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Abstract: As wireless sensor network (WSN)-based structural health monitoring (SHM) 

systems are increasingly being employed in civil infrastructures and building structures, the 

management of large numbers of sensing devices and the large amount of data acquired from 

WSNs will become increasingly difficult unless systematic expressions of the sensor network 

are provided. This study introduces a practical WSN for SHM that consists of sensors, 

wireless sensor nodes, repeater nodes, master nodes, and monitoring servers. This study also 

proposes a symbolic and graphical representation scheme (SGRS) for this system, in which 

the communication relationships and respective location information of the distributed 

sensing components are expressed in a concise manner. The SGRS was applied to the 

proposed WSN, which is employed in an actual large-scale irregular structure in which three 

types of sensors (75 vibrating wire strain gauges, 10 inclinometers, and three laser 

displacement sensors) and customized wireless sensor nodes are installed. The application 

results demonstrate that prompt identification of sensing units and effective management of 

the distributed sensor network can be realized from the SGRS. The results also demonstrate 

the superiority of the SGRS over conventional expression methods in which a box diagram 

or tree diagram representing the ID of sensors and data loggers is used. 

Keywords: structural health monitoring; large-scale structures; wireless sensor network; 

sensor network management 
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1. Introduction 

Structural health monitoring (SHM) has been attracting increasing interest as a method to determine 

the structural responses and evaluate the safety of civil infrastructure and building structures based on 

sensor technology [1–7]. Specifically, the characteristics of super-tall or large-scale structures require 

considerable caution in terms of the safety and accuracy of the construction process [8–12]. 

Conventional wire-based SHM has been shown to have certain limitations in applications involving 

actual structures, including the use of long and complex cable connections between sensors and data 

loggers, which is associated with high costs, not only in the initial installation, but also for 

maintenance during operation [13]. For these reasons, there has been considerable interest in wireless 

sensor networks (WSNs) because they represent a key technology for those who require effective 

SHM in large-scale structures [14,15]. The number of sensors used in SHM to obtain reliable data and 

evaluate structural safety is expected to increase drastically as the size and height of structures 

increases. Furthermore, as the critical issues (e.g., power efficiency, transmission limitations due to 

bandwidth restrictions and distance) involved in WSN applications are resolved, the development of a 

large-scale WSN topology in actual structures will become feasible.  

As WSNs are actively employed, various wireless sensing units (sensor nodes) have been designed 

and developed based on the characteristics of measuring devices, such as strain gauges [16] and 

accelerometers [17]. These traditional measuring sensors are connected to wireless sensor nodes that 

mainly function to collect data from measuring devices, process these data, and transfer information 

via wireless communication protocols. The limited transmission distance of wireless sensor nodes 

requires the adoption of a multi-hop network topology for the transmission of measured data [17]; 

accordingly, WSNs become increasingly complex, and data measured from a certain point are 

transferred via various intermediate wireless sensing units until the data are finally delivered to the 

main server (i.e., the final data repository). As a result, the management of devices comprising WSNs 

and the large amounts of data acquired from these devices will become increasingly difficult as the 

size of buildings and the extent of SHM increase [18].  

The commonly used method to express sensor networks consisting of multiple sensors and different 

types of data loggers is to express the IDs of sensors and data loggers (nodes) as a combination of 

letters and numerals [19–21] or to express them symbolically in a coordinated form [22–24]. 

Recently, numerous low-cost and low-power sensors associated with WSNs have become densely 

distributed in surveillance areas. In the Guangzhou New TV Tower [25,26], in which approximately 

600 sensors are used, the sensors are divided into four types, namely, portable sensors and fixed 

devices located in the inner structure, outer structure, and antenna mast, with the number of sensors for 

each type expressed accordingly. The communication relationship for each type of sensor is vertically 

graphed, making it easy to understand the overall system; however, the detailed notation corresponding 

to the various types of equipment remains unresolved, and the accurate surface locations and 

communication relationships between the different types of equipment cannot be comprehended.  

