difference equation: 

 (9)

where h(n) are low-pass filter coefficients defined by 
1

( ) ( ), ( ) ,
2 2

t
h n t n nf f= - Î . The mother 

wavelet ( )ty  is obtained via the scaling function ( )tf : 

 (10)

where g(h) = (−1)nh(1 − n) which are high-pass filter coefficients and orthogonal to h(n).  

Then the Mallat algorithm for the computation of the decomposition coefficients can be summarized 

by the following equations: 

2
, ( ) 2 (2 )

j
j

j k t t ky y
- -= -

, ,
,

( ) ( )j k j k
j k

f t d ty=å

, , ,( ), ( ) ( ) ( )j k j k j kd f t t f t t dty y
¥

-¥
= = ò

1j j jV W V- = Å

, ,( ) ( ) ( ) ( ) ( )j j k j j k
k k

f t c k t d k tf y= +å å

( ) 2 ( ) (2 )
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 (11)

 
(12)

where m Î . 

The reconstruction of cj − 1(k) can be expressed as: 

 (13)

3.1.2. Wavelet Packets 

The wavelet packet method is a generalization of wavelet decomposition that can provide more 

sophisticated analysis. Wavelet analysis decomposes signals into two parts: low-frequency and  

high-frequency. During the course of decomposition, only the low-frequency part is decomposed  

into two parts and this decomposition can be continued to a number of deeper levels. It can be seen 

that, in the wavelet decomposition, the frequency resolution reduces in higher frequency. Wavelet 

packet transform is more accurate in signal decomposition, as it decomposes signals not only in  

the low-frequency part, but also in the high-frequency part.  

For the convenience of discussion, in wavelet packet analysis, scaling subspace Vj and wavelet 

subspace Wj are expressed by a uniform subspace Un 
j : 

 (14)

Then the formula (7) can be rewritten as: 

 (15)

and the recursion formula can be expressed as: 

 (16)

Define the subspace Un 
j  is the closure space of function un(t). Making u0(t) = ( )tf  and u1(t) = ( )ty , 

the function of wavelet packet is made up as follows: 

 (17)

 (18)

where g(k) = (−1)kh(1 − k) which is high-pass filter and orthogonal to the low-pass filter h(k).  
Set ( )n n

j jf t UÎ , d2n 
j  and d2n+1 

j  are the wavelet packet coefficients of subspaces U2n 
j  and U2n+1 

j , 

respectively. The fast decomposition and reconstruction algorithms of wavelet packet can be obtained 

led by the Mallat algorithm: 
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(1) Wavelet packet decomposition algorithm is described as: 

 (19)

 (20)

where l Î . 

(2) Wavelet packet reconstruction algorithm is described as: 

 (21)

3.1.3. Wavelet Packet Energy Spectrum 

Energy spectrum feature extraction by wavelet packet can be described as four steps: 

(1) Decompose the ultrasonic echo signal. 

We decompose the ultrasonic echo signals into four layers, and the decomposition coefficients 

can be acquired from low frequency to high frequency of 16 sub-bands in the fourth layer. The 

wavelet packet decomposition tree of four levels is shown in Figure 5, in which (j,i) represents the 

ith node of the jth level. The wavelet packet coefficients of these frequency components in each level 
from low frequency to high frequency are represented by 0 1 2 (2 1)

,  ,    jj j j j
X X X X

-
¼ (j = 0, 1, 2…). 

Figure 5. Wavelet packet decomposition tree of four levels. 

 

(2) Reconstruct decomposition coefficients. 

Reconstruct the wavelet packet decomposition coefficients, and extract the frequency range 

signal S4i (i = 0, 1, 2...15). Then the total signal S is the sum of each frequency band signal: 

 (22)

(3) Calculate energy of each frequency band. 

The energy of signal S4i can be calculated as: 

 (k = 0, 1, 2…N) (23)

where N is the number of discrete points of signal S4i, and x4ik is the amplitude of the kth  

discrete point. 
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(4) Construct feature vectors.  

The energy spectrum feature vector of the 4th level can be constructed as follows: 

 (24)

In order to accommodate the analyze model in the following section, the energy spectrum 

vectors are normalized as follows: 

 (25)

where 
15

4 4
=0

i
i

E E=å . 

To illustrate this abstract feature extraction method, the wavelet packet energy spectrum of one 

set of data is shown in Figure 6 as an example.  

In the level 4, the main frequency bands which concentrate most energy of the crack echo signal, 
i.e., the first three bands of T4

′, constitute feature vector T: 

(26)

Figure 6. Wavelet packet energy spectrum of one set of echo signals. 

 

3.2. Fractal Feature Extraction 

Fractal theory has been developed into a powerful tool in dealing with non-linear problems in 

natural science and engineering. In nonlinear signal processing, fractal dimensions can be used to 

quantitatively analyze the signal irregularity and complexity. The combination of wavelet and fractal is 

proposed according to the unity that the multi-scale decompositions and self-similarity in both wavelet 

transform and fractal theory possess, that is, the ability to analyze the signal information from low-

resolution to high-resolution of the wavelet transform is consistent with the fractal method which gets 

more and more abundant details through transforming the signal from big scale to small scale. 

