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Abstract:. We propose a novehybrid inertial sensofbased indoorpedestrian éad
reckoningsystem aided bycomputer visiorderived position measurements contrast to
prior vision-based or visioraidedsolutions whereenvironmentamarkers wereised either
deployed in known positions or extracted directly froth we usea shoefixed market
which serves apositional reference to an oppositshoemounted camera dugnfoot
swing making our system setfontained Position measurementsan bethereforemore
reliably fed to a complementary unscented Kalmaittef, enhancing theaccuracy of
the estimatedtravelled path for 78% compared tousing solely zero velocities as
pseudemeasurements

Keywords: indoor positioning strapdowninertial navigation pedestrian dead reckoning;
markertracking unscented Kalman filteunit quaternion space

1. Introduction

Indoor pedestriampositioning a prominentexampleof where Global Navigation Satellite System
(GNSS solutions comeup shortin terms of performancgl], is a fast growing segment with great
potential. This kind ofpositioning could prove itself tobe as useful for the general publice(g,
contextaware applicationsn airports, shopping malls, libr&s, musums, subwaysetc) as for
professional usere(g, helping firefighters and first responders to navigate in low visibitityd@ions).
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Various indoor pedestrian positioning methods have been proposed through th&lgeaus. the
approaches rely either on a modified environmeng,(radio beacons or fixed visual markers), or
somea priori knowledge about itg(g, radio fingerprinting). In emergency]ife-critical scenarios,
where time and reliability are of utmost importance, such solutonkl be easilystretchedoeyond
their limits. Beauregard2] has listed a number of demandifgr many tebnologies prohibitive
technical requirementsn these worst case scenarjognd also pointed outthe timeconsuming
deploymen and calibration of UWB beacdmased positioning systemd?oor visibility and
unfavorable lightingconditionscan also render unreliableother substantially differenapproaches,
such as diducialsfree computer visiofbased SLAM positioning systémpossiblyresuling evenin
completely false position estimatip8]. Rantakokkecet al.[4] observedhata robust an@ccuratdirst
respondeposiioning system for urban operat®requires the use of a muksensor approach

2. Related Work

With the help of modernself-containednertial sensorghe aforementioned shortcomingsuld be
overcometo a certain degreat least.However, the hardo ignore issue of low cost Inertial
Measurement Unit(IMU)-based personal navigation sysgertays in the inaccuracy of their
microelectromechanical systerMEMS)-type sensors.Even with theoretically perfect initial
alignment accurate position tracking caonly be successfully performed for a few secondsg
commercial gradenertial sensing alones], due to cubidn-time positional error growth caused by
angle rates and accelerations integration inherent toSthepdown Inertial Navigation System
(SDINS) algorithm

To limit the error growthcharacteristicof low-cost IMU-basedpedestrianinertial Navigation
System(INS), also known a$edestrian Dead Reckonii@DR), an inherentproperty of thehuman
gait has beewidely exploited the fact thatyclically one foot at a time stays still on the ground for a
short period oftime (stance phagewhile the opposite one is movingwing phasé [6]. By taking
advantage of this propergyositional error growtlcan be decoupld from time, making itlinearly
proportional to the number of steps takBtany approaches have been tried in this dirediiodate
differing by algorithms used, sensors choice #neir placement FoxlinG [7] NavShoe concept
represerd a substantial upgrad® foot-mounted MU-based PDRby introducingthe addition ofzero
velocity ypdates(ZUPT) as pseudmeasurement® anextended Kalman filter (EKFRJuring stance
phase Introducing ZUPTs as measurements into the HK$tead of simply resetting velocity the
SDINS algorithmto zerq brings the substantial advantagef a retroactive correction of the state
vector More recently, hte ZUPT approach was used by Alvaedzal. [8] in a waistworn inertial
personal navigation system that can be premseigh for some applications.

Considerableesearch has been carried mdentlyin thehybrid indoor positioning fielddaving in
mind that most of the presented hybrid approaches are netosg#finedor rely on environmental
featureqd9] and that a Ibof research has been done in heading estimation improwdarePDR, we
soughtto engage an innovative way to somehow enhance the original ZUPT approach, especially in
difficult, typical firstresponder scenarios. The result is our-tmst, proofof-concept hybrid PDR
depicted in Figure IComputer vision was chosen as the aidinglafity because of its complementarity
to inertial sensing as Corlat al. pointed out in 10], while the desireto simultaneously decrease the
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dependence of the system on environmental features led us to think in the direction of a wearable
marker.To thebest of our knowledge, no general pedestrian navigation platform, that would allow a
seamless blending of visual sensory information, is available at the moment. The moduaemsoiti
pedestrian location and navigation platform with integrated datastamping that Morrisoret al.
describe in11] seems very close to this aim, but it does not support video input in its present iteration.