A total of 432 sensors of 11 different types are installed in the Shanghai Tower [27], and these 

sensors are vertically expressed as the number of sensors of each sensor type as a function of the 

elevation of the building in a manner similar to the Guangzhou New TV Tower. In addition, the 

monitoring zone in the Shanghai Tower is divided vertically, and each zone is classified from the 
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ground to the top by a series of numbers. However, it is difficult to comprehend the location of sensors 

on the architectural plan, communication relationships, and overall system composition. The name of 

each sensor is expressed in the vertical zone, leading to the requirement for more space than is shown 

in the diagram and thus more time to understand the overall composition.  

In the SHM of a 31-story office building in Tokyo performed in 2007 [28], which was undertaken 

to consider the safety issues that arise during a typhoon, the location of attached equipment was 

included on the plan, although the location was expressed using structural drawings and was only 

applied to the sixth and 13th floors, making it difficult to comprehend the flow of the overall system.  

As illustrated by the aforementioned cases, there is a noticeable lack of research on systematic 

expressions of the sensor networks in structures that are divided into various spaces and comprise 

multiple vertical layers. For example, in addition to the location of measuring devices, information 

related to each component (i.e., sensors and wireless sensor nodes) and their associated relationships 

should be clearly indicated for efficient and prompt maintenance and management in the event that a 

device malfunction is detected or a dangerous response index is recorded. Furthermore, from the 

perspective of a manager with no experience in configuring a sensor network at such a site, there is a 

need to develop a new succinct expression method to provide knowledge of the system. 

This study proposes a symbolic and graphical representation scheme (SGRS) for a WSN for the 

SHM of large-scale structures and a strategy for the effective maintenance and management of such 

structures. A horizontal and vertical representation scheme is used in a flexible manner to reflect the 

specificity of each site when applied to various types and scales of structures. The SGRS is applied to 

the long-term monitoring of the structural responses of an actual structure currently under construction 

to evaluate its practicality. A large-scale irregular structure of five stories (three underground) with a 

total floor area of 85,320 m
2
 was used to provide an example application of this SHM system. In the 

structure, the vertical deflection, tilt, and strain of the members at vulnerable points of stability were 

the main objects of monitoring. The SGRS was applied for 41 data loggers and a total of 88 sensors of 

three types, namely, 75 vibrating wire strain gauges (VWSGs), 10 inclinometers, and three laser 

displacement sensors. In the proposed SGRS, the information obtained from measuring devices is 

expressed together with the relationship among the employed devices in a compact manner, which 

enables the network administrator to efficiently manage the sensor networks and measured data.  

2. The Practical SHM of Large-Scale Structures 

Figure 1 presents the WSN for an SHM, composed of sensors (S), sensor nodes (SN), repeater 

nodes (RP), master nodes (MN), monitoring servers, and administrators. Sensors, which are measuring 

devices, do not have a function for wireless transmission and are thus connected by a signal line to the 

sensor node, which performs data processing and wireless transceiver functions.  

The measured data in the sensor nodes must pass through the monitoring server to be transmitted to 

the wireless terminals held by several administrators. The wireless transceivers that perform this role 

are called the repeater node and master node. Considering the stability of wireless communication at 

an actual site with structural or nonstructural partitions hindering wireless communication, data 

transmission from the sensor node to the master node uses the 424 MHz Industrial Scientific and 

Medical (ISM) band, which has better diffractive characteristics than the existing 2.4 GHz communication 
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standard. The repeater nodes in the intermediate process of this stage can also be used as an alternative 

option for wireless communication. These nodes perform a relay function between the sensor node and 

master node to solve transmission problems that can arise due to long communication distances or a 

complicated structural configuration that hinders direct data transmission due to obstructive elements. 