In the fractal analysis, the more tortuous, convoluted and richer in detail, the higher the fractal 

dimensions. The box-counting dimension is one of the best known fractal dimensions which can be 
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easily defined and obtained numerically. In this study, fractal box-counting dimensions are combined 

with wavelet packet transform and extracted as features for crack echoes. 

3.2.1. Fractal Theory 

Fractal theory was introduced by Mandelbrot [14] and is associated with the geometrical properties 

of an object. At first, this theory is used to study set topology, and it was later applied to natural 

science and engineering. A fractal is a kind of mathematical abstraction used to describe the regularity 

of many irregular things and phenomena. It has revealed the unification between confirmation and 

randomicity, order and disorder in non-linear systems. So far fractals have not been given a strict 

mathematical definition yet, but the basic properties of the fractal object can be summarized by the 

following two points: firstly, fractal objects possess the characteristic of self-similarity, which has 

described by the fact that fractal objects have similar features in the local as well as global sense. That 

is to say, some quantitative properties will not change with enlarging or shrinking operations. 

Secondly, the irregularity and complexity degree of the fractal object can be reflected by the fractal 

dimensions. The fractal dimension is a quantitative index used to describe the self-similarity level 

which is a break from the traditional definition of dimension. In this study, box-counting dimensions 

were calculated and used to extract features for crack echoes. 

3.2.2. Calculation of Box Dimension 

The box dimension of a set S contained in n-dimension Euclidean space Rn is defined as follows: 

 (27)

where S is arbitrary non-empty bounded subset of Rn, d  is the side-length of meshes, and for any d  > 0, 
( )N Sd is the minimum number of meshes needed to cover S. 

In actual fact, the box dimensions of the discrete time domain signals cannot be obtained under the 

condition of 0d  , because the highest resolution of discrete time series is the sampling interval D , 

so the approximate method is usually used to compute it in practice, i.e., taking lD  (l = 1, 2, 3…L, L < N) 

as the side-length of meshes, where N is the number of discrete points of signals. The minimum 
number of meshes in side length of lD  that cover a discrete signal S is noted as ( )lN SD and can be 

calculated as: 

 

 
(28)

where ceil( ) means taking the upward integer. 

According to formula (27), we can obtain DimB(S), i.e., the box-counting dimension of discrete 

signal S as: 

 (29)

0

Lg ( ) 
lim

Lg B 

N S
Dim S d

d d
=

-

/

1

( ) { max( [ ( 1) 1], [ ( 1) 2],..., [ ( 1) 1])
N l

l
m

N S ceil S l m S l m S l m lD
=

= - + - + - + +å
min( [ ( 1) 1], [ ( 1) 2],..., [ ( 1) 1]) / ( )}S l m S l m S l m l l- - + - + - + + D

lg ( ) ( ) lg( )l B N S Dim S l CD =- D +
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where C is a constant. It is shown that −DimB(S) is the slope of the straight line in the 
lg ( ) lg( )lN S lD - D  graph which is fitted by the least square method. The start point of the zone is 

noted as ls and the end point is noted as le, and ( , )s el lD D is named the scale-free interval.  

So, the box dimension estimating method for the discrete time domain ultrasonic signals can be 

summarized as follows:  

(1) Generate the meshes. According to the approximate method, take lD  (l = 1, 2, 3…L, L < N) as 

the side-length of meshes, where D  is the sampling interval and N is the number of discrete 

points of the signals. 

(2) Cover the signal with boxes whose side-length are lD  (l = 1, 2, 3…L, L < N), and calculate the 
corresponding minimum number of meshes ( )lN SD  that cover signal S. 

(3) Plot lg ( ) lg( )lN S lD - D . In the scale-free interval, the curve is a straight line which is fitted by 

least square method, and the box dimension DimB(S) is given by the slope of this straight line. 

In our present study, box-counting dimensions were calculated for the frequency band signals 

extracted in Section 3.1., i.e., the signals S4i shown in formula (22). In order to accommodate the 

analyze model in the following section, the box-counting dimensions are subtracted by 1, and the 

fractal feature vector is constituted as: 

 (30)

To show the identifiability of this impalpable feature, the fractal features of one set of crack signals 

are shown in Table 2 as examples. 

Table 2. The fractal features of one set of crack signals. 

 NO.1 NO.2 NO.3 NO.4 NO.5 NO.6 NO.7 NO.8 NO.9 NO.10 NO.11 NO.12 

Band 1 0.167 0.184 0.165 0.175 0.164 0.178 0.165 0.205 0.155 0.167 0.247 0.191 

Band 2 0.245 0.217 0.246 0.280 0.314 0.206 0.236 0.246 0.325 0.261 0.237 0.220 

Band 3 0.395 0.382 0.354 0.396 0.418 0.348 0.295 0.382 0.404 0.331 0.302 0.311 

3.3. Echo Amplitude Feature Extraction  

Peak amplitude of an ultrasonic echo signal is a typical feature which is easily interpreted visually and 

widely used in quantitative detections. Besides the frequently-used flaw echo amplitude, echo amplitude 

from bottom under the flaw is also an effective characteristic parameter. The bottom echo can assist to 

perceive larger flaws which have weak echos because of the influence of geometry, reflectivity or the 

reflective surface direction, so this feature should be considered in the present issue. The crack echo wave 

and bottom wave are shown in Figure 7. In this part, the peak amplitudes of crack echoes noted P and the 

peak amplitude ratio of crack echo to bottom echo noted R are both extracted as the amplitude features in 

time domain. The echo amplitude feature vector can be shown as: 