Figure 1. Our proofof-conceptPDR
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Our approach is similar to the one proposed by Do andM8hbttheir Gait Analysis System [12] for
the fact that it uses shoemounted IMU with a rigidly connected camera. The crucial difference
comes in the placement of the visual marker. We opted for afsiegemarker on the opposite foot,
serving as a posonal reference to thiMU -cameracompasgIMUCC) unit, mounted onto the other
shoe. Using a selttached visual marker as a positional reference for a combined IMUCC unit is a
novel approach, since visual markers are usualhdpptoyed into the environent.

We thereforepropose a novel, setfontainedmachine visioraidedhybrid PDR aiming to improve
foot trajectory estimation ian IMU-based PDR systemith ZUPTs. The idea is to minimizZi@ot
trajectory error duringhe swing phase particularlyduring slow or disturbed walking,hen the wing
phaseand thus the error integration timmeay last longeiWe achieve our goal by talg advantage of
a novel visuaimarkerbased setupyhere traditionakenvironmentaimarkers are being replaced by a
userworn marker,fixed on the usés shoe while anIMUCC unit is placed on the opposite of@om
the time it enters in the camésdield of view,the markeis pog with respect to the camecan be
determinedoy means of amaugmented realityAR) madine \vsion algorithmand from then on it can
serveas a positional referende the IMU, sincethere is a fixed, known spatial relationship between
the cameracoordinate frameand thelMU coordinate framePosition measurements can be therefore
fed to a complementarynscented Kalman filte(UKF), operating in a unit quaternion space in
feedback configuration.

3. SystemDescription

In this section a description of the proposed algorithm will be given. Its schee@tsentation is
shown in Figure. Emphasis will be put on aiding measurements and filtering algorithms, whkeeas
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SDINS navigation algorithm in quaternion approach will be treated in the Appendix section at the end
of this article.

Figure 2. Flowchartof the proposed algorithm.
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3.1. Coordinate Systems and Notation

We make use of the following Cartesian, orthogonal coordinate reference systems (frames)
throughout the article:

1 Inertial (i-frame)is the inertial frame, fixed with respect to the stars with the origin in the
center of the Earth. All inertial measurements are done with respect to this frame.

1 Earth (eframe)is the Earth centered and fixed frame. This frame is of limited use in sey ca
but of great importance using higher accuracy IMUs in long distance and high dynamics
outdoor missions.

1 Local NED (nframe)is the local level frame at tf@DINS computed positigrfollowing the
NED (northeastdown) notation.

1 Navigation (navframe)is the local level frame at thigrst SDINS computed position. In our
case, using a lowost IMU, not capable of Earfate sensing, in low dynamics conditichos
short periods of time, we neglect Edglturvature and rotation, making possible to assume th
alignment of the av-frame and fframe We use the NED notation for this fran@@&amera pose
is beingcalculated with respect to this frame

1 IMU (b-frame)is the coordinate frame tiie body in our case the frame of the IMU, which is
attached to the shoall the inertial measurements are being measured in this frame.
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1 Camera (carframe)is the coordinate system of the camera, which is rigidly connected to the
IMU unit. The z axis is pointing along the optical axis, starting from the optical center of the
camera its x axis perpendicular to the z axis to the right.

1 Reference Marker (mrdfame)is the coordinate system of the first recognized marker during
the swing phasewhich serves as a reference to the subsequent ARToolKitPlus measurements
that occur lger during the currergwing phase

1 Marker (mframe)is the marker coordinate frame. It is fixed onto the @sepposite shoe with
the z axis pointing out from the marker and the x axis pointing perpendicular to the z axis to
theleft.

1 Platform (pframe)is the SDINS software frame in which the transformed inertial quantities
(accelerations and angular rates) are being solved. In the ideal cas&ahe mnd Hrame
would be parallel, but because of the errors, inherent to inertial sensors, patisgrarise.

The pframe axes configuration copies that of thizame.

All frames are rightianded, the third axes are thus defined with the first two. In this article
superscript is used to denote the coordinate system in which a variable is repr&sdteckt is used
for vector and matrix variables.

3.2.VisualPositionEstimation Using a Sheldlounted Marker

The main idea behind o@pproach &s motivated bythe fact that SDINS positional uncertainty
grows cubically over time. Developing a method to somehow anchor subsedoentposition
measurements durirgying phase, when SDINS calculatiokseplosing accuracy, to a prior point in
time, when accuracy was greatevas our goal. The use of a showern marker wouldallow us to
perform positional measurements wabcuracy that isubstantiallydecoupledrom time similarly to
using an outdoor operating GNSS receivEne cubical position error growth of the inertiabnly
SDINS solution during thewing phaseshould therefore become limited to the sum of the positional
error, which occurred up to the time of the reference marker image acquisition and the inherent
ARToolKitPlus [13] positional measurement errddsing visual position estimatipran enhanced
navigationsolutionis expectedwhen longe SDINS integration times occyr.e., during slowwalk),
compared to a SDINS algorithm using oZlMPT pseudemeasurements.