The master node can collect dozens of instances of sensor data; therefore, when located in an area in 

which wireless communication is possible, even a small number of master nodes can send and receive 

a large amount of sensor data simultaneously. This master node receives data from the sensor nodes 

and sends them to the monitoring server inside the central monitoring center located away from the 

structure using the code division multiple access (CDMA) method. CDMA communication is robust in 

terms of security and interference, and the coded signal of a specific user is perceived as noise by other 

users. Thus, there is no distance restriction, and there is only a low possibility of data noise occurring 

from long-distance transmissions. It is also possible to share limited resources with many users. For 

this reason, regardless of the distance from the monitoring site, the transmitted signal can be decoded 

and demodulated using wireless terminals, such as a PC, notebook, tablet, or mobile phone, such that 

administrators can check data at any time and from any location. 

Figure 1. WSN for SHM. 

 

In this system, three types of sensors, namely, VWSGs, inclinometers, and laser displacement 

sensors, are used to measure structural responses, namely, the strain, angle of rotation, and deflection, 

respectively. In addition, the wireless sensor nodes corresponding to each measuring devices have been 

developed and are employed in this system to flexibly respond to the site specificity of various 

structure configurations.  
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3. A Symbolic and Graphical Representation Scheme of a WSN for SHM 

The advantage of the SGRS proposed here is that it is possible to promptly comprehend the  

location of a sensor or data logger using 3D information instead of general vertical or horizontal 2D 

expressions. To establish the SGRS of the sensor network, the monitoring zone is configured to reflect 

the specificity of the structure for SHM, and its location information is used as the basic notation unit. 

3.1. 3D Zoning Method (Graphical Representation) 

The greatest advantage of the symbolic and graphical representation scheme is that when fixed 

monitoring zoning regulations are defined for each structure, the scheme is applicable to all structures, 

including those with complicated and varied forms. Areas that become objects for monitoring within a 

structure are typically structurally critical; therefore, the existing notation that uses a plan at the 

structural level or the original architectural drawing is rather inefficient when used in this manner for 

large-scale structures. As a result, a sequential categorization of the site zoning, vertical zoning, and 

horizontal zoning is performed. 

3.1.1. Site Zoning in Multisite Monitoring 

The integrated operation and management of the multisite monitoring system for m sites is 

illustrated in Figure 2. The structural response information from each site is assembled into the final 

data collection device of the master node and then wirelessly transmitted to the monitoring server at 

the monitoring control center. The monitoring control center synthetically evaluates the conditions of 

all monitoring sites. An emergency management system can also be operated in which administrators 

are notified of emergency situations through the recognition of lost data that occurs for various 

unexpected reasons (e.g., communication problems, noise, and abnormal sensor installation) and 

through analyses of data that deviate from the predefined safety threshold (e.g., yield stress or drift 

ratio). A site manager can directly check the structural health of the site using wireless terminal 

equipment, such as a notebook, tablet PC, or mobile phone, and the overall analysis can be received 

from the monitoring control center, making it is possible to respond actively and promptly in real time. 

Figure 2. Site zoning of an SHM system (F: Floor). 
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3.1.2. Vertical Zoning in a Site 

A single site can be enlarged from the m sites where monitoring is occurring simultaneously, and 

detailed vertical zoning can be performed to monitor the conditions at the relevant site. Here, the 

critical structural members requiring monitoring measurements differ according to the form and site 

configuration of the structure. These members are conceptually categorized to have constant regularity 

to fit the site characteristics of the building structure. In other words, the zoning regulations for the 

monitoring unit do not involve expressions of the plan or elevations of the actual structure; instead, a 

virtual 3D space is formed to be developed based on the major members subjected to measurement and 

monitoring activities. 

Figure 3 presents the vertical zoning of the monitoring situation of a random site j from the m 

monitoring sites. The site consists of N stories in total, and a virtual grid is formed according to the 

fixed rules of A1, A2, …, B1, B2, …, C1, … for each story to divide the monitoring area. In this case, 

the designations are not the x- and y-axes on a plan but instead signify a series of letters and Arabic 

numerals because there are buildings or structures that are irregular in shape and therefore cannot be 

divided into a regular grid on x- and y-axes. The XY zone (e.g., A1, A2, … B1, B2,…) of a random 

floor i signifies a monitoring unit, i.e., the smallest unit that is monitored. This zone is expressed 

as    
 , where    

  denotes the monitoring unit XY on the n
th

 floor. This expression indicates the 

location of the equipment and is used as a prefix for all notations. 

