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Abstract: A strain-based load identification model for beam structures subjected to 

multiple loads is presented. The number of sensors for the load identification model is the 

same as the number of load conditions acting on a beam structure. In the model, the 

contribution of each load to the strains measured by strain sensors is defined. In this paper, 

the longitudinal strains measured from multiplexed fiber Bragg grating (FBG) strain 

sensors are used in the load identification. To avoid the dependency on the selection of 

locations for FBG sensors installed on a beam structure, the measured strain is expressed 

by a general form of a strain sensing model defined by superimposing the distribution 

shapes for strains from multiple loads. Numerical simulation is conducted to verify the 

model. Then, the load identification model is applied to monitoring of applied loads on a  

4 m-long steel beam subjected to two concentrated loads. In the experiment, seven FBG 

sensors and nine electrical strain gages (ESGs) were installed on the surface of the bottom 

flange. The experimental results indicate a good agreement between estimated loadings 

from the model and the loads applied by a hydraulic jack.  
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1. Introduction  

To secure the safety of a beam structure subjected to multiple loads such as gravity-induced loads, 

earthquakes, winds, or unexpected loads, the maximum stress in a beam structure is measured and 

checked not to ensure it does not exceed the allowable stress of a member [1,2]. That is the reason why 

strain-based structural health monitoring (SHM) has been widely used in sensing the maximum 

stresses of beam structures [3–6].  

Using the measured strains from strain sensors, the safety of a beam structure can be managed by 

controlling the level of maximum strain. To control the level of strain in a beam structure, it is 

necessary to identify the magnitude of all the loads acting on the beam structure. Various techniques to 

estimate the magnitudes of loads acting on structures have been reported [7–10]. Unlike load 

identification methods based on modal tests for buildings or infra-structures, it is necessary to develop 

a practical identification method for loads acting on a beam structure in real operative conditions. 

Long gauge fiber optic sensors (LGFOSs), vibrating wire strain sensors (VWSGs), and fiber Bragg 

grating (FBG) strain sensors have been utilized in the estimation of maximum strains of beam 

structures [4,11–15]. In the case of LGFOSs and VWSGs, integrated strain over a relatively long gage 

length is measured. Since the gage length can range from centimeters to meters, the strain variation of 

a structural member can be considered by using the long gage sensors [14–20]. On the other hand, due 

to the gage length, the maximum strain in a structure cannot be measured directly from the long  

gage sensors. Even though FBG sensors can only measure local strains, FBG sensors would be suitable 

for sensing of maximum strains with a minimum number of sensors thanks to multiplexing  

technology [21,22]. Due to the advantages of good linearity, low cost, and the multiplexing capability, 

FBG sensors are the most commonly used type of strain sensor in the field monitoring of buildings  

and infrastructures [22].  

Therefore, in this paper, a strain-based load identification model for beam structures subjected to 

multiple loads is presented. Using the strains measured by multiplexed FBG strain sensors, the 

contribution of each load on the measured strains is defined to identify the loads acting on a beams 

structure. The number of sensors for the load identification model is set to the same as the number of 

load conditions acting on the beam structure. Firstly, a numerical simulation is conducted to verify the 

model. Then, the load identification model is applied to monitoring of applied loads on a 4 m-long 

steel beam subjected to two concentrated loads. In the experiment, for comparison of the estimated 

loads based on the model and the applied loads from a hydraulic jack, seven FBG sensors and nine 

electrical strain gages (ESGs) were installed on the surface of the flange.  

2. Strain Sensing Model for Multi-Loadings  

The strain sensing model is presented to define the total strain measured at a specific point in a 

beam structure. The total strain can be found by superimposing the strains due to loadings acting 

separately. Instead of measuring the strain at a specific point where sensor is installed, to derive 

general form of strain sensing model, the deformed shape caused by the multiple loadings is needed to 

be defined by superimposing the distribution shape of strains along the length of a beam for each 
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loading separately. Using the deformed shape of a beam structure subjected to multi-loadings, the total 

strain at an arbitrary point in a beam structure can be defined.  