The coordinate systems transformations involved, leatbnthe actual positional measurement
being fed to the UKFcan beahought of astwo-stepprocesgFigure 3:

1. When the marker is first recognized in an image duringwieg phase, its 3D pose is calculated
with the aid ofthe IMU frame calculated poga the rav-frame the known IMUCaneralever
arm and thecurrentARToolKitPlus measuremerdf the pose of the markén the carmframe
We call thisresultingframethe reference markeoordinatdrame(mrefframe)

2. From now on the system computational workflow reversavith respect to the first step. The
inverse of the ARToolkitPlus homogeneauatrix is used tgperform the transfornfrom the
previouslycalculated mreframe expressed in thean-frame,to the carrframe and again the
known IMU-Caneralever armtransfornatiors are usedat the end for calculatinthe actual
homogeneous matrix, describing these of theMU frame in the navigation frame
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Figure 3. Schematics of our twetep pose calculation process, yielding the IMU position
in the navigation frame as tffieal result.If m denotegshe moment when the marker is first

seen during the current swing phase, theeffiname is being defined at time stk m,

while successive -frames are being calculated at time stkps m, when the marker is

being detectechithe acquired video frames.
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The visual markebased relative 3D positional measurement architecture that we are using relies on
the weltkknown ARToolKitPlus AR framework, which is based on the pose estimation algorithm
developed by Schweighofer aRihz [14]. Before an image can be efficiently used as a measurement,
the camera unit has to be calibrated to compensate for optical distortions caused by the lens. With the
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aid of the Camera Calibration Toolbox for MATLAB [15] and a printed checkerbodierpave have

determined the intrinsic parameters of the carema combination and rectified the images before

they were fed to the ARToolKitPlus for image processing.
A common characteristic of optical tracking AR systems with fiducial markers arevieeing

angle Wshaped rotation error functiondl$,17]. With this in mind we tried to mount the marker in a

way that it would remain outside of lewaccuracy regions throughout the whaeing phasge

because not only position, but the whole pose inftiongj.e., including orientation) was used later in
calculations. When fixing the marker onto gteoe,we therefore rotated the marker for a few degrees
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towards the camera around its yaw axis and slightly increased its pitch, compared to a marker facing
directly into the walking direction.

Our camera isrigidly connected to the IMUUsing the calibratio algorithm developed by
Hol et al. [18], high quality estimates of the relative orientation keetwthe camera frame and the
IMU frame could be determsal. However, we chose to follow a more straightforward, yet effective
approach:d a first approximationn our papemwe assumedhatthe camera axes aeithercompletely
parallelor perpendiculato the IMU axes. Translation offsets between the center of the IMU and the
sensor of the camera were accurately measured with the aidvefnger caliper Knowing both
rotational and translati@h relationships between thefiame and carframe homogeneos matrix
transforms needed to convert back and forth between the two coordinate systems can be determined.

3.3. DataSynchronization

Having threeseparataneasurementlatastreans of mutually dependent quantitiespe forvisual
marker posemeasurementpne forinertial measurementand one for magnetic compass heading
measurementggives rise tothe data synchronization issudhe most accuratend straightforward
solutionin our case would be tosea hardwarebased time synchronizan mechanism fothe three
streams similarly to[18]. Not having such a system at hand apted fora moreAd-Hoc approach
since all computations ammade offline. We logged inertiakerial data sentenceat 156 Hz video
frames were taken at a fixed rate of 15atwl magnetic compass readings at 20\Waile recording
all data streamginertial, video and compagssimultaneouslywe completed a quick rotation die
combined IMUCCunit, making sure the markeloes not leavéhe camerd field of viewduring the
move. We then appliecdbur SDINS algorithm to the recorded inertial data, extracted the computed
IMU orientations andransformed thenmto cameraRoll-Pitch-Yaw (RPY) orientations. Sinceisual
markertrackersgive the most accurate rotation estimatreqults for roll rotation(aroundthe z axisof
the camframe) [17], we had accomplished the¢ime-synchronization procedureith regard tothis
rotation. For synchronizing the compass data stream we took advantage of theadfigs inthe
compassoutput sentencet this point we had thredifferent data streamsepresenting thesame
guantity (IMUCCunit roll), one lagging another for an unknown amoaohtime. We then had to
resamplethe data set to the same frequenéywe chose to resample thessfrequently sampled
cameraorientationand compass rolllatastreans to the same frequency as tiMU datato prevent
precision reduction of the final synchronizationresult We used quadraticinstead of linear
interpolationto achieve alightly smootheresampled curvelhe final stepf the datasyndironization
procedure wato determine the lagmongdata streams by cqraring the derivatives dhe orientation
curvesextracted fronall three modalities.