Figure 3. Vertical zoning in the site of an SHM system. 
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3.1.3. Horizontal Zoning in a Typical Story 

The arrangement of wireless nodes on a single floor is determined according to the location of the 

sensors attached to the main members for the monitoring measurements, reflecting the condition of the 

floor. Here, all sensor and repeater nodes should be appropriately located within an area where 

wireless communication with the master node is possible. 

Figure 4 presents the horizontal zoning of the monitoring configuration inside the typical plan of the 

nth floor from Figure 3. Regardless of the sensor type, a group of one or more sensor nodes located 

within a short distance, in which they can communicate with their final receiving master node in the 

communication flow, is called a monitoring unit. This monitoring unit is the smallest unit of the 

system, as depicted by the single closed quadrangle shown in Figure 4. All monitoring units are 

represented by a notation that expresses the location of the unit (e.g., the monitoring unit XY on the 

nth floor is    
 ). The notation of monitoring units on a plan is identical to the rules explained in Figure 

3. One or more monitoring units are restructured into a monitoring group. A single master node can be 

responsible for one or more monitoring units. Generally, due to the restrictions of wireless 

communication according to the actual site conditions, grouping can be organized in areas where 

wireless communication is possible. If wireless communication is performed through the exterior of 

the building due to open spaces, stairs, elevators, or windows, one master node can group monitoring 

units across several stories. In other words, one monitoring group refers to an area in which wireless 

communication is possible for a single master node. In the example of the n
th

 floor (Figure 4), a total of 

six monitoring units form three monitoring groups; the boundary of the monitoring groups is 

represented by the thick lines. 

Figure 4. Horizontal zoning in a typical story of an SHM system. 
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3.2. Expression Method (Symbolic Representation) 

In the flow of communication connecting the sensors, sensor nodes, repeater nodes, and master 

nodes, the basic notation for each component is expressed by Marks 1 and 2 in Table 1, which 

illustrates the general rule for the SGRS. In front of all components, the notation for the location of the 

monitoring unit is specified, such as    
  (the XY zone on the nth floor). Following the location, the 

type of component is expressed as S for sensor, SN for sensor node, RP for repeater node, and MN for 

master node. The final receiving master node number (δ) is written on the far right as a subscript for 

the components (e.g.,   
 ,    

 , and    
 ). Additionally, the notations for sensors and sensor nodes can 

be added if different types of devices are employed in the WSN. 

Table 1. Notation Method.  

Location 

Component 

Mas

ter 

Nod

e 

Mark 

2 
Example (Mark 1+ Mark 2) 

Floor Monitoring Unit Mark 1 

        
  

Sensor 

(S) 

VWSG  

(V) 

  

  
      

   
  ,    

   
  ,    

   
  ,    

   
   

Inclinometer (I)   
      

   
  ,    

   
  ,    

   
   

Laser 

Displacement(D) 
  
      

   
    

Sensor 

Node 

(SN) 

VWSG 

(V) 
   

   (   a number of VWSG connected    
    

  ) 

Inclinometer 

(I) 
   

  
 (   a number of Inclinometer connected    

    
  

) 

Laser 

Displacement 

(D) 

   
   

(   a number of Laser Displacement  

connected    
    

   ) 

Repeater node 

(RP) 
   

      
    

  ,    
    

  ,    
    

  , … 

Master node 

(MN) 
        