2.1. Distribution of Strains Caused by Single Load  

Based on general concepts in engineering mechanics, as shown in Figure 1, the longitudinal strain 

ε(x) of the beam subjected to a uniformly distributed load of ω can be expressed as a function of the 

distance x from the left-hand support:  

( )
( )

M x
x

EZ
   (1)  

where M(x) is the bending moment, E is the modulus of elasticity, and Z is the elastic section modulus. 

For a simply supported beam with FBG sensor installed at the length of xFBG, the strain measured from 

the FBG strain sensor, εFBG, is expressed as: 

21

2 2
FBG FBG FBG

L
x x

EZ

 


 
  

 
 (2)  

where L is the length of the beam. From Equation (2), the intensity of the distributed load ω can be 

given by: 

 

2 FBG

FBG FBG

EZ

x L x


 


 (3)  

Figure 1. Beam structure subjected to a distributed load and point loads from sub-beams. 

 

Then, the general form for the longitudinal strain ε(x) at an arbitrary point x can be defined by: 

 
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where (x) is defined as a shape function for the distribution of strains along the length of the beam. 

The strain-shape function (x) for the distribution of strains in Equation (4) depends on the load and 

support conditions for a beam structure. Then, in this paper, the general form for ε(x) can be defined by 

the measured strain from a FBG sensor at an arbitrary location of xFBG multiplied by the shape function 

(x) for the distribution of strains. It is notable that the dependency on the selection of locations of 

FBG sensors installed at the beam structure is avoided by using the relationship given in Equation (4).  
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2.2. Distribution of Total Strains Caused by Multiple Loads 

On the basis of principle of superposition, as shown in Figure 2, total strain εt(x) of the beam 

subjected to multiple loads at the distance x from the left-hand support can be expressed as the sum of 

the strains due to n different loads, Fj (j = 1 to n), acting separately: 

   
1

n
k k

t j j

j

x x  


  (5)  

where k 

j (x) is the shape of the distribution of strains caused by jth load and λ
k 

j  is the participation 

factor for the jth strain-shape function k 

j (x) defined by contribution of the jth strain-shape function to 

the total strain εt(x). For the superposition of strains due to n different loads, the number of sensors 

required in the load identification model is the same as the number of loads. However, as usual it is 

difficult not to lose strain data measured from sensors for various unexpected reasons such as abnormal 

installation of sensors, noise, and communication errors in sensor networks. For this reason, more than 

n sensors must be installed, even though the number of sensors used for the superposition is n. Among 

a total n FBG sensors installed at arbitrary locations, as shown in Figure 2, the superscript k in 

Equation (5) is the FBG sensor number selected for calculation of the strain-shape functions and the 

participation factors. Since strain-shape functions depend on not only the type of load but also the 

location of the FBG sensors xk in Figure 2, the total strain in Equation (5) can be determined  

in accordance with the selection of the FBG strain sensor. However, the value of total strain in 

Equation (5) does not vary with the selection of the FBG sensor. From Equation (5), the total strain at 

the jth FBG sensor installed at the distance xj (j = 1 to n) can be given by: 

 
1

n
k k

j i i j

i

x  


  (6)  

Figure 2. Superposition of strain distributions caused by multi-loadings. 
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Using measured strains from n FBG sensors, Equation (6) can be expanded to a linear system of 

equations in Equation (7): 

1 11 12 1 1 1

2 21 22 2 2 2

1 2

1 2

k k k k k
j n

k k k k k
j n

k k k k k
j j j jj jn j
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 (7)  

where k 

ij = k 

j (xi) is the value of jth strain-shape function at the position of xi. Equation (7) can also be 

expressed by:  

   k k

FBG       (8)  

where {εFBG} is a column vector of measured strains, [k
] is a square matrix of k 

ij, and {λ
k
} is a column 

vector of the participation factors. By solving Equation (8), participation factors, {λ
k
}, are determined by: 

   
1

k k

FBG  


     (9)  

Then, the total strain εt(x) of the beam subjected to multiple loads at a distance x can be determined 

by substituting the participation factors in Equation (9) into Equation (5).  