 (31)

  

41 42 43 [ ( ) 1, ( ) 1, ( ) 1]B B BD Dim S Dim S Dim S= - - -

[ , ]A P R=
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3.4. Feature Vector Construction 

Up to now, a total of eight features are extracted by wavelet packet, fractal and echo amplitude, then 

the feature vector F can be constructed as: 

 (32)

This 8-dimensional vector will be the input of the estimation model proposed in the next section. 

Figure 7. Crack echo wave and bottom echo wave. 

 

4. RBF Neural Network 

In this work, the RBF neural network is used for the estimation. The RBF neural network is an 

important supervised learning tool of machinery learning technology which can perform arbitrary 

nonlinear mapping from the input space Rd to the output space Rn with arbitrary accuracy. This model 

has faster processing speed and global approximation, is free from the local minima problem. 

The RBF neural network is a multi-input, multi-output forward networks model which has three 

layers consisting of an input layer, a hidden layer, and an output layer. In this work, the 8-dimensional 

feature vector F constructed in Section 3 is the input of the neural network, and the crack orientation 

angle and depth constitute the 2-dimensional output, then the structure of the RBF neural network is 

shown in Figure 8 [15]. 

Figure 8. Structure of the RBF neural network. 

 

[ , , ]F T D A=
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The input layer sends the input variables to each neuron in the hidden layer. The activation function 

applied to neuron in hidden layer is radial basis function. In RBF neural network, the Gaussian 

function is the most common radial basis function, so the activation function of the ith neuron in the 

hidden layer can be expressed as: 

 (i = 1, 2…m) (33)

where m is the number of neurons in the hidden layer, F is the input vector, ci and is , respectively, are 

the center and the width (or spread) of the Gaussian function of the ith neuron in the hidden layer, and 

iF c-  represents the distance between F and ci. 

The output layer is a linear combination of the hidden layer output with associative weights and 

biases, and the jth output of the RBF network can be calculated as: 

 (j = 1, 2…n) (34)

where n is the number of neurons in the output layer, wij is the weight between ith neuron in the hidden 

layer and jth neuron in the output layer, bj is bias of the jth neuron in the output layer. 

5. Estimation Results and Analysis 

The presented estimate method can be summarized by the flowchart illustrated in Figure 9: 

Figure 9. The flowchart of the presented estimate method.  

 

2

2
exp( )

2
i

i
i

F c
R

s
-

= -

1

m

j ij i j
i

Y w R b
=

= -å



Sensors 2013, 13 12389 

 

 

In this section, we take the crack echo signals in the 2nd hook as an example to analyze the 

performance of the proposed model. The 240 available data samples were divided into 80% for 

training and 20% for testing the networks. The partial test results of the model for estimation of the 

crack orientation angle and depth are given in Figure 10. 

Figure 10. The test results of the model. (a) Crack orientation angle; (b) Crack depth. 

(a) (b) 

The estimation results show that the proposed method can evaluate the crack orientation angle and 

depth with a reasonable level of accuracy. Especially for the depth estimation, fairly small errors 

occur. Orientation angle estimation results show greater errors than the depth estimation, but the error 

level is still within an acceptable range. In order to analyze the errors accurately, the root mean square 

errors (RMSE) of the testing data are calculated as: 

 
(35)

where Yi,t is the testing data, Yi,e is the corresponding estimation data, and n is the number of testing 

data. The calculation results show that the RMSE of the testing data are 1.613 and 0.012 for the crack 

orientation angle and depth, respectively. The results indicate that the proposed method had a good 

performance in the estimation of crack orientation angle and depth in turbine discs. 

6. Conclusions 

Stress corrosion cracks in low-pressure steam turbine discs are serious hidden dangers for 

production safety in power plants, and the initial crack inspection and the forecast of their propagation 

are essential to the safe operation of the turbine discs. In order to estimate the crack orientation and 

depth at an early stage, a method based on a phased array ultrasonic transducer and an artificial neural 

network was proposed in our study. The A-scan echo signals from cracks with different depths and 

orientations were collected in the lab using a phased array ultrasonic transducer, and the feature 

vectors were extracted by the wavelet packet, fractal technology and peak amplitude methods. Then, a 

RBF neural network was investigated for this estimation work and the estimation results were 

analyzed. The test results showed that the proposed model was a useful tool to estimate both the depth 
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and orientation of initial cracks in turbine discs. At the present stage, all the research is still in the 

laboratory and the experimental data is collected from the machined specimen which is not enough in 

practice. In our future work, a field data acquisition system will be developed and the field data will be 

collected and analyzed using our model. 
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