     ,    
     ,    

     , … 

Figure 5 presents a simple depiction of the monitoring situation of the nth floor in Figure 4. First, it 

expresses how the six monitoring units A1, A2, B1, B2, C1, and C2 on the nth floor are composed of 

three monitoring groups; the location notation of each unit is also given. Second, a graphic expression 

of the type of sensor and sensor node in each unit and how many sensors there are is presented. On the 

upper right of each unit, the number of the final receiving master node is indicated, thereby indicating 

the master node to which the relevant nodes belong. Third, a notational expression is also given to the 

unit, where V, I, and D correspond to VWSG, inclinometer, and laser displacement, respectively. The 

number written after each letter is the number of sensors of each type in the relevant unit. Below the 

sensor expression, the number of the final receiving master node is shown. In the monitoring group, 

the unit in which the master node is located is indicated by gray shading. 
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When the overall composition status is implemented at the level of the monitoring unit and 

monitoring group, the sensors and sensor nodes within each unit are numbered (Figure 5). Figure 6 

presents the method used to number the components comprising unit A1 in Figure 4. The sensor node 

notation is as follows. The sensor node of VWSG becomes    
     

  , the sensor node of the 

inclinometer becomes    
     

  , and the laser displacement sensor node becomes    
     

  . The 

notation of each sensor is as follows. The four VWSGs are    
    

  ,    
    

  ,    
    

  , and    
   

  ; the 

two inclinometers are    
    

   and     
    

  ; and the one laser displacement sensor is expressed as 

   
    

  . Using this rule, it is possible to express all monitoring configurations. The location notation is 

written on the front of all notations such that the location of the equipment can be quickly identified. 

This format is also advantageous because it is easy to understand the type of sensor node, how many 

sensors are connected, and to which master node they belong. 

Figure 5. Method for conversion. 

 

Figure 6. Notational system for each sensor of the A1 unit. 

 

4. Field Application 

This section presents an example in which the convenience of management is increased by 

expressing the WSN for SHM in a real application to an irregular structure site (D-Building) under 

construction using the method proposed in Section 3.  

4.1. Conventional Expression for the Network System 

D-Building is a large-scale irregular structure with three underground stories and four aboveground 

stories with a total floor area of 85,320 m
2
 that is currently under construction on a 61,585 m

2
 site. 

Figure 7a presents the main object members to be monitored at D-Building and the monitoring unit for 
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each member. There are difficulties related to construction, such as exposed concrete and exterior 

panels with various free curvatures, complicated forms of space frames supporting the panels, irregular 

internal mega-spaces, and different uses of mega-members. Therefore, there is significant need for 

SHM to minimize the horizontal-vertical displacement and distortion error that can occur during the 

construction process. In addition, the plan is significantly different for each story, and the building 

itself is very large. Thus, there is considerable difficulty in terms of management and maintenance, as a 

prompt understanding of the monitoring status is not always possible. Figure 7b illustrates the WSN on 

the floor plan, which is generally used to illustrate the composition of the SHM system at  

D-Building. However, the organization of the system cannot be clearly viewed, and the compositional 

relationships between the equipment are unknown. Thus, it is difficult to indicate this information 

drawn to scale on the floor plan. In such a case, it is also necessary to have partially enlarged diagrams 

for each monitoring unit. 

Figure 7. The irregular shaped buildings of D-Building. (a) Zoning of monitoring units; 

(b) The architectural floor plan. 

 

(a) 

 

(b) 
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Figure 8 presents the composition of the WSN for SHM applied to D-Building and the 

communication flow chart. Generally, WSNs can be expressed in tree diagram form, as shown in 

Figure 8. The overall composition of the system can be understood at a glance using such a diagram. 

However, the notation becomes quite inconvenient and complicated as the number of components 

increases in the network, and such information as the location of each component and distinct 

numbering is omitted, thereby introducing a considerable disadvantage in terms of management 

efficiency. In addition, a considerable amount of time may be needed for managers other than the 

drafter to clearly understand the flow of any relevant system. 

Figure 8. General designation method for communication at D-Building. 

 

4.2. Application of the Proposed Method (SGRS) to D-Building 

Figure 9 presents the vertical zoning of the system for D-Building applied according to the scheme 

shown in Figure 3. The virtual zone is composed of each plan to conceptually express the monitoring 
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unit in three dimensions. This image is provided to increase the understanding of the system, although 

it is not necessary when using the actual notation method.  

Figure 9. Conceptual 3D zoning diagram for D-Building. 

 

As shown in Figure 7, D-Building is a highly irregular building that consists of mega-structural 

members, such as mega-columns, mega-trusses, edge trusses, and roof trusses. Therefore, it is almost 

impossible to divide the monitoring zones in a regular manner both in the horizontal and vertical 

directions. Instead, the large structural members of D-Building are categorized as A, B, C, D, and E 

with three to eight serial numbers assigned to each member.  

Two main approaches are used to express the composition of the WSN for SHM at D-Building. The 

first method uses the graphic expression introduced in Figure 10, and the second method uses the 

symbolic expression approach introduced in Figure 11. 

Compared with Figure 8, Figure 10 summarizes a large amount of information regarding the system 

within a relatively small space. This graphical expression enables a clearer understanding of the 

distribution status of the wireless nodes and their communication relationships. Furthermore, both the 

location of the sensing equipment and the target measuring point are provided because the location of 

the sensor and target point varies depending on the sensor type. In the case of a laser displacement 
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sensor, it is a noncontact type sensor and therefore located far from the measuring point. For this 

reason, this expression method indicates both units in which laser displacement sensors and target 

measuring points are located. That is, it first indicates a marking as the laser displacement sensor on 

the installed unit and uses dotted line arrows to indicate the target object unit (measuring point) in 

which the reflecting plate for the laser beam is located. 

Figure 10. Graphical diagram expression for D-Building. 

 

Figure 11. Simple notation for D-Building. 

 

This approach is advantageous in that the characteristics of the sensors can also be considered and 

both the sensing device and target element can be monitored and managed simultaneously. Figure 11 

presents a method using symbols to express the numbering assigned to each piece of equipment on a 

diagram of an identical size to that in Figure 10. The status and numbering of the sensor nodes shown 

in Figure 11 are identical to those aspects in Table 2. 

  



Sensors 2013, 13 9787 

 

 

Table 2. Notation for the sensor nodes used at D-Building. 

Master 

Node  

(11EA) 

Zone 

Sensor Node (30 EA) 

From VWSGs From Inclinometers From Laser Displacement Sensors 

Mark Floor Number Mark Floor Number Mark Floor Number 

      A1    
     

   B3 4       

      A4    
    

   B3 4    
    

   3 2    
    

   3 1 

      B1    
     

   B3 4       

B4    
     

   B3 4       

      A5    
    

   4 4    
    

   4 1    

A8    
    

   R 4       

      B2    
    

   3 4    
    

   3 2    
    

   3 1 

B5    
    

   3 4    
    

   3 1    

B6    
    

   3 4    
    

   3 1    

      D1    
    

   3 3       

D2    
    

   3 3       

D3    
    

   3 3    
    

   3 1    

      C2    
    

   3 3       

C3    
    

   3 3    
    

   3 1    

      C1    
    

   3 3    
    

   3 1    

      A6    
    

   3 2    
    

   3 1    

A3    
    

   4 4       

A7    
    

   R 4       

B3    
    

   R 4       

       A2    
     

   3 4    
     

   3 2    
     

   3 1 

       E1    
     

   3 3       

E2    
     

   3 3       

E3    
     

   3 3       

Total number (EA) 75 10 3 

5. Conclusions 

This study proposes an SGRS to express the complex WSN that is employed in the monitoring of 

structural responses. The SGRS developed here symbolically expresses the locations and 

communication relationships of sensors and wireless nodes for each sensor and graphically expresses 

the composition and relationships pertaining to each sensor type, allowing the entire system to be 

represented in a concise and effective diagram. Through this scheme, the integrated management of 

monitoring systems is enabled even for super-tall buildings, large-scale structures, and multiple 

construction sites with different overall conditions and with complicated and various forms. The 

specificity of each site can be well reflected in the representation, and a management system can be 

established through which effective maintenance management is possible through the prompt 

identification of the communication relationships between all components.  