3. Load Identification Model 

In this paper, the loads acting on a beam structure are identified by the strains measured by FBG 

strain sensors. As given in Equation (8), the measured strain is defined by the sum of λ
k 

j 
k 

j (x). The jth 

strain-shape function k 

j (x) is dependent on a type of load. Using a virtual unit load fj that is the same 

type as the actual load Fj that acts on the beam in Figure 2, k 

j (x) in Equation (8), it can be expressed as: 

    k k

j j jx a M x   (10)  

where, a
k 

j  is a scale factor and   
    is an analytical function of moment induced by the virtual unit load fj. 

Then, based on the general concept of engineering mechanics, the strain distribution caused by the load 

Fj, λ
k 

j 
k 

j (x), is given by: 

   jk k

j j j

m
x M x

EZ
    (11)  

where mj is an intensity of load Fj. E and Z are elastic modulus and section modulus of the beam 

structure, respectively. Then, the intensity or magnitude of the load Fj, mj, is found by:  

k k

j j jm EZa   (12)  

3.1. Simulation with a Simply Supported Beam  

The beam member in a building frame in Figure 3a subjected to a uniformly distributed load can be 

modeled as the simply supported beam subjected to three different loads in Figure 3b: the distributed 
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load F1, the moment F2 acting at the left end, and the moment F3 acting at the right end of the beam. 

For measurement of strains, three FBG sensors are attached at the three different locations in Figure 3b. 

Figure 3. Numerical example for simulation. (a) Target two-dimensional steel beam frame. 

(b) Equivalent structural model of the beam. 

 

 

(a) (b) 

3.1.1. Strain-Shape Functions  

Total strain distribution of the beams in Figure 3b is found by the sum of the strains caused by  

the three different loads acting separately. If the 1st FBG sensor is selected for calculation of the 

strain-shape functions and the participation factors, strain-shape functions for the distributed loading 

F1 in Equation (4) are given by:  
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In a similar manner, strain-shape functions for the end moments F2 and F3 are given by: 
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(15)  

Then, the participation factors for the three loads λ
1 

1 , λ
1 

2 , and λ
1 

3  are found from Equation (9). 

3.1.2. Load Intensity  

Using the scale factors a
k 

j=1  (k = 1 to 3) for strain-shape functions in Equations (13–15), the 

intensities of loads F1, F2, and F3 are directly given by: 
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1

L
m EZ

x


 
(18)  

For the two-dimensional steel frame structure subjected to a uniformly distributed load shown  

in Figure 3a, the sections for all beams and columns are commercially available rolled shapes  

of H-708 × 302 × 15 × 28 and H-400 × 400 × 13 × 21, respectively. The elastic modulus and section 

modulus of the beam are 2.05  10
8
 kN/m

2
 and 6.70  10

−3
 m

3
, respectively. Three FBG sensors were 

assumed to be attached at 3, 6, and 9 m from left-hand end of the target beam. From the strain 

distribution obtained from the structural analysis, the strains for FBG #1, #2, and #3 are 23.2, 266.6, 

and 266.6 με, respectively.  

As shown in Figure 3, the target beam is transformed to a simply supported beam subjected to a 

uniformly distributed load F1 and two end moments F2 and F3. Then, for the beam with span length of 

15 m and the sensor locations of 3, 6, and 9 m, the participation factors in Equation (9) are given by: 

11
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1.0000 1.0000 1.0000 23.2 486.6

1.5000 0.7500 2.0000 266.6 370.7
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






       
            

        
      
             

 (19)  

Then, using the length of the beam L = 15 m and the location of the FBG sensor x1 = 3 m, the 

intensities of loads F1, F2, and F3 in Equations (16–18) are calculated as 37.1 kN/m, −636.0 kN·m, and 

636.0 kN·m, respectively. The load intensity of 37.1 kN/m includes the live load of 35 kN/m  

in Figure 3 and the weight of the steel beam. The weight density and the cross-sectional area of the 

steel beam are 77.0 kN/m
3
 and 27.4 × 10

3
 mm

2
, respectively. The values for the loads are identical 

with the results from structural analysis with only a difference of 0.03 kN·m in F2 and F3 due to the 

numerical error. 