3.4. Filtering Algorithms
3.4.1. The Error State Vector

Complementary filtering involves system error estimation through system error modeling.
Therefore, the states used in our complementary filter architecture are SDINS velocity and position
errors inthen-frame and quaternion attde error between thefpame and Hrame. All states used in
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a Kalman filter are considered to be whitgise driven signals. Any tirreorrelated driving noise
should be properly shaped. In most cases, adimr Gausdarkov process model is accurate
enough for modeling such errors. The state vector is then augmented with additional states to
accommodate these additional colored noise states. To use this approach is particularly important ir
long lasting missions using sensors with magligible sensodrift, where the filter is augmented with
accelerometer and gyro bias states. However, because the noise power spectral density (PSD) curve
the IMU outputs showed negligible drifts for the duration of our pajafoncept experimentsye
consideredacceleometer and gyro biases as zemean white noises in our article for simplicity and
clarity reasons.

Therefore, consideringelocity, position and attitude as the main quantities of interest in a
navigation solution and sensor biassstime umorrehted states, we can define the following error
state vectofor our complementary UKF

n n n nav nav nav T
X:[DIX’D/y’D/z’Dx ’Dy ’Dz aqo’quqzng] (1)

whereDv" = [D\/Q,D\/ry‘,Dv;‘]T is SDINS velocity error in the-frame, Dr " = [DrX"aV, Dr™, DrZ”aV]T is
the SDINS position error in theawframe andq?} =[q,,q,,d,,9,]" is aunit quaternion representing
the error rotation between the platform and navigation frame, which means its norm is of size one
ot Vi +at+ad+al, ol { qf aQ =1}

As it can beobservedabove the filter error state vector is composed of a traislat part
(Dv" and Dr"™) and a rotational par(q’;). Representing the rotational pawf the filter with
quaternions means thabmmon vector space UKF cannot be used for propagating the whole state
vector in time, because of the unit quaternion departure from the unit shlestice the additiorand
multiplication operation in the weighted mean procedie. therefore chose mombinetwo separate
versions ofunscented transforfyT) operating on a common state vedtmrerror state propagatipa
translational UTin vector space for velocity and positiomae propagation, and a rotatial UTin unit
guaternion space for attitude error states propagation.

3.4.2. Translational UKF inVector Space

The unscented Kalman filter constitatan alternative to the extended Kalman filtevhich is a
suboptimal implementation of the recursive Bayesian estimation framework applied to Gaussian
random variable$19]. Developed for nonlinear process and measurement models in estimation and
control problems, it ivased on the principle thdtis easier to approximata Gaussian distribution
than it is to approximate an arbitrary nonlinear function, making cumbersome Jacobian or Hessian
calculationswhich are the base for derivatibased filters like it is the EKFuperfluousin the UKF,
sample pointsd]so called sigma points) are propagated throuminonlinear system, but, unlike in
particle filters, a minimal set of sample points is deterministically chosen to capture the posterior mean
and covariance of a random variable up to theédtder.

A complementary fter operates on the navigation errors in the error state space, recursively
estimating them, making it possible to correct navigation states in the total state space SDINS. We
have not employed any small angle assumption in the development of the algArtbmplementary
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UKF in a unit quaternion space was developed for the rotational (unit quaternion) part of the state
vector propagation, while a vector space complementary UKF was used for the Euclidean vector space
part of the state vector. Hereafter tims chapter we will describe thendamentalalgorithm of
the latter.

Considering the following discretdime process governed by the ndinear sbchastic
differenceequation

Xk = f(Xki 1,K) + Wki 1 (2
with measuremestz:
z= h(xi,K) + W 3
wNP being the state vector, N p the measurement vectof, the nonlinear system

dynamic modelh the observation modely andvi the process and measurement zero mean Gaussian
noises with covariances given Ry; 1 andRy, respectively an UKF tries to estimate the state vector
Xk by the following procedure: given anx n covariance matri¥x a set of & + 1 sigma vectors; x

can be generated and columise concatenated to form the maisix ; of sizen x(2n + 1):

Gk-lzlg-l oyt \/Pk-1+Qk-1)i|i:1,...n %o (g\, Pk'l+Qk'1)|—n|i:n+1,...2nJ 4

wherew s the distribution mean at time stkp 1 andois a composite scaling parameter. From
Equation (4) one can observe that process r@jse added td’« before the sigma points (vectors) are
projected ahead in time. Sigma vectalrg 1 are then propagated through the nonlinear fundtitn
get the posterior sigma point vectors:

Gy = f(Gi,k—l’k)’ (=1..2+1) ©)

whereg x denoteghei-th column ofe. Applying a weighted sample mean and covariavicie G;
vectors, we get the predictstate vecto@ and its associated predicted covariaﬂtce

- 2n

X = aVVi(m) Gi (6)

i=0
Sa . - \T
P. =a W ){Gi,k - Ek}{Gi,k - g} ()
i=0
wheren is the number of sigma points akd are the corresponding weights’gn by theequations
developed inZ0]. By propagating the;x sigma vectorshrough the measurement model
9, =h(e k), (=1,.., 2+1) ©)

we getthe i-th columna of the matrixa. The predicted observation vector and itspredicted
output covarianceﬂ- are determinedy applying weighted sample meand weighted covariance

computatioras above fos and ||— respectively
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3.4.3. RotationalUKF in aUnit Quaternion Space

In contrastto vector quantities,atations lie on a nonlinear manifold and quaternions, used in our
system to represent them, are constrained to a unit radius hypersphere idimmémsional Euclidean
space (a 3phere).This is tke reason whyguaternions are not closed for addition and scalar
multiplication (operations that constitute the core of the weighted sum calculatiars WKF) and
consequently whysing unscented filtering directly with anit quaternion attitude paramizttion
generallyyields a norunit quaternion estimat@7].