The SGRS was applied to a WSN employed in an actual large-scale irregular structure in which 

three types of sensors (75 vibrating wire strain gauges, 10 inclinometers, and three laser displacement 

sensors) and customized wireless sensor nodes were installed. Despite being a structure with 

complicated and varied configurations, the communication relationships and respective location 

information of the system components were concisely expressed in a small space with an emphasis on 
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the flow of measured data. Furthermore, the application results demonstrated that the prompt 

identification of sensing units and effective management of distributed sensor networks can be realized 

from the SGRS, thereby confirming its superiority relative to the conventional expression method 

using a box or tree diagram representing the ID of sensors and data loggers (nodes). 

Acknowledgments 

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the 

Korea government (Ministry of Science, ICT & Future Planning, MSIP) (No. 2011-0018360). The authors 

appreciate the support received from all the members who contributed to construction of the building. 

Conflict of Interest 

The authors declare no conflict of interest. 

References 

1. Maaskant, R.; Alavie, T.; Measures, R.M.; Tadros, G.; Rizkalla, S.H.; Guha-Thakurta, A.  

Fiber-optic bragg grating sensors for bridge monitoring. Cem. Concr. Comp. 1997, 19, 21–33. 

2. Park, H.S.; Jung, S.M.; Lee, H.M.; Kwon, Y.H.; Seo, J.H. Analytical models for assessment of the 

safety of multi-span steel beams based on average strains from long gage optic sensors.  

Sens. Actuators A Phys. 2007, 137, 6–12. 

3. Lee, H.M.; Park, H.S. Measurement of maximum strain of steel beam structures based on average 

strains from vibrating wire strain gages. Exp. Technol. 2013, 37, 23–29.  

4. Doebling, S.W.; Farrar, C.R.; Prime, M.B.; Shevitz, D.W. Damage Identification and Health 

Monitoring of Structural and Mechanical Systems from Change in Their Vibration 

Characteristics: A Literature Review, Technical Report No. LA-13070-MS; Los Alamos National 

Laboratory: Los Alamos, NM, USA, 1996. 

5. Salawu, O.S. Detection of structural damage through changes in frequency: A review. Eng. Struct. 

1997, 19, 718–723. 

6. Park, H.S.; Lee, H.M.; Adeli, H.; Lee, I. A new approach for health monitoring of structures: 

Terrestrial laser scanning. Comput. Aided Civil Infrastr. Eng. 2007, 22, 19–30. 

7. Nakamura, S. GPS measurement of wind-induced suspension bridge girder displacements.  

J. Struct. Eng. 2000, 126, 1413–1419. 

8. Ni, Y.Q.; Li, B.; Lam, K.H.; Zhu, D.; Wang, Y.; Lynch, J.P.; Law, K.H. In-construction vibration 

monitoring of a super-tall structure using a long-range wireless sensing system. Smart Struct. Syst. 

2010, 7, 83–102. 

9. Wu, Z.F.; Gao, F. Application and research of steel structure construction monitoring of costa rica 

state stadium canopy with measurement robot. Energy Procedia 2011, 13, 2794–2801. 

10. Park, H.S.; Sohn, H.G.; Kim, I.S.; Park, J.H. Application of GPS to monitoring of wind-induced 

responses of high-rise buildings. Struct. Des. Tall Spec. Build. 2007, 17, 117–132. 

11. Celebi, M.; Eeri, M.; Sanli, A. GPS in pioneering dynamic monitoring of long-period structures. 

Earthq. Spcetra 2002, 18, 47–61. 



Sensors 2013, 13 9789 

 

 

12. Balendra, T.; Anwar, M.P.; Tey, K.L. Direct measurement of wind-induced displacement in tall 

building models using laser positioning technique. J. Wind Eng. Ind. Aerodyn. 2005, 93, 399–412. 