4. Experimental Test 

4.1. Test Setup 

To verify the performance of measurement model, a bending test of the simply supported steel 

beam subjected to two concentrated loads was conducted. Figure 4 shows the schematic diagram of the 

bending test. The beam model consists of a simply supported H-100 × 100 × 6 × 8 section having a 

length of 4 m. A concentrated load was applied on upper steel beam by hydraulic jack as shown in 

Figures 4a and 5. The load was increased in two steps: 7.4 kN and 12.9 kN. The locations of two 

concentrated loads from the left end of the beam in the experimental setup in Figure 4 are 1.25 m  

and 3.25 m. Measurements during static testing were performed with seven FBG sensors and nine 

ESGs. As shown in Figure 4b,c, FBG strain sensors and ESGs were attached on the surface of the 

bottom flange.  

  



Sensors 2013, 13 9916 

 

Figure 4. Experimental setup. (a) Side view. (b) Bottom view. (c) Installation of fiber 

Bragg grating (FBG) sensors and electrical strain gages (ESGs). 

 

 

(a) 

 

(b) (c) 

Figure 5. Loading by hydraulic jack and loading points. 

 

4.2. Results 

When the load is applied by means of a hydraulic jack, the beam deflects downward and tensile 

strains occur at the outer surface of the bottom flange. For each load step, to confirm the quality of 

measurements during the test, the measured strains from seven FBG sensors and nine ESGs are 

compared in Figure 6. The maximum differences between the two measurements were found be less 

than 1.5% for each load step. 

In this experimentation, two FBG sensors are required to identify the two concentrated loads using 

the load identification model in Equations (9) and (12). Then, there are 21 possible combinations when 

choosing two FBG sensors from among seven FBG sensors without repetition. Among these 21 

combinations, the combination of the first and second FBG sensors in Figure 4a is not valid for the 

measurement since the matrix [k
] in Equation (8) based on the combination is singular. For each 

loading step, using 20 combinations for the selection of two FBG sensors, the estimated left and right 

concentrated loads, the sum of the two estimated loads, and measured load applied by the hydraulic 
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jack are compared in Figures 7 and 8. Based on estimated loads from the 20 combinations, the 

averages of the intensities of the left and the right loads for the first loading step are 5.2308 kN and 

2.1964 kN, respectively. The coefficient of variation (COV)s of the two loads are calculated as 0.0252 

and 0.1059, respectively. For the second loading step, the averages of the intensities of the left and the 

right loads are 8.7917 kN and 4.0433 kN, respectively. The coefficient of variation (COV)s of the two 

loads are calculated as 0.0115 and 0.0466, respectively.  

Figure 6. Comparison between estimated and measured strains. 

 

Figure 7. Identified loads according to 20 combinations (loading step 1). 
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Figure 8. Identified loads according to 20 combinations (loading step 2). 

 

Comparing with the applied loads of 7.4 kN and 12.9 kN for the two loading steps, the summations 

of left and right loads are found to be very close to the ones applied from the hydraulic jack; average 

values of the sum of the two estimated loads are 7.427 kN with COV of 0.0180 for the first loading 

step and 12.84 kN with COV of 0.0087 for the second loading step.  

5. Conclusions 

In this paper, a strain-based load identification model for beam structures subjected to multiple 

loads is presented. The identification model is derived by defining the contribution of each load to the 

strains measured by strain sensors and the strain-shape functions for each load. In this paper, to avoid 

the dependency on the selection of locations of fiber Bragg grating (FBG) sensors installed at the beam 

structure, the deformed shape caused by the multiple loads is defined by superimposing the distribution 

shape of strains along the length of a beam for each load separately. The type and location of the load 

applied to a beam structure are necessary to define the distribution shapes. Using the deformed shape 

of a beam structure subjected to multiple loads, the total strain at an arbitrary point in a beam structure 

can be defined. Based on the results from both the numerical simulation and an experimental test, it is 

found that results indicate a good agreement between estimated loads based on the model and the loads 

applied by a hydraulic jack.  
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