The original vector space UKF algorithm hhasto bemodified accordinglyto ensure that during
the weighted sum of the unscenteghsform the quaternion does not depart from the unit spfHédmns
wasachieved with the help of the rotation vector attituelgresentation for sigma point rotation vector
generation, followed by a quaternibased weighted mean computation based on the quaternion
distance metric formulated if22] (Figure 4. A more indepth descriptiorof the rotational filter
algorithmis givenbelow.

Figure 4. Schematic diagram of the rotational part of the UKF filter.
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We chose to treat the quaternion npise  (the equivalent tav; 1 in the vector space UKF
where the superscript + denotes the pastiate process noise estimate when gyro bias error is being
considerelfl as a rotation vectpbecausehis way the transformed sigma points are more narrowly
scattered around the current estimate compar#tetalternative noise representation agetor part
of the quaterniof23]:

Cﬁk-l = [COSQSE,k.l\Q) 3‘i,k-1Sin03“i,k-1‘/2)/‘3“i,k-1u 9

wherex , , =g,/P., +Q,, denotes théth columnthreecomponent noiseectorand| Az is the
resultingerror quaternionAs can be seen we choose to apply process noise (with cova@anege
before the process moddlo avoid usingaddition andmultiplication in the quaternion unit sphere
domain, weusequaterniommultiplicationin sigma point generatianstead multiplying the quaternio
errorby the current quaternion estimaie

1Giyq = m?,k-l A ﬁ.l (10
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where  is the resulting transformeeth quaternion sigma poiritlsing both the quaternicerror
and the quaternion error inverseconstruct theset ofsigma point quaternionsve ensure an evenly
distributed set of poinf$ying on the unit sphere aroutige current quaternion estimate:

G =B, AR, () AR (1)

where denotes theet of sigma points for thetational part of the error state vector

Dealing with a combinedranslationrotational UKF we would like to emphasizehat (2 + 1)
sigma points have to be generatddr the combined filter, meaning that using the rotation vector
representation for rotational sigma point generatl®sigma points have to be gested (= 9). This
set of transformed quaternions is then propagated forward in time througbtdahend part of the
process modé¥ yielding the new set- :

16, =% (76,,,.K) (12)

wherei denotes thd-th column of the respective sigma point skiib additional noise is being
considered in the equation abpsgece process noise embeddedhto the sigma pointalreadyand is
thus represented in the sigma points distribution.
The predictedmeanquaternion parta of the error state vector(“e ) is then determined as the
barycentric mean with renormalizan:
2n

a i=0 qVVI Gi,k

qE—( =
.. 2n 13
anLw e, &

The associated predictedbtational covariance’ ||- is computed by first finding the distancg
between the single sigma quaternion and the predicted mean quaternion

= \-1

Six=6 A (qﬂ) (14
Eachquaternion distancgix is then convertedo the equivalendistancerotationvector 3;, with
the following equation:
§ii,k‘3“i,k‘

sin%ik‘g (19
£ e

CHS

where ®; denotes the three component imaginary part of the quaternion distarared the distance
rotation vector nornj,, | is given by

3| = 2arccosg ) (16)
where ®;, denotes the real part of the quaternion distangeFinally, the predicted covarian(ﬂe is
calculated with

2n
P :aV\/i37,k(37,k)T (17

i=0

Propagatinghe quaternion sigmaointsthrough the measurement madel
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9, =h(96,,k), (=1, ..., 2 +1) (18)

and applyingweighted sample mean and weighted covariance computation, the predicted quaternion
observation  and predicted output covarian#e areobtainedrespectively.

3.4.4. Measurement Modes

Since we are using thredifferet measurement adalities namely ZUPT, visual position
measurementARTK) andheading measureme(figure 2) our system hato deal with threalistinct
measurement modes, each witlliierent observation matriid. In the ZUPT pseudmeasurement
mode (we make use ofhe fipseudo prefix throughout the article because these observations are not
actual measurementbut the assumedzero velocitieg the observation matrix kets thevelocity
statesjn the ARTK position measurement thé matrix selects the three position statekile in the
caseof a headingmeasuremerthe four orientation quaternion stata® selected from the filter error
state vectarwhich are consequentlyconwerted to a rotation vector during the Ulbigma points
calculations This back and forth conversion between the nine and ten states is required because of the
covariance computation within the rotational part of the f[l2df.