13. Ou, J.; Li, H. Structural health monitoring in mainland china: Review and future trends. Struct. 

Health Monit. 2010, 9, 219–231. 

14. Lynch, J.P.; Loh, K.J. A summary review of wireless sensors and sensor networks for structural 

health monitoring. Shock Vib. Digest 2006, 38, 91–130. 

15. Xu, N.; Rangwala, S.; Chintalapudi, K.K.; Ganesan, D.; Broad, A.; Govindan, R.; Estrin, D. A 

Wireless Sensor Network for Structural Monitoring. In Proceedings of the 2nd International 

Conference on Embedded Networked Sensor Systems (ACM), Baltimore, MD, USA,  

3–5 November 2004; pp. 13–24. 

16. Lee, H.M.; Kim, J.M.; Sho, K.; Park, H.S. A wireless vibrating wire sensor node for continuous 

structural health monitoring. Smart Mater. Struct. 2010, doi:10.1088/0964-1726/19/5/055004. 

17. Hu, X.Y.; Wang, B.W.; Ji, H. A wireless sensor network-based structural health monitoring system 

for highway bridges. Comput.-Aided Civil Infrastruct. Eng. 2013, 28, 193–209.  

18. Tubaishat, M.; Madria, S. Sensor networks: An overview. Potentials IEEE 2003, 22, 20–23. 

19. Merrett, G.V.; Harris, N.R.; Al-Hashimi, B.M.; White, N.M. Energy managed reporting for 

wireless sensor networks. Sens. Actuators A Phys. 2008, 142, 379–389. 

20. Zhong, C.; Worboys, M. Generating Contours in a Sensor Network using Isovector Aggregation. 

In Proceedings of the 5th IEEE Upstate NY Workshop on Communications, Sensors and 

Networking, Syracuse, NY, USA, 9 November 2007; pp. 131–135. 

21. Suryadevara, N.K.; Mukhopadhyay, S.C. Wireless sensor network based home monitoring system 

for wellness determination of elderly. IEEE Sens. J. 2012, 12, 1965–1972. 

22. Jabbari, A.; Jedermann, R.; Muthuraman, R.; Lang, W. Application of neurocomputing for data 

approximation and classification in wireless sensor networks. Sensors 2009, 9, 3056–3077. 

23. Chen, J.; Salim, M.B.; Matsumoto, M. Modeling the energy performance of event-driven wireless 

sensor network by using static sink and mobile sink. Sensors 2010, 10, 10876–10895. 

24. Ha, S.W.; Lee, Y.K.; Vu, T.H.N.; Jung, Y.J.; Ryu, K.H. An environmental monitoring system for 

managing spatiotemporal sensor data over sensor networks. Sensors 2012, 12, 3997–4015. 

25. Ni, Y.Q.; Xia, Y.; Liao, W.Y.; Ko, J.M. Technology innovation in developing the structural health 

monitoring system for Guangzhou New TV Tower. Struct. Control Health Monit. 2009, 16, 73–98. 

26. Xia, Y.; Ni, Y.Q.; Zhang, P.; Liao, W.Y.; Ko, J.M. Stress development of a supertall structure 

during construction: Field monitoring and numerical analysis. Comput.-Aided Civil Infrastruct. 

Eng. 2011, 26, 542–559. 

27. Su, J.Z.; Xia, Y.; Chen, L.; Zhao, X.; Zhang, Q.L.; Xu, Y.L.; Chen, A.R. Long-term structural 

performance monitoring system for the Shanghai Tower. J. Civil Struct. Health Monit. 2013, 3, 49–61. 

28. Kurata, N.; Suzuki, M.; Saruwatari, S.; Morikawa, H. Actual Application of Ubiquitous Structural 

Monitoring System using Wireless Sensor Networks. In Proceedings of the 14th World 

Conference on Earthquake Engineering, Beijing, China, 12–17 October 2008; pp. 1–9. 

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/) 