The measuremenswitching nodule sets théARTK measurement mode each time the marker i
recognized in the image andpasition measurement is therefore available, wtlale effective and
straightforwardgyro signalsthresholding techniqusimilar to Foxlin approachin [7] is used to
enable the ZUPT pseudoeasurement modé&oxlinGs oneheadimg-measuremenrperstep approach
was used for éading measurement updatere performedit once per step to limit the effects of the
colored environmental magnetic noise, at the timehef first ZUPT pseudmeasurement in the
detected stance phase, because at that time the compass measurement should have been stabili:
already In the measument update stage of the filtBtJPT modewas set tdhigher priority than the
ARTK mode becausef thelower uncertaintyof its pseudemeasurementsvhile the time updatenly
stage was performed during teering phasewithout any external observatiorts, update thestates
error covariance in the UKF due to inertial sensor errors

Dealing withcomplementary filter architectureve have to stress the fact that the measuremnzents
involved in the update stage of the filter atually differencequantitiestiz, i.e., errors between the
measurements and thespectiveestimatedotal statesSincelinear velocities belong to the Euclidean
vector spacearithmeticsubtraction can be performed to get the actual measuresfeeried to the
filter when performingin the ZUPTpseudemeasuremennode

d'z, :ZUPTZk' 2PTH ﬁ(sows (29
where?“"'z is thezerovelocity pseudemeasuremert time stegk, ““"'Hy is theZUPT observation
matrix ande is the predicted total state vector of the SDINS algorithm at timekstelpich is

the SDINS total state vector, corrected by the valussculated inthe time updatestage of the
complementaryKF. With zero pseudaneasurements’” 'z the equation above can be rewritten as

d'z, =-*""H ﬁ(saws (20

In headingmeasurement modee aredealingwith rotation measurementepresented by unit
guaternions, which are not mathematically closed for subtradfienthus opted for théllowing
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guaernion multiplication approach to get theadingerror measuremento be fed to the UKF i
complementary configuratioftdeading wadirst extracted fronthe SDINSattitudequaterniona by
converting it to theotation matrix notationthen subtracted from the compass heading measurement
and the resultconverted to alifferencerotation quaterniordz, , which represents thmeasured
difference rotatiomuaterniorto be fed to the UKF

dqzk — (HeadingH qﬁ(soms)'& Headingzl-(l (21)

where"®4"%, is the combinedmeasuremerattitude composedy thepredictedSDINS pitch and roll
and the compass correcteeading measuremeht®"H, is theheadingobservatiomatrix and dz,

is the rotationaheadingerror between theurrent estimatetieadingand theheading, observely the
magneticcompass

It has to be noted thaeadingmeasurementarepresented aattitude measurements the UKFin
the heading measurementode, thereforehe generally nonlinear measurement transfer mbdsl
represented by a linear matrix transfoftff"H, which directly mirrors the measurements to the
respective quaternion attitude stat€ensequentlydistance vectors;  belonging tothe quaternion
sigma point sels;x, belongto the propagated sé4 , as well We take advantage of this property in the
cross correlation matrix calculations below.

In the ARTK measurement modae differenced’z, between théMU & ARTK measured position
and the SDINS estimated pioen of the IMU sensois being fed to the UKF

d'z, ="z - ""H E;(SDINS (22
where”?™z is the positional measurement at time s#efi''"Hy is the ARTK observation matrix and
) is the same agescribed fothe ZUPT measurement mode above.

Regarding the ARTK measuremenbde a fewwordsneed to be devotdd its triggering. First of
all, only posemeasurements with high confidence are taken intowaddn the UKF since frames
(measurementsyvith lower ARToolkitPlus confidence tended tproduce poor 3D cube overky
(Figure5a), which mean3D marker pose estimationgere inaccuratelgletermined for some reason
Sinee low confidence ARToolKitPlusmeasurements occurredarely, simply discarding those
measirements proved to be an effective stratégycope with this phenomenoB&econdly, ARTK
measurement mode has to be triggered only when the megk@ped foot is stationary on the floor
to allow precise 3D pose measurement of the reference marker @aterfiame and also dll
successive camera coordinate frames during the swing phase of the Istuped foot. However,
marker pose measurements are often available during the stance phase, just daefmgahd
subsequent ZUPT measurement mode triggeioccur (Figure 5b). To effectively reject these
inadequate measurements, velocity thresholding was implemeetgfithe calculated velocity of the
IMUCC unit fell below a certain value, then the ARTK triggering signal was not passed through to
enalte the ARTK measurement mode in the UKF. To allow ARTK positional measurements during
midair interrupted wings, when the foot would almost hover over the floor, some other kind of
triggering strategy has to be employedg., SDINS height triggering owsing a shoe with an
integrated ground contact sole switch.
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Figure 5. Typical rejectedARToOKIitPlus measurement&) 3D cube overlay of a low
confidence ARTooKIitPlus marker pose estimadiamotice the imperfect 3D cube overlay
on the right edge of the maak (b) A typical moving marker image during stance phase of
the IMUCGequipped foot with an otherwise perfectly determined marker pose.

3.4.5. Kalman Gain andleasurement/pdate Equations

The UKF gainKy is obtainedwith:
K, =RY(R™)* (23
where|f , given the measurement (observation) noise covarnisgthe innovation covariande
P"™=P”+R (24)

and || is thecross correlatiomatrix, calculated as weighted cross correlation between the posterior
sigma point vectors;x and the predicted observation sigma vecbrs

PY = é:.r.;V\/i(C){Gi,k - E}{Oi,k - ﬁ}T (25

The cross correlation matrif  for the rotational part of the filter cannot be calculated using
quaterniorsubtraction. lence the rotation vector is used as the distance measure again:

2n

P =a V\/i(c)3“i,k3"i,kT (26)

i=0
We candefine theerrorstate vectobe  and covariancé as

DE" =K, (z - %) (27)

P, =P - K,RMK (29
wherez is the new observation at time stepn the ARTK measurement mode the error measurement
qguaternionand the predicted error measurement quateraretfirst converted to the rotation vector
notation beforebeing subtracted i(ec 1 « . Thereafter, the last three statdshe error state vector

DEj have to be reconvertdd thequaternionnotation resulting in the error statBE;1+ composed of
the upper vector pab'&* (velocity and position error state)d the lower rotational patic™ .
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Since we are dealing with a complemtary filter architectureSDINS states have to be updated by
the error state vectddk' . We refresh the SDINS statefter a measurement updatéageoccurs as
describedelow, leaving the error states of themplementaryilter in azero error state

Dv" =[000]", D" =[000]", o} =[1000]" (29

We accomplish the update for theedictedvector part’ E;(SDNS of the SDINS state vector with:

VE;SDINS :Vgisows +DVEI+ (30
while the predictedrotational partie of the SDINS state vector is being updated the
measuremenwith:

! E(sole :qEAqﬁ(sole (31

4. Experimental Results

Thefollowing hardware is used in our preof-concept PDR system:

1 low-cost Aralog Devices ADIS 16354AMLZ IMU

1 3-axis tilt-compensated magnetic compass Ocean Serves(08

1 grayscale video camera The Imaging Source DMK 41 AF02 with a Compuié8 B
1:1.4 ¥3" CS lens

All data preprocessing and computations are performed offline with main algorithms running in
MATLAB Simulink environment Experimentsvere conductedotevaluate the methods we proposed
The intrinsic parameters of the caméras combinationrad the turron biases of the inertial sensors
were determined as described3actions3.1 and 3.2respectively MATLAB Simulink was used to
perform offline computations.

Accelerometer and gyrtriads error covariance matricggov(l) and cov(-), respectively)were
determined by logging several minutes of IMU dathile leavingthe IMUCCunit at rest:

¢0.3586 0.0050  0.0301 20.0054 - 0.0004 0.000:
cov®) =10° g0.0050 0.4013  0.061cov()=g 0.0004 0.0051 0.000. (32
0.0301 - 0.0617 0.4442 £0.0002 0.0002 0.005;

Since visuamarker pose estimation accuracyisportional to the marker physical size, we opted
for a relatively big(79.3 mm wide), but still feasibl@arker for our proofof-concept PDR system.
The following parameters were used in our experimental setup:

R,y =0.01 3
RHeading = 01 3' (33)
R g = 0.05 3

where Rzupt, Rheading @nd Rartk denote the ZUPT headingand ARTK measurement noises,
respectively These specific values were chosen to reflect the actual accuracy of the siagtitaute,
while avoiding possible numerical instabilities.
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4.1. Preliminary Experiment with Marker Fixed on the Floor

Not having a 3D position measurement device at hardirst decided to check the behaviour of
our system by executing a round trip sequence, @lways returning to the starting point) of
movementd left, right, up and backwad&with the IMU-camera unit in hand, while having the
marker in a fixed, tilted gsition on the floofFigure 6a). The expected result was a smooth (due to the
high rate SDINS calculations) and diifee (due to the drifree visual measurements) positional
trajectory. We focus here on the positional part of the navigation solutioa gser position is of
greater importance than velocity and orientation in a pedestrian navigation system. Figure 6b shows
the results of this 11 seconldsting experiment. The upper graph depicts the results of the
SDINS-only solution, the graph in ¢hmiddle shows the final result, obtained with our UKF visual
sensor fusion technique, while the graph at the bottom represents the positional ARToolKitPlus
measurements expressed in the reference navigation frame with thealfiiéia offsets taken into
acount. As it can be observed from the graphs, x position coordinate (yellow curve) drifted for almost
3 m, while y position coordinate (violet) drifted fapproximately & m in the SDINSonly graph due
to inaccurate gravity vector subtractiocompared tdhe other two graphs, which are dHfifte.

Figure 6. (a) Our first experimental setup. The IMOamera unit facing the fixed marker

on the floor with arrows showing the directions of the movements completed, which
coincide with the navigation frame axas this case. The colors of the arrows and the
imprinted signs are consistent with the curvetotted on the graphs on the right.
(b) Simulation results of the preliminary experiment.
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4.2. Slow Walking Experiment

Having checked that the system improves the SBEdNI$ solution when being used for prolonged
periods, we wanted to try it in a real slow walking scenario, to assess the amount of positional error
correction during slow paced pedestrian navigation. Thdergk experiment was performed walking
slowly down the corridor of our lab, travelling with the IMU&@&Quipped foofor 1409 m in44s.

After having preprocessed all the data, ZUPT triggering parameters were set by trial and error:

Dw, =Dw, =Dw, =°8 /s
(34)

T, e =47sample:
whereaer,, &, andaer, are angular ratehtesholds andzypr is the time lreshold after which the
ZUPT mode is turned on, if all three angular rates remain under their resplsieotds. Welid not
need to use acceleration data to accomplish effective ZUPT mode triggering.

Figure 7 shows the positional graph of our hybrid PDR system with ARTK measurement mode

enabled, calculated for the center of the IMU frame in the navigation frame. Ftegmsidone with
the IMUCGequipped foot can be recognized in the upper graph. The x and y position coordinates have
a 90A c | oc k wlettsrehape auedotthee dMUBGC/significant initial yaw in our experiment,
imposed by the desired facing directiof the camera. The z coordinates are negative due to the NED
convention employed for the ndrmame. ARTK position measurements were fed to the UKF at the
moments, represented by blue spikes in the graph below in Figure 7. The final calculated point in 3D
space is 14.15 m distant from the starting point, resulting in a 6 cm (0.43%) travelled distance error.
Figure 8 shows the reconstructed experimental slow walk in a 2D top view representation.

Figure 7. ARToolKitPlus-corrected positional navigation satut. The edgier red, green
and dark blue curves are ARToolKitPlus measurements being fed to the UKF at the
moments, represented by the blue spikes in the graph beneath.
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Figure 8. 2D top view graph of the reconstructed experimental slow walk. The path started
at the entranct our Lab and following the wall fished at the other end of the corridor.

8 * position [m]

Y position [m]

We repeated the calculations on the earlier acquired experimental data with ARTK measurement
mode disabled, without altering all the remaining parameters, to be able to compare our proposed
solution to astateof-the-art PDR. A comparison of both positional graphs showed a reduction in
ZUPT position corrections in the ARF&nabled graph (Figure 9).

Figure 9. Closeups of the two positional graphs obtained with the slow walking experimental
data with ARTKmode disabledupper graph) and ARTK mode enabledogver graph).
Sensible reduction in ZURifduced position correction is indicated by the arrows.

ARTK disabled ZUPT correction

The upper taph in Figure 10 shows the IMfthme orientation during the slow walking experiment,
while the graptbelow in Figure 10 depicts the rotational corrections, made by the rotational part of the
UKF. Velocity error values, observed for each step at the begirof the stance phase, just before
ZUPT triggering occur, arpresented in Table 1. Significant improvement in velocity norm error regluctio
(25% by comparing the means) is evident from Table 2, where corresponding statistical data is shown.
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Figure 10. IMU frame orientation during the slow walking experiment, converted to Euler
angles &bove. Rotational corrections, made by the complementary UKF, converted to
Euler anglegbelow).

Table 1.IMU velocity vector norm error just before ZUPT triggering weed, for each
step of the slow walking experiment.

Velocity Vector Norm Error (m/s) Velocity Vector Norm Error (m/s)

Step # with ARTK Disabled with ARTK Enabled
1 0.1144 0.0294
2 0.0872 0.0892
3 0.0980 0.0608
4 0.0325 0.0769
5 0.1293 0.0642
6 0.0736 0.0283
7 0.0533 0.0442
8 0.0713 0.0623
9 0.0914 0.0747
10 0.0793 0.0670
11 0.1030 0.0826
12 0.0463 0.0195
13 0.0617 0.0725
14 0.0294 0.0270
15 0.0604 0.0533

Table 2.Mean value, standard deviation and maximum value of data, preseiitzolenl.

ARTK Disabled ARTK Enabled

Mean of velocity vector norm err¢m/s) 0.0754 0.0568
Standard deviation of velocity vector norm erfov's) 0.0291 0.0222
Minimum value of velocity vector norm errm/s) 0.0294 0.0195
Maximum value of velocity vector norm errgn/9) 0.1293 0.0892

The final calculated point in 3D space for the ARdilsabled SDINS system, therefore aided by
ZUPT and compass measurements only, is 14.36 m distant from the starting point, resultingrim a 